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Detection of Methacholine with Time Series Models
of Lung Sounds

Piet M. T. Broersen and S. de Waele

Abstract—A new method for the extraction of features from sta-  [3] on practical observations on humans. A first step toward de-
tionary stochastic processes has been applied to a medical detectionection of asthma is to investigate detection of the presence of
problem. Itillustrates a practical application of automatic time se- methacholine in easily observable properties of lungs, for which
ries modeling. Firstly, the model type and the model order for two the | ds h b d. Th d 'b, thod
time series prototype models are selected. The prototypes repre- € lung soun S ave _een used. fhe p_aper escribes a metho
sent the |ung noises of a sing|e hea|thy subjec’[l before and after the for the automatic detect|0n Of methacho“ne from measurements
application of methacholine. Using the model error ME as a mea- with a microphone placed at a precisely specified position on the
sure for the difference between time series models, new data canchest. As test data, observations of the lung noises of one person
be divided into classes that belong to the prototype models for this with and without methacholine are available. New data come

person. The prototype models are obtained from a few expiration . - .
cycles under known conditions. This is sufficient to detect the pres- from the same person, both with and without methacholine, but

ence of methacholine in new data of the same subject if he is ablerecorded a few days later.
to maintain stationary conditions by following accurately the pre- Autoregressive (AR) models have been used before to char-

scribed breathing pattern. Itis not necessary to use the same model acterize lung sounds [4], [5]. They are one type of the wider

type and the same model order for the prototypes and for new data. (555 of time series models, including AR, Moving Average

Automatically and individually selected models for prototypes and . .

data give a good detection of methacholine. (MA), and combined ARMA modgls [6]. Theoretically, at least
one of those three model types gives a good spectral model for

unknown stationary stochastic processes [6]. By using robust

methods in estimating the three model types, it is possible to

select a single mod&ype, AR or MA or ARMA [3]. Also the

|. INTRODUCTION best modebrder can be selected from hundreds of candidate

orders. This automatically selected model of finite order gives a

STHMA is a chronic disease with variable airway obstruc - . C o
tion in which the airways are characterized by inﬂammjj_escrlptlon of the statistically significant details in the data [3],

tory changes. The association between lung sound charact R@ving out spurious details that are not significant.
he model error ME has been introduced as a measure for

tics and asthma has long been recognized. It is clear that h?r%/ f i . dels 71, 181, It
asthma can be detected rather easily by simply listening. accuracy ot time Series moaels [71, 18] |t compares re-
sults of different algorithms with the characteristics of the true

final goal of this research, however, might be the early dete iterion t luat timai laorith Thi
tion of asthma by an automatic computer analysis of recordBfPCESS: as a chiterion 1o evaluate estimation aigorithms. This
lar measure can also be used to characterize the difference

lung sound signals. Using computerized phonopneumograp tween the measured time series model of new data and pre-

lung sounds have been analyzed in intensity and frequency ¢ \v determined protot dels. Th dat del i
tent [1]. As expected, some differences are observed betwddp'SYy determined prololypeé models. The new data model IS
tained from microphone measurements under unknown con-

healthy and asthmatic subjects. However, also variations bg- T ot del a4 ot is th
tween different subjects within one class are found that ham;gépgnf'_ wo prolo ypt(aj_tr_no €ls Zrttahuse ' onde prototype s the
the extraction of pure asthmatic features. By inducing ac odel In normai conaitions an € second prolotype Is the

odel found after application of methacholine. The results show

airway narrowing using methacholine, an increase in sound tth f methacholine is detected Il for th
tensity and frequency content has been found for a healthy SE]e_rsoneirF:r;?se?g;o methacholine Is detected very well for the

ject, as well as a change in the wheezing of asthmatics [
Therefore, the characteristics of the lung sounds of a single
person can be varied with methacholine in a way that simulates
asthmatic features. Records have been made from eight healthy nonsmoking
The purpose of this paper is to demonstrate the use of timermal male adults, between 19 and 28 years of age. All sub-
series models for feature extraction in a medical context. Thigéxts underwent lung function tests before the actual recordings.
also a validation of the use of theoretical results for time seriesom each subject, two similar data sets were recorded, at an
which have been obtained fetationary stochastic processesnterval of two or three days. The first measurement on each
day was in the normal situation. The second measurement took
Manuscript received May 26, 1999; revised March 3, 2000. This work wz@ace after applying methaChOIme' Ina Concentratlon_ such that
supported by the Technology Foundation STW, Applied Science Division the FEV, the Forced Expiration Volume, the flow of air forced
NWO, and the Technology Programme of the Ministry of Economic Affairs. ot after maximal inhalation. was diminished by 25%.
The authors are with the Department of Applied Physics, Delft University of . ’ . . .
Technology,2600 GA Delft, The Netherlands. The sub.JectTc, ha.d tp follow a presgrlbed breathmg pattern:
Publisher Item Identifier S 0018-9456(00)04542-3. 1.5 I/s during inspiration and expiration between fixed max-

