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Detection of Methacholine with Time Series Models
of Lung Sounds

Piet M. T. Broersen and S. de Waele

Abstract—A new method for the extraction of features from sta-
tionary stochastic processes has been applied to a medical detection
problem. It illustrates a practical application of automatic time se-
ries modeling. Firstly, the model type and the model order for two
time series prototype models are selected. The prototypes repre-
sent the lung noises of a single healthy subject, before and after the
application of methacholine. Using the model error ME as a mea-
sure for the difference between time series models, new data can
be divided into classes that belong to the prototype models for this
person. The prototype models are obtained from a few expiration
cycles under known conditions. This is sufficient to detect the pres-
ence of methacholine in new data of the same subject if he is able
to maintain stationary conditions by following accurately the pre-
scribed breathing pattern. It is not necessary to use the same model
type and the same model order for the prototypes and for new data.
Automatically and individually selected models for prototypes and
data give a good detection of methacholine.

Index Terms—Detection, model error, prediction error, proto-
type model, spectral estimation.

I. INTRODUCTION

A STHMA is a chronic disease with variable airway obstruc-
tion in which the airways are characterized by inflamma-

tory changes. The association between lung sound characteris-
tics and asthma has long been recognized. It is clear that heavy
asthma can be detected rather easily by simply listening. The
final goal of this research, however, might be the early detec-
tion of asthma by an automatic computer analysis of recorded
lung sound signals. Using computerized phonopneumography,
lung sounds have been analyzed in intensity and frequency con-
tent [1]. As expected, some differences are observed between
healthy and asthmatic subjects. However, also variations be-
tween different subjects within one class are found that hamper
the extraction of pure asthmatic features. By inducing acute
airway narrowing using methacholine, an increase in sound in-
tensity and frequency content has been found for a healthy sub-
ject, as well as a change in the wheezing of asthmatics [2].
Therefore, the characteristics of the lung sounds of a single
person can be varied with methacholine in a way that simulates
asthmatic features.

The purpose of this paper is to demonstrate the use of time
series models for feature extraction in a medical context. This is
also a validation of the use of theoretical results for time series
which have been obtained forstationary stochastic processes
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[3] on practical observations on humans. A first step toward de-
tection of asthma is to investigate detection of the presence of
methacholine in easily observable properties of lungs, for which
the lung sounds have been used. The paper describes a method
for the automatic detection of methacholine from measurements
with a microphone placed at a precisely specified position on the
chest. As test data, observations of the lung noises of one person
with and without methacholine are available. New data come
from the same person, both with and without methacholine, but
recorded a few days later.

Autoregressive (AR) models have been used before to char-
acterize lung sounds [4], [5]. They are one type of the wider
class of time series models, including AR, Moving Average
(MA), and combined ARMA models [6]. Theoretically, at least
one of those three model types gives a good spectral model for
unknown stationary stochastic processes [6]. By using robust
methods in estimating the three model types, it is possible to
select a single modeltype, AR or MA or ARMA [3]. Also the
best modelorder can be selected from hundreds of candidate
orders. This automatically selected model of finite order gives a
description of the statistically significant details in the data [3],
leaving out spurious details that are not significant.

The model error ME has been introduced as a measure for
the accuracy of time series models [7], [8]. It compares re-
sults of different algorithms with the characteristics of the true
process, as a criterion to evaluate estimation algorithms. This
scalar measure can also be used to characterize the difference
between the measured time series model of new data and pre-
viously determined prototype models. The new data model is
obtained from microphone measurements under unknown con-
ditions. Two prototype models are used; one prototype is the
model in normal conditions and the second prototype is the
model found after application of methacholine. The results show
that the presence of methacholine is detected very well for the
person in this test.

II. M EASUREMENTS

Records have been made from eight healthy nonsmoking
normal male adults, between 19 and 28 years of age. All sub-
jects underwent lung function tests before the actual recordings.
From each subject, two similar data sets were recorded, at an
interval of two or three days. The first measurement on each
day was in the normal situation. The second measurement took
place after applying methacholine, in a concentration such that
the FEV, the Forced Expiration Volume, the flow of air forced
out after maximal inhalation, was diminished by 25%.