Index Terms—Petection, model error, prediction error, proto-
type model, spectral estimation.
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imum and minimum volumes. Flow and volume are measuredModels can be divided in two classes: models that are es-
with a spirometer. Lung sounds were obtained from a pieztimated from the data at hand and models that come from an
electric air-coupled microphone, at the second intercostal migkigin that is statistically independent from the present data. In
clavicular line. This signal was high-pass and low-pass filterelde first class, the estimated parameters are statistically depen-
with 4th order Bessel filters at 100 Hz and 1500 Hz, respectivetjent on the data. With model parametés') andB(z), obser-
Afterwards, the signal was digitized with a sampling frequenaxationsz,, can be filtered

of 5000 Hz, with 12-bit resolution. A peculiar phenomenon was

found in all digitized microphone signals, a very sharp peak N .
at 1500 Hz, exactly the cutoff frequency of the low-pass filter. B(2)én = A(2)xx. )
This could not be explained from a biological point of view. Th
small hardware error has mostly been left in the signals whi R .
were analyzed, because sometimes the removal by decima{ﬁ]\' €x 85 output signal. _If the rrjod_el parameters_ have. _been es-
the data turned out to be disadvantageous for detection. Mottl - ted_ frpm the data, in (2), &, Is ca_1||ed a res_|dual, if the
over, a comparison with previous studies of the same data [ 9d?| 1S mdependent from _the datg n (2), & is ca||2ed a

[2] remains possible. Synchronization of microphone data wi ediction. Typically, the variance @f, is smaller tharZ for

flow measurements enables the detection of the transitions fr{)?r?'.duals and gr_eater_thatj for pred|c_t|onsA. T_he squa_red Pre-
expiration to inspiration. diction Error PE is defined as the varianceegfin (2), with the

?Rndition thatz,, is independent ofi(~) and B(z). For prac-

The records have been analyzed before [1], [2]. It turned o . . ) . L
to be rather difficult to discover reproducible effects of meth%s'—f al dataw,,, this variance can be estimated with (2) by filtering.
t

choline, that can be used for its detection. The limited purpo QWEVeT, i the}rue process is known as in (1), th.e Outpuaf

of this paper is to investigate the feasibilityanftomaticallyde- e model withA(z) andB(z) can also be determined by sub-
tecting the presence of methacholine with time series models%qu“ng the formula (1) for,, in (2)

lung sounds. Automatically means that no use is made of avail-

ablea priori knowledge about data properties from present or R A(z) A(Z)B(z)

previous research [1], [2], [4], [5]. Only expiration data from &n = B(Z)Xn = msn' 3)
one subject have been used. Without further detailed investiga-

tions, it has been decided to use the first 1000 observationstferefore, the relation between the outpytof the model (3)
the expiration phase. It is possible that other parts of the respigad the innovations,, that generated the true process is given
tion cycle give better detection results. Also further filtering thgy an ARMA(p + ¢, p' + ¢) process. The variance PE of that
data or resampling has not been studied in detail. Those opgjgycess can easily be expressedin A(z), B(»), A(z)7 and
tions, if used optimally, may have a favorable influence on thg(z) [7]. Prototype models from test data are considered as in-

jrtﬂis can be interpreted as filtering the measured date ob-

possibilities of feature extraction and detection. dependent polynomialé(z) andB(z) in (2) and (3); new de-
tection data are denotet] z) andB(z). A point of investigation
IIl. TIME SERIES MODELS will be whether it is necessary to have the same type and order

o ) ] _ for prototypes and data models or that they can have different,
Estimation theory for time series often uses the notionge|ected, types and orders.
processand modelsfor the true signal properties and for the AR, MA, and ARMA models must be estimated for many or-
properties obtained from data, respectively. If oplactical  yers pefore a choice can be made for new data [3]. Models of
data are available, some adaptations will be necessary becq{g€,nknown best order must be computed, but also models of
the theoretical signal properties are not known then. SUPPQ§gher orders. Only then, it is possible to conclude that lower
that =, are data which are generated by an ARMAY) orders are better and should be selected. However, maximum
processgiven by [6] likelihood methods for MA and ARMA estimation are non-
linear [6]. Maximum likelihood algorithms require initial con-
A(z)x, = B(2)e, (1) ditions and must iterate for convergence. This is a known cause
of problems in the practice of nonlinear time series estimation,
wheree,, is a white noise sequence with varianceand the especially for high-order models. For an AR model, there
AR (autoregressive) polynomial(z) is defined asA(z) = 1+ is only one ARp + 1) model that gives the same fit. That is
a1z +azz72+- - -+a,z7P. Inthis notationz "'z, = z,—1. the model with parameter zero for order- 1. However, for
Likewise, an MA(moving average) polynomiaB(z) is defined every ARMA(p, ) model that gives a good fit, there are infin-
as a polynomial of ordey in z~1. The process is purely AR if itely many ARMA(p + 1, ¢ + 1) models with the same fit: all
B(z) = 1and MA if A(z) = 1, so withp = 0. The process is models where an additional pole and zero cancel. Therefore, the
stationary ifA(z) has no roots or poles faron or outside the variance of the parameters of those over-complete models will
unitcircle. Likewise, itis invertible if the roots dB( ), denoted becc. The variance becomes so large that roots of estimated AR
zeros, are all inside the unit circle. Theoretically, any stationaand/or MA polynomials can fall outside the stationary or invert-
stochastic process can be written as an(&R or an MA(cc) ible region, with the boundary being the unit circle. Some exam-
process [6], but also ARMA processes are possible. In practipées of robust algorithms have been described [3], [9]; possible
a suitably selected finite order model of one of the three modgbod choices for AR, MA, and ARMA algorithms are discussed
types will give a good description [3]. briefly.
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Burg's estimation method [10] can be recommended for A Sound of respiration with methacholine
models; CIC [11] can be used as a criterion for order selectic 4 ‘ ' A ’ ‘ ' i T
Other AR order selection criteria can give wrong orders if th
candidate orders become higher than 0.1 N. Taking the act
finite sample behavior of the logarithm of the residual varianc
into account, the Combined Information Criterion CIC is base
on the expectation and on the variance of the logarithm of t
residual variance, as a function of the model order [11].

The Durbin’s method for MA [12] and for ARMA [13] es-
timation consists of the use of the parameters of a long int¢
mediate autoregressive model to compute MA parameters.
this way, nonlinear estimation is approximated by a sequer
of linear operations. Durbin’s algorithms always converge ar _
produce an invertible solution. A recent improvement in th
Durbin’s method is that a new optimal order has been defined 1 20
the intermediate AR model. Hence, the performance of Durbir
algorithms in practice has been improved [14], [15]. In mar |
examples with reasonable sample sizes, the Cramér-Rao lo ¥
bound for the parameter accuracy is approximated in estima
MA and ARMA models if this new intermediate AR order is <40
used.

The Matlab routine ARMAsel [9] for the automatic evalua: sy : : | L ! : . ) w
tion of stationary stochastic data is as follows: ot 2z s 4 5 6 7T 8 8

. . time [s]
» AR models are estimated and an AR orgeéis selected;

* MA models are estimated and MA ordgris selected;  Fig. 1. Observations of three cycles of respiration sounds with methacholine,

* ARMA(r,r — 1) models are estimated and an ordeis starting with inspiration that has a higher amplitude. The first transition to
selected: expiration is at 1.4 s, the second at 4.8 s.

» from those three selected models of different types, a

single one is chosen with a criterion that is based on tBe. The asymptotical expectation of ME for unbiased models is
estimate of the prediction error of the AR), MA(¢')  the number of estimated parameters, independent of the sample

and ARMA(+", 7" — 1) models. size. Hence, the asymptotical expectation of ME for an unbi-
This final model, withorder and type selectealitomatically for ased ARMAp, ¢') equalsy’ + ¢’ and is independent a¥, o2
given observations, is denoted the ARMAsel model [9]. and of the true parameters [7]. The ME of unbiased models is