The subjects had to follow a prescribed breathing pattern:
1.5 l/s during inspiration and expiration between fixed max-
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imum and minimum volumes. Flow and volume are measured
with a spirometer. Lung sounds were obtained from a piezo-
electric air-coupled microphone, at the second intercostal mid-
clavicular line. This signal was high-pass and low-pass filtered
with 4th order Bessel filters at 100 Hz and 1500 Hz, respectively.
Afterwards, the signal was digitized with a sampling frequency
of 5000 Hz, with 12-bit resolution. A peculiar phenomenon was
found in all digitized microphone signals, a very sharp peak
at 1500 Hz, exactly the cutoff frequency of the low-pass filter.
This could not be explained from a biological point of view. The
small hardware error has mostly been left in the signals which
were analyzed, because sometimes the removal by decimating
the data turned out to be disadvantageous for detection. More-
over, a comparison with previous studies of the same data [1],
[2] remains possible. Synchronization of microphone data with
flow measurements enables the detection of the transitions from
expiration to inspiration.

The records have been analyzed before [1], [2]. It turned out
to be rather difficult to discover reproducible effects of metha-
choline, that can be used for its detection. The limited purpose
of this paper is to investigate the feasibility ofautomaticallyde-
tecting the presence of methacholine with time series models of
lung sounds. Automatically means that no use is made of avail-
ablea priori knowledge about data properties from present or
previous research [1], [2], [4], [5]. Only expiration data from
one subject have been used. Without further detailed investiga-
tions, it has been decided to use the first 1000 observations of
the expiration phase. It is possible that other parts of the respira-
tion cycle give better detection results. Also further filtering the
data or resampling has not been studied in detail. Those opera-
tions, if used optimally, may have a favorable influence on the
possibilities of feature extraction and detection.

III. T IME SERIESMODELS

Estimation theory for time series often uses the notions
processandmodelsfor the true signal properties and for the
properties obtained from data, respectively. If onlypractical
data are available, some adaptations will be necessary because
the theoretical signal properties are not known then. Suppose
that are data which are generated by an ARMA
process, given by [6]

(1)

where is a white noise sequence with varianceand the
AR autoregressive) polynomial is defined as:

In this notation,
Likewise, an MA moving average) polynomial is defined
as a polynomial of order in The process is purely AR if

and MA if so with The process is
stationary if has no roots or poles foron or outside the
unit circle. Likewise, it is invertible if the roots of denoted
zeros, are all inside the unit circle. Theoretically, any stationary
stochastic process can be written as an AR or an MA
process [6], but also ARMA processes are possible. In practice,
a suitably selected finite order model of one of the three model
types will give a good description [3].

Models can be divided in two classes: models that are es-
timated from the data at hand and models that come from an
origin that is statistically independent from the present data. In
the first class, the estimated parameters are statistically depen-
dent on the data. With model parameters and obser-
vations can be filtered

(2)

This can be interpreted as filtering the measured datato ob-
tain as output signal. If the model parameters have been es-
timated from the data in (2), is called a residual; if the
model is independent from the data in (2), is called a
prediction. Typically, the variance of is smaller than for
residuals and greater than for predictions. The squared Pre-
diction Error PE is defined as the variance ofin (2), with the
condition that is independent of and For prac-
tical data this variance can be estimated with (2) by filtering.
However, if the true process is known as in (1), the outputof
the model with and can also be determined by sub-
stituting the formula (1) for in (2)

(3)

Therefore, the relation between the outputof the model (3)
and the innovations that generated the true process is given
by an ARMA process. The variance PE of that
process can easily be expressed in and

[7]. Prototype models from test data are considered as in-
dependent polynomials and in (2) and (3); new de-
tection data are denoted and A point of investigation
will be whether it is necessary to have the same type and order
for prototypes and data models or that they can have different,
selected, types and orders.