The prediction error PE is defined as the model fit to new arildependent of the properties of the true process, which has ad-
independent data, or the variance of the one step ahead erroranftages for the interpretation. Only statistics determine what
predictioné, in (3). It is an obvious measure for the accuracy diappens for models above the true process order, and not the
time series models. Its asymptotical expectatiorpfar p and characteristics of the true process, which will generally be un-
q' > g, for unbiased models which have at least all true nonzekaown in applications.

parameters included, equals The time-domain computation of ME requires only the pa-
, , rameters of two models that are to be compared. In the orig-

PE =02 <1 + P +q ) (4) inal derivation with the prediction error, it has been used for

N assessing the quality of estimation algorithms for known pro-

wherep’ + ¢ is the number of estimated paramete¥sis the C€SSes. Another new application of ME is to measure the differ-
number of observations, and is the innovation variance of (1). €NC€ between two models. For detection, ME will be computed
The AR model with the minimum of PE also has an interpret4/ith prototype models substituted fa(z) and 5(z) and with

tion in the frequency domain as the model with the highest md€ model parameters estimated from new dgtéor A(z) and

sure for the spectral flatness [16]. The scaling factoris a constdHe)-

contributiono? which gives no relevant information about the

quality of different models for the same process. Therefore, the V. FEATURE EXTRACTION WITH ARMA M ODELS
model error ME is defined [7] as a scaled version of the excessF

prediction error due to the combination of model selection ar%g r:?'itlizh;\gzrat;?'tsr:;agg:}:;;zri? {ﬁ;‘%gﬁ%ﬂgyﬁﬁs&(ﬁsﬂtﬁt
parameter estimation gnt,

during one cycle: the level is different for inspiration and for
ME = N(PE — 02)/02 = N(PE/o? — 1) (5) expiration. The variance also diminishes more or less gradu-

ally from the beginning until the end of the cycle. The arrow
wheres? is the variance of the innovations that are the excin the third cycle of Fig. 1 indicates the occurrence of a sudden
tations of the time series process (1). ME can easily be comerease in the sound level. This might also be present in the
puted in the time domain [7], without needing an estimate feecond cycle, but certainly not in the first cycle where a gradual
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Fig. 2. Observations of the start of an expiration cycle for signals without afdg. 3. The ME of different consecutive frames of 1000 observations of a
with methacholine, respectively. The ME between ARMAsel models is 951 single breathing period, with methacholine. Frame 1 starts at 3.8 s in Fig. 1. The
the model with methacholine is used as prototype. first five frames are during inspiration, the last six frames during expiration.

. L Normalized spectral density of prototypes and of individual cycles
increase of the sound level toward the end of the expiratic 1" ‘ : ¥

phase is seen. Using isolated phenomena like this short bu
for detection purposes has not been successful. It is clear ti

T T T
4

Fig. 1 is definitely not coming from a stationary process. A: 1’4 . v Prowe
. . . . . .. — Type 1,
time series analysis has its theoretical backgroursddtionary 4 o  Tets
. . . . v — Type 1,
stochastic processes, it will be wise to use only a part of the de — tmeta

for detection. Most detection experiments reported in this pap
have been based on the first 1000 observations of expiration; ¢
tection of the transition points was based on the separate flc
measurements.

Fig. 2 shows time records of the first 1000 observations ¢
lung noises during expiration phases, without and with the a| §
plication of methacholine. At first sight it is seen that the leve = w*}
of the variance of the signals is different for this specific persor
but this signal property has not been used for feature extracti

rithm of spectral density
2

because it varies for different subjects. Moreover, the levelisn  10°: R
stationary, certainly not for the signal with methacholine. Th T T T ow:ww‘:vzv;v"v ow;"’v"’”g;v;www;v;"w"v ryra
value 951 for ME can be compared to the ME values for AR ' " normalized frequency 0, f0=5000Hz ' '

MAsel models of different frames of the same signal. Fig. 3 uses

the first 1000 expiration observations as a reference. It is CI{& 4. AR(25) spectra of averaged prototype 1 and prototype 2 signals,
.. .. i . . gether with four estimated spectra of type 1, each obtained from the first

that the statistical variations within one period are importarfgoo observations of a single expiration cycle with individual selection of

but they remain smaller than the difference caused by methadel order and model type.

choline. Using the model without methacholine as a prototype in

the data of Fig. 2 would give ME = 3022 instead of 951. Asymp- The spectral densities of both signals are given in Fig. 4; the

totically, for small deviations, the ME is not sensitive to whiclintegral of the spectral density is normalized to 1. The average

signal is used fori(z) and B(z), and which signal yieldsi(z) AR(25) model of the first 1000 observations of four consecu-

andB(z), but for larger deviations this becomes important. Thive expiration cycles without methacholine is denoted Proto-

ME is arelative error in the frequency domain [8], which is sertype 1 in Fig. 4; likewise, Prototype 2 is the average of four

sitive for the exchange of numerator and denominator in (3)tines 1000 observations with methacholine. For prototype 1, the

their quotient is not approximately 1. spectra of the four contributing cycles have also been presented
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separately, each with type and order selected from the data. TABLE |
: ; ; et THE ME BETWEEN AVERAGE AR(25)
The fIrSt 1000 Obs?rvatlons Of fOUI’ Sequentla.l eXpIratlon CyCIe%ODELS OF THETESTDATA T1 AND T2 AND TWO PROTOTYPESP1AND P2,
WIthOUt methaChOllne ha.ve been Used tO estlmate AR, MA, an WITHOUT AND WITH METHACHOUNE, RESPECTIVELY
ARMA models. First, the best model order has been selected for

each model type. Afterwards, a single model type has been se- MEPI _ME P2
lected with ARMAsel [3], [9]. The selected models with the AR- ;ii fé 12?3
MAsel algorithm were ARMA(8,7), ARMA(8,7), ARMA(7,6), Tle 71 588
and MA(53) for those four signals. However, it turned out that T2a 463 37
the spectra of AR(25) models are very close to the selected ones %E :ﬂ gg

for all signals, because the ME of the AR(25) model was rather
small when compared with the model with selected type and

order. This shows that all three model types can give a good TABLE I
: [ : E ME VALUES FORAR MODELS OF1000 (BSERVATIONS OFEXPIRATION
representation of the data, if the order is selected properly. A-%ATA AS A FUNCTION OF THEFIXED AR ORDER. PROTOTYPES ANDTEST

an example, the ME values between the preferred ARMA(8,7) DATA HAVE THE SAME FIXED AR ORDER
model for the first signal of 1000 observations and for this signal
selected AR(10) model, the selected MA(23) model and the _ARorder PUP2  TI/P1 TI/P2 T2/P1 T2/P2

chosen AR(25) model were 24, 47, and 19, respectively. This is ; 03“71 143 Ozé 146'2 05'?
harmless if the difference in ME between the prototypesis much 4 815 43 319 718 201
greater. Experiments will provide information about those ME 8 908 74 543 770 225
values. They should be much greater than the variations of ME 1% ot S G
for different WeI.I-fitting models of the same ;ig'nal. Fig. 4 shows 30 979 126 930 740 245
that the normalized prototype spectra are similar at low frequen- 64 1104 196 1003 922 414
cies. However, the prototype 2 spectrum with methacholine is 128 1386 355 1208 1173 616
about ten times lower for higher frequencies. The variance of ~ 239 2352 dag 1924 2115 125

g q . 512 8019 3106 5355 7130 5001

the signal with methacholine is about ten times greater for this
subject. If the variance would be used as integral of the spectral
density, the difference at low frequencies would become a fac@igtection is possible. The best ratio is found with the test data
of ten and at higher frequencies the spectra would be at the safd@ and T2a, measured on the same day as the prototypes. The
level. It may seem attractive to use the accidental spectral diffémallest ratio is found to be somewhat greater than four for T2c,
ence at high frequencies in Fig. 4 for an ad hoc detection stratéggasured two days later; but the difference with the two proto-
for the presence of methacholine. Previous research [2] andtyPes is still enough to support detection. Hence, the presence
spection of the data of other subjects indicate that will not 18 methacholine can easily be detected with this method applied

successful. Moreover, the part of the spectrum above 1000 19z0ne person.
is strongly modified by the low-pass filter at 1500 Hz. After the conclusion that it is possible to detect the presence