AR, MA, and ARMA models must be estimated for many or-
ders before a choice can be made for new data [3]. Models of
the unknown best order must be computed, but also models of
higher orders. Only then, it is possible to conclude that lower
orders are better and should be selected. However, maximum
likelihood methods for MA and ARMA estimation are non-
linear [6]. Maximum likelihood algorithms require initial con-
ditions and must iterate for convergence. This is a known cause
of problems in the practice of nonlinear time series estimation,
especially for high-order models. For an AR model, there
is only one AR model that gives the same fit. That is
the model with parameter zero for order However, for
every ARMA model that gives a good fit, there are infin-
itely many ARMA models with the same fit: all
models where an additional pole and zero cancel. Therefore, the
variance of the parameters of those over-complete models will
be The variance becomes so large that roots of estimated AR
and/or MA polynomials can fall outside the stationary or invert-
ible region, with the boundary being the unit circle. Some exam-
ples of robust algorithms have been described [3], [9]; possible
good choices for AR, MA, and ARMA algorithms are discussed
briefly.
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Burg’s estimation method [10] can be recommended for AR
models; CIC [11] can be used as a criterion for order selection.
Other AR order selection criteria can give wrong orders if the
candidate orders become higher than 0.1 N. Taking the actual
finite sample behavior of the logarithm of the residual variance
into account, the Combined Information Criterion CIC is based
on the expectation and on the variance of the logarithm of the
residual variance, as a function of the model order [11].

The Durbin’s method for MA [12] and for ARMA [13] es-
timation consists of the use of the parameters of a long inter-
mediate autoregressive model to compute MA parameters. In
this way, nonlinear estimation is approximated by a sequence
of linear operations. Durbin’s algorithms always converge and
produce an invertible solution. A recent improvement in the
Durbin’s method is that a new optimal order has been defined for
the intermediate AR model. Hence, the performance of Durbin’s
algorithms in practice has been improved [14], [15]. In many
examples with reasonable sample sizes, the Cramér-Rao lower
bound for the parameter accuracy is approximated in estimated
MA and ARMA models if this new intermediate AR order is
used.

The Matlab routine ARMAsel [9] for the automatic evalua-
tion of stationary stochastic data is as follows:

• AR models are estimated and an AR orderis selected;
• MA models are estimated and MA orderis selected;
• ARMA models are estimated and an orderis

selected;
• from those three selected models of different types, a

single one is chosen with a criterion that is based on the
estimate of the prediction error of the AR MA
and ARMA models.

This final model, withorder and type selectedautomatically for
given observations, is denoted the ARMAsel model [9].

The prediction error PE is defined as the model fit to new and
independent data, or the variance of the one step ahead error of
prediction in (3). It is an obvious measure for the accuracy of
time series models. Its asymptotical expectation for and

for unbiased models which have at least all true nonzero
parameters included, equals

(4)

where is the number of estimated parameters,is the
number of observations, and is the innovation variance of (1).
The AR model with the minimum of PE also has an interpreta-
tion in the frequency domain as the model with the highest mea-
sure for the spectral flatness [16]. The scaling factor is a constant
contribution which gives no relevant information about the
quality of different models for the same process. Therefore, the
model error ME is defined [7] as a scaled version of the excess
prediction error due to the combination of model selection and
parameter estimation

(5)

where is the variance of the innovations that are the exci-
tations of the time series process (1). ME can easily be com-
puted in the time domain [7], without needing an estimate for

Fig. 1. Observations of three cycles of respiration sounds with methacholine,
starting with inspiration that has a higher amplitude. The first transition to
expiration is at 1.4 s, the second at 4.8 s.

The asymptotical expectation of ME for unbiased models is
the number of estimated parameters, independent of the sample
size. Hence, the asymptotical expectation of ME for an unbi-
ased ARMA equals and is independent of
and of the true parameters [7]. The ME of unbiased models is
independent of the properties of the true process, which has ad-
vantages for the interpretation. Only statistics determine what
happens for models above the true process order, and not the
characteristics of the true process, which will generally be un-
known in applications.

The time-domain computation of ME requires only the pa-
rameters of two models that are to be compared. In the orig-
inal derivation with the prediction error, it has been used for
assessing the quality of estimation algorithms for known pro-
cesses. Another new application of ME is to measure the differ-
ence between two models. For detection, ME will be computed
with prototype models substituted for and and with
the model parameters estimated from new datafor and

IV. FEATURE EXTRACTION WITH ARMA M ODELS

Fig. 1 shows a registration of three respiration cycles. At first
sight, it is clear that the variance of the sound is not constant
during one cycle: the level is different for inspiration and for
expiration. The variance also diminishes more or less gradu-
ally from the beginning until the end of the cycle. The arrow
in the third cycle of Fig. 1 indicates the occurrence of a sudden
increase in the sound level. This might also be present in the
second cycle, but certainly not in the first cycle where a gradual
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Fig. 2. Observations of the start of an expiration cycle for signals without and
with methacholine, respectively. The ME between ARMAsel models is 951 if
the model with methacholine is used as prototype.

increase of the sound level toward the end of the expiration
phase is seen. Using isolated phenomena like this short burst
for detection purposes has not been successful. It is clear that
Fig. 1 is definitely not coming from a stationary process. As
time series analysis has its theoretical background instationary
stochastic processes, it will be wise to use only a part of the data
for detection. Most detection experiments reported in this paper
have been based on the first 1000 observations of expiration; de-
tection of the transition points was based on the separate flow
measurements.

Fig. 2 shows time records of the first 1000 observations of
lung noises during expiration phases, without and with the ap-
plication of methacholine. At first sight it is seen that the level
of the variance of the signals is different for this specific person,
but this signal property has not been used for feature extraction
because it varies for different subjects. Moreover, the level is not
stationary, certainly not for the signal with methacholine. The
value 951 for ME can be compared to the ME values for AR-
MAsel models of different frames of the same signal. Fig. 3 uses
the first 1000 expiration observations as a reference. It is clear
that the statistical variations within one period are important,
but they remain smaller than the difference caused by metha-
choline. Using the model without methacholine as a prototype in
the data of Fig. 2 would give ME = 3022 instead of 951. Asymp-
totically, for small deviations, the ME is not sensitive to which
signal is used for and and which signal yields
and but for larger deviations this becomes important. The
ME is a relative error in the frequency domain [8], which is sen-
sitive for the exchange of numerator and denominator in (3) if
their quotient is not approximately 1.

Fig. 3. The ME of different consecutive frames of 1000 observations of a
single breathing period, with methacholine. Frame 1 starts at 3.8 s in Fig. 1. The
first five frames are during inspiration, the last six frames during expiration.

Fig. 4. AR(25) spectra of averaged prototype 1 and prototype 2 signals,
together with four estimated spectra of type 1, each obtained from the first
1000 observations of a single expiration cycle with individual selection of
model order and model type.

The spectral densities of both signals are given in Fig. 4; the
integral of the spectral density is normalized to 1. The average
AR(25) model of the first 1000 observations of four consecu-
tive expiration cycles without methacholine is denoted Proto-
type 1 in Fig. 4; likewise, Prototype 2 is the average of four
times 1000 observations with methacholine. For prototype 1, the
spectra of the four contributing cycles have also been presented
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separately, each with type and order selected from the data.
The first 1000 observations of four sequential expiration cycles
without methacholine have been used to estimate AR, MA, and
ARMA models. First, the best model order has been selected for
each model type. Afterwards, a single model type has been se-
lected with ARMAsel [3], [9]. The selected models with the AR-
MAsel algorithm were ARMA(8,7), ARMA(8,7), ARMA(7,6),
and MA(53) for those four signals. However, it turned out that
the spectra of AR(25) models are very close to the selected ones
for all signals, because the ME of the AR(25) model was rather
small when compared with the model with selected type and
order. This shows that all three model types can give a good
representation of the data, if the order is selected properly. As
an example, the ME values between the preferred ARMA(8,7)
model for the first signal of 1000 observations and for this signal
selected AR(10) model, the selected MA(23) model and the
chosen AR(25) model were 24, 47, and 19, respectively. This is
harmless if the difference in ME between the prototypes is much
greater. Experiments will provide information about those ME
values. They should be much greater than the variations of ME
for different well-fitting models of the same signal. Fig. 4 shows
that the normalized prototype spectra are similar at low frequen-
cies. However, the prototype 2 spectrum with methacholine is
about ten times lower for higher frequencies. The variance of
the signal with methacholine is about ten times greater for this
subject. If the variance would be used as integral of the spectral
density, the difference at low frequencies would become a factor
of ten and at higher frequencies the spectra would be at the same
level. It may seem attractive to use the accidental spectral differ-
ence at high frequencies in Fig. 4 for an ad hoc detection strategy
for the presence of methacholine. Previous research [2] and in-
spection of the data of other subjects indicate that will not be
successful. Moreover, the part of the spectrum above 1000 Hz
is strongly modified by the low-pass filter at 1500 Hz.