The aim of the first experiment is to investigate whether ff methacholine, the next questions are:
is possible to recognize the presence of methacholine by com-* What are the best model type and order for detection?
paringaveragetime series models of the same model type and * How can it be averaged or is it not necessary to take aver-
order. It has been decided to take the average of four AR(25) ages, and can single signals give sufficient information?
models of the first 1000 observations of four consecutive eXarious fixed-order AR models have been tried in Table I, the
piration cycles as the model for the prototypes. Without argame for prototype and for test data. The prototypes are the AR
claim of optimality, the four AR(25) models have been transnodels of 1000 observations recorded on the first day. Four test
formed into the first 25 points of their normalized correlatiomodels have been used, each on the first 1000 observations of a
functions. The four correlations have been averaged, and #iegle expiration cycle on the second day of the measurements.
AR(25) model belonging to the average correlation is taken @ke results for test data versus prototypes are the averages of
prototype 1. Likewise, four cycles with methacholine give prahe ME of those four models. With AR models of orders 1 and
totype 2. The two prototype models P1 and P2, without and wig) detection is impossible. For AR orders 4 and higher, the ratio
methacholine, respectively, have been derived from the first fowas gradually becoming worse; but for all AR orders between 4
cycles of the first day. The average models of four further cyclesd 32, the ME for T2 with P1 was greater than three times the
of the first day are the test data Tla and T2a; the second ddi of T2 with P2. This is only slightly worse thanin the last line
has the data T1b, T1c without and T2b, T2c with methacholinef Table |, where prototypes and data models were based on the
The model error ME has been used to measure the differencewérageof four data sets. Finally, the detection becomes almost
the test data with the two prototypes. The ME between P1 amapossible for AR order 512. Hence, the AR order should be not
P2, using P2 as prototype fél(z) andB(z), is 609. (Using P1 too low and not too high if AR models of fixed order are used.
as prototype would yield 1827). The result of this in Table | is The success of fixed-order AR models calls for investigation
clear: the models obtained from type 1 data are close to P1 aridhe influence of selected orders. Table Il gives results for the
far from P2. On the other hand, the models from type 2 datame data, but for every signal a separate AR order has been se-
are close to P2 and far from P1. The larger the ratio betweletted using the CIC criterion, for increasing values of the max-
the ME values for wrong prototype/correct prototype, the bettenum candidate order for selection [11]. Results remain con-
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TABLE I TABLE V
THE ME VALUES FORAR MODELS OF1000 (BSERVATIONS OFEXPIRATION THE ME VALUES FOR1000 (BSERVATIONS OFEXPIRATION. PROTOTYPES AND
DATA. PROTOTYPES ANDTEST DATA HAVE INDIVIDUALLY SELECTED TeEST DATA WITH SELECTED ARMA (p, p — 1) ORDERS FORDIFFERENT
AR-ORDERS AS AFUNCTION OF DIFFERENT MAXIMUM CANDIDATE AR Maximum ARMA ORDERS FORp

ORDERS FORSELECTION

ARMA max P1/P2  TI/P1  TIP2 T2/P1  T2/P2

AR max P1/P2  TI1/P1 T1/P2  T2/P1 T2/P2 2 182 88 89 223 53
order 4 946 82 753 634 195

1 0.6 1.5 0.1 4.4 0.6 8 872 91 722 632 198

2 31 49 18 160 32 16 951 104 793 650 253

4 822 53 311 651 212 32 951 104 808 651 255

8 912 83 529 744 235 64 951 104 808 651 255

16 1005 109 865 701 252

32 951 140 879 704 244

64 951 140 879 704 244 TABLE VI

512 951 140 879 704 244 THE ME VALUES FOR 1000 DECIMATED OBSERVATIONS OFEXPIRATION.

PROTOTYPES ANDTEST DATA COMPUTED WITH THEARMASel ALGORITHM

TABLE IV PI/P2  TI/P1  TI/P2 T2P1  TUP2
THE ME VALUES OF EXPIRATION DATA AS FUNCTION OF THE NUMBER OF ARMAsel 951 113 809 663 293
OBSERVATIONS V. PROTOTYPES ANDTEST MODELS WITH SELECTED decimate 2 751 73 299 629 375
AR-ORDERS FORMAXIMUM AR ORDERSN/2 decimate 4 73 326 274 292 165
N PI/P2  Ti/P1  TI/P2  T2/P1 _ T2P2
8 30 7 20 16 159 ARMAsel results, with automatic selection of model type and
16 50 3 21 36 127 model order, are comparable in quality to the best fixed-order
gﬁ éé ?g ;3 gé }g AR results in Table Ill. It suggests that automatic time series
128 61 101 313 51 54 analysis and selection with [9] can be used for feature extraction
256 152 47 205 96 63 and detection. Itis not necessary to use the same model type and
?(1)3 A g;(l) lzg 3(5)(5) ;(1); ;g; model order for both prototypes and test data. Also the influence
2048 1405 357 911 1839 71 of decimation is shown in Table VI using ARMAsel models.
4096 1835 384 1029 2610 833 Decimation with a factor of 2 uses an eighth-order Chebyshev
8192 2547 573 1618 3649 848 low-pass filter with cutoff frequency f0/4 before resampling the