The aim of the first experiment is to investigate whether it
is possible to recognize the presence of methacholine by com-
paringaveragetime series models of the same model type and
order. It has been decided to take the average of four AR(25)
models of the first 1000 observations of four consecutive ex-
piration cycles as the model for the prototypes. Without any
claim of optimality, the four AR(25) models have been trans-
formed into the first 25 points of their normalized correlation
functions. The four correlations have been averaged, and the
AR(25) model belonging to the average correlation is taken as
prototype 1. Likewise, four cycles with methacholine give pro-
totype 2. The two prototype models P1 and P2, without and with
methacholine, respectively, have been derived from the first four
cycles of the first day. The average models of four further cycles
of the first day are the test data T1a and T2a; the second day
has the data T1b, T1c without and T2b, T2c with methacholine.
The model error ME has been used to measure the difference of
the test data with the two prototypes. The ME between P1 and
P2, using P2 as prototype for and is 609. (Using P1
as prototype would yield 1827). The result of this in Table I is
clear: the models obtained from type 1 data are close to P1 and
far from P2. On the other hand, the models from type 2 data
are close to P2 and far from P1. The larger the ratio between
the ME values for wrong prototype/correct prototype, the better

TABLE I
THE ME BETWEEN AVERAGE AR(25)

MODELS OF THETEST DATA T1 AND T2 AND TWO PROTOTYPESP1AND P2,
WITHOUT AND WITH METHACHOLINE, RESPECTIVELY

TABLE II
THE ME VALUES FORAR MODELS OF1000 OBSERVATIONS OFEXPIRATION

DATA AS A FUNCTION OF THEFIXED AR ORDER. PROTOTYPES ANDTEST

DATA HAVE THE SAME FIXED AR ORDER

detection is possible. The best ratio is found with the test data
T1a and T2a, measured on the same day as the prototypes. The
smallest ratio is found to be somewhat greater than four for T2c,
measured two days later; but the difference with the two proto-
types is still enough to support detection. Hence, the presence
of methacholine can easily be detected with this method applied
to one person.

After the conclusion that it is possible to detect the presence
of methacholine, the next questions are:

• What are the best model type and order for detection?
• How can it be averaged or is it not necessary to take aver-

ages, and can single signals give sufficient information?
Various fixed-order AR models have been tried in Table II, the
same for prototype and for test data. The prototypes are the AR
models of 1000 observations recorded on the first day. Four test
models have been used, each on the first 1000 observations of a
single expiration cycle on the second day of the measurements.
The results for test data versus prototypes are the averages of
the ME of those four models. With AR models of orders 1 and
2, detection is impossible. For AR orders 4 and higher, the ratio
was gradually becoming worse; but for all AR orders between 4
and 32, the ME for T2 with P1 was greater than three times the
ME of T2 with P2. This is only slightly worse than in the last line
of Table I, where prototypes and data models were based on the
averageof four data sets. Finally, the detection becomes almost
impossible for AR order 512. Hence, the AR order should be not
too low and not too high if AR models of fixed order are used.

The success of fixed-order AR models calls for investigation
of the influence of selected orders. Table III gives results for the
same data, but for every signal a separate AR order has been se-
lected using the CIC criterion, for increasing values of the max-
imum candidate order for selection [11]. Results remain con-
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TABLE III
THE ME VALUES FORAR MODELS OF1000 OBSERVATIONS OFEXPIRATION

DATA. PROTOTYPES ANDTEST DATA HAVE INDIVIDUALLY SELECTED

AR-ORDERS AS AFUNCTION OF DIFFERENTMAXIMUM CANDIDATE AR
ORDERS FORSELECTION

TABLE IV
THE ME VALUES OF EXPIRATION DATA AS FUNCTION OF THENUMBER OF

OBSERVATIONSN: PROTOTYPES ANDTEST MODELS WITH SELECTED

AR-ORDERS FORMAXIMUM AR ORDERSN=2

stant for maximum orders greater than 32. Obviously, the se-
lected AR order is always less than 32. This behavior has the
advantage that a high maximum candidate order can be used
for unknown data, minimizing the probability of missing good
models. If a lower order is sufficient, that will be selected.