data at the double interval. The detection performance after dec-

stant for maximum orders greater than 32. Obviously, the é'g]ation becomes somewhat worse if all frequencies above f0/4
lected AR order is always less than 32. This behavior’ has t%1250 Hz are filtered out, indicated by decimate 2. If all fre-

ncies above f0/8 or 625 Hz are removed, like in decimate 4,

advantage that a high maximum candidate order can be us¥

for unknown data, minimizing the probability of missing gooiqoz'.e ezt'(X:ct'S no Ionger pl(l)SS'blet' 'Il'he ixptjapatlon gollovi(s)/féqm
models. If a lower order is sufficient, that will be selected. g. 4. Alter removing all spectral contributions above in

A last question concerning AR models is the influence ({!pe figure, the high-frequency part with the very significant dif-

the number of observations. Always, the fifg§t observations erence between the wo prototype models is filtered out. The

of expiration have been used, from which an AR model is skemaining differences are too small for detection in this example

lected with a maximum candidate order&§2. It may be ex- where stationarity of the data is a problem.
pected that demands for stationarity are less strictly obeyed if
the sample size approaches the whole duration of the expiration.
Table 1V shows that the detection is not possible for a samplelt is not a consequence of theoretical arguments that models
size less than 256. The best quality is obtained for about 1080selected orders perform well in detection and feature extrac-
observations. Many reasons can be the cause that the detedtaon As an example, let us imagine two AR(100) processes that
quality is not improved if longer samples than about 1000 ahave 99 identical reflection coefficients and differ in the first
considered, e.g., lack of stationarity or the features of impasne. In this case, the order 100 will be the best model order
tance are concentrated in the beginning of the expiration cydeund with order selection criteria if sufficient data are avail-
The timing within the expiration cycle also could be varied, buwgble. But the best model order for the detection of two classes
that effect has not been studied. will probably be AR(1), because all differences between the two
The experiments of Table Il have been repeated for selectéR processes are concentrated in that single reflection coeffi-
ARMA (p,p — 1) models with a variable maximum candidatesient. It is clear that this artificial example will not be represen-
order forp. Table V gives those results. Again, the results do ntdtive of practical data. Therefore, data from lung sounds have
change anymore after the maximum candidate order has becdraen used to show the application of time series to detection in
high enough. The ME values for the data T1 without metharactice. The results of the Tables Il and Il show that selected
choline give a slightly better detection ratio than in Table I, bunodel orders are suitable for the detection.
the ratio is somewhat worse for the data T2 with methacholine.Not all eight subjects give the same results. The detection
The final Table VI gives results for ARMAsel, the routine thabf methacholine with the method described is successful for
automatically selects one single model from 250 AR modelfive subjects and not for three other subjects [17]. There are
100 MA models, and 50 ARMA models [9]. Itis remarkable thaseveral reasons why this method failed there. The detection

V. DISCUSSION
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of methacholine is disturbed by other phenomena that had4]
more influence on the spectral respiration characteristics. The
length of the respiration cycle varied too much for those three
subjects, and the flow could not be maintained at a prescribeds]
level [17]. Moreover, the characteristics, both with and without
methacholine, were very different on the two recording days.
For those three subjects, the presence of methacholine couls]
not be detected from the experiments with time series, but th
day on which the data were recorded. As a result, subject
should have some training to produce better stationary recordss]
in breathing. ]

(20]

7]

VI. CONCLUDING REMARKS

Feature extraction with time series models can be applied au-
tomatically. First, prototype models are determined for subjectéll]
that belong to a known category. Afterwards, models obtained
from unknown subjects can be classified into the category ofL2]
the desired prototype. The use of time series models has tE&]
advantage that selection of model order and type is equivalent
with the selection of the details that are statistically significant[14]
This method of feature extraction can be applied to all measure-
ment data that can be considered as realizations of stationaj)
stochastic processes. The detection of the presence of metha-
choline in one subject is only a first step toward the detectiorﬂlel
of asthma by using prototype models of healthy and asthmatic
subjects. [17]
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