A last question concerning AR models is the influence of
the number of observations. Always, the first observations
of expiration have been used, from which an AR model is se-
lected with a maximum candidate order of It may be ex-
pected that demands for stationarity are less strictly obeyed if
the sample size approaches the whole duration of the expiration.
Table IV shows that the detection is not possible for a sample
size less than 256. The best quality is obtained for about 1000
observations. Many reasons can be the cause that the detection
quality is not improved if longer samples than about 1000 are
considered, e.g., lack of stationarity or the features of impor-
tance are concentrated in the beginning of the expiration cycle.
The timing within the expiration cycle also could be varied, but
that effect has not been studied.

The experiments of Table III have been repeated for selected
ARMA models with a variable maximum candidate
order for Table V gives those results. Again, the results do not
change anymore after the maximum candidate order has become
high enough. The ME values for the data T1 without metha-
choline give a slightly better detection ratio than in Table III, but
the ratio is somewhat worse for the data T2 with methacholine.

The final Table VI gives results for ARMAsel, the routine that
automatically selects one single model from 250 AR models,
100 MA models, and 50 ARMA models [9]. It is remarkable that

TABLE V
THE ME VALUES FOR1000 OBSERVATIONS OFEXPIRATION. PROTOTYPES AND

TEST DATA WITH SELECTED ARMA(p; p � 1) ORDERS FORDIFFERENT

MAXIMUM ARMA ORDERS FORp

TABLE VI
THE ME VALUES FOR1000DECIMATEDOBSERVATIONS OFEXPIRATION.

PROTOTYPES ANDTESTDATA COMPUTED WITH THEARMAsel ALGORITHM

ARMAsel results, with automatic selection of model type and
model order, are comparable in quality to the best fixed-order
AR results in Table III. It suggests that automatic time series
analysis and selection with [9] can be used for feature extraction
and detection. It is not necessary to use the same model type and
model order for both prototypes and test data. Also the influence
of decimation is shown in Table VI using ARMAsel models.
Decimation with a factor of 2 uses an eighth-order Chebyshev
low-pass filter with cutoff frequency f0/4 before resampling the
data at the double interval. The detection performance after dec-
imation becomes somewhat worse if all frequencies above f0/4
or 1250 Hz are filtered out, indicated by decimate 2. If all fre-
quencies above f0/8 or 625 Hz are removed, like in decimate 4,
detection is no longer possible. The explanation follows from
Fig. 4. After removing all spectral contributions above f0/8 in
the figure, the high-frequency part with the very significant dif-
ference between the two prototype models is filtered out. The
remaining differences are too small for detection in this example
where stationarity of the data is a problem.

V. DISCUSSION

It is not a consequence of theoretical arguments that models
of selected orders perform well in detection and feature extrac-
tion. As an example, let us imagine two AR(100) processes that
have 99 identical reflection coefficients and differ in the first
one. In this case, the order 100 will be the best model order
found with order selection criteria if sufficient data are avail-
able. But the best model order for the detection of two classes
will probably be AR(1), because all differences between the two
AR processes are concentrated in that single reflection coeffi-
cient. It is clear that this artificial example will not be represen-
tative of practical data. Therefore, data from lung sounds have
been used to show the application of time series to detection in
practice. The results of the Tables II and III show that selected
model orders are suitable for the detection.

Not all eight subjects give the same results. The detection
of methacholine with the method described is successful for
five subjects and not for three other subjects [17]. There are
several reasons why this method failed there. The detection
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of methacholine is disturbed by other phenomena that had
more influence on the spectral respiration characteristics. The
length of the respiration cycle varied too much for those three
subjects, and the flow could not be maintained at a prescribed
level [17]. Moreover, the characteristics, both with and without
methacholine, were very different on the two recording days.
For those three subjects, the presence of methacholine could
not be detected from the experiments with time series, but the
day on which the data were recorded. As a result, subjects
should have some training to produce better stationary records
in breathing.

VI. CONCLUDING REMARKS

Feature extraction with time series models can be applied au-
tomatically. First, prototype models are determined for subjects
that belong to a known category. Afterwards, models obtained
from unknown subjects can be classified into the category of
the desired prototype. The use of time series models has the
advantage that selection of model order and type is equivalent
with the selection of the details that are statistically significant.
This method of feature extraction can be applied to all measure-
ment data that can be considered as realizations of stationary
stochastic processes. The detection of the presence of metha-
choline in one subject is only a first step toward the detection
of asthma by using prototype models of healthy and asthmatic
subjects.
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