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Stochastic Texture Image Estimators for Local Spatial
Anisotropy and Its Variability

J. Scharcanski and C. T. J. Dodson

Abstract—A new image analysis technique is proposed for the model to analyze the effect of anisotropy on the mass variability
evaluation of local anisotropy and its variability in stochastic tex- in planar stochastic materials. These methods have been useful
ture images. It utilizes the gradient function to provide informa- to understand better the underlying anisotropic process, and its

tion on local anisotropy, from two-dimensional (2-D) density im- . . C
ages for foil materials like polymer sheets, nonwoven textiles, and effect on the stochastic textures. However, their application to

paper. Such images can be captured by radiography or light-trans- direct anisotropy measurement is not trivial.
mission; results are reported for a range of paper structures, and A different approach based on texture spectral density anal-
show that the proposed technique is more robust to unfavorable ysis in the Fourier domain was discussed in [9]. This method is
imaging conditions than other approaches. The method has poten- gisey ssed later, as well as some of its limitations for anisotropy
tial for on-line application to monitoring and control of anisotropy detection in stochastic textures, and it is shown that these diffi-
and its variability, as well as local density itself, in continuous man- - o
ufacturing processes. culties can be reduced by using our approach.

The next sections describe the method we propose for de-
tection of anisotropy and its variability in stochastic textures.
Finally, some experimental results, on texture images of paper

samples are presented.

Index Terms—Anisotropy, density variability, machine control,
monitoring, stochastic structures, texture image analysis.

. INTRODUCTION

EVERAL approaches have been considered to analyze stoll- L OCAL SPATIAL ANISOTROPY FROMIMAGE GRADIENTS

hastic texture images with respect to their anisotropy. Gra-\ye apply our methods to the anisotropy of a paper sample,
dient based methods have been proposed [1], in particular, gfimated via analysis of its grey-level image, which may be
texture analysis applications. However, such methods have ligktained through different transmission imaging techniques.
itations [9] because they rely only on local angular informationyitjally, the image is convolved with a gradient operator, and
which may lead to imprecise anisotropy estimation; and algg the gradient maxima we estimate the gradi@agnitudes
they are susceptible to mutual vector cancellation, which mgyq orientations. This information is then used to estimate
affect the results of local gradient vector operations. Howevehe anisotropy of the sample, and its spatial variability. The
these deficiencies found in the proposed gradient based methggg: sections describe thgradient operatorwe use, and our
can be overcome by considering anisotropy as a global featuggnnique for anisotropy estimation. The anisotropy spatial

described in terms of the distribution of local gradient directioRgiapility is also estimated and constitutes a relevant feature
[12]. A limitation of this approach is the lack of informationfor image discrimination.

about local anisotropy variability. Most recent research on this
topic is reported by Praast and Gottsching concerning the logal Detection of Local Image Gradients

orientation |n.f|ber assemblles._ . . Theisotropic operatoffor grey-level images is utilized to ob-
The modeling of the local anisotropic process, and how it af; . . .
. o . .~ Ttaintheimage gradients, represented lmgcal gradient vectoat
fects the stochastic textures originating from it, has been inten- . " . :
i . . . ) g each image positiofx, ) [8]. The3 x 3 version of this operator
sively studied. The geometric optics of anisotropic fiber assem- . . . , . o
X C : . is described using the following pixel numbering convention:
blies, originating stochastic textures, were studied by Charrier
and Marchessault [4]. The early work of Corte and Kallmes Ao Ay Ay
[2], [3], laid the basis for statistical geometric representation
of anisotropy in web-based materials like paper, and Perkins Arglz,y) Az | (1)
and Mark [6] emphasized the need for more than one param- Ag As Ay
eter in chargcterlzmg anisotropy. N|sk.anen.and _Sadpvysk| [ﬁherefore,the magnitude of the gradient maximum at the image
compared different methods of measuring orientation in 'mag%%ation(a: y) is obtained by

of fiber assemblies, and Schaffeit al.[10], [11], developed a

B(z,y) = \/AH(x, )2 + AV (x, y)? 2
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where M x N is the number of pixels within the image area
under consideration.

The shape of these(r, ¥) distributions encode important
p structural information. The stronger the local anisotropy, the
7 higher is the local alignment of gradient vectors, and more ellip-

R tical is the distribution ofs(r, ¥) values. A quantitative mea-
L sure of how elliptical is the distribution may be provided by the
\ eccentricity factor, denoted by which is detailed next [12].
= 1) Eccentricity of the Angular DistributionThe distribution
e)(xO,X'n;__ )‘1’ of ¢(r, V) values over all locationg&, v), va_rying the distance
r and the anglel, represents structural anisotropy. In the case
where the values are equally probable in all andigthe sample
is isotropic (i.e., cylindrically symmetrig(r, W) distribution).

The distribution ofp(r, ¥) in an anisotropic sample is asym-
metric; it is approximately elliptical and determines two orthog-
onal axes of extremal variance. These axes coincide with eigen-
vectors of thep(r, ¥) distribution of values, belonging to the
two distinct eigenvalue@,..x, Amin) Of the covariance matrix.
The eigenvalues define an ellipse with semimajor axes given by
(Amaxs Amin), Which is described by

Fig. 1. Local angular difference for a giverandz.

AV (z, y)
S [(Ao + KA + Ay) — (Ag + KA; + Ay)] (3) (¢(7” ), )2 (¢(7” ) )2
K+2 (3] max + 11 — 1' (6)
A2 A2
and the directio of the gradient maximum dtc, ¥) is given
by The eigenvalues are related to the eccentrigivf this ellipse
(and of the distribution). We represent the eccentricity simply
A )
0z, y) = tan~" V(z,y) 4o @ as the ratio
AH(z,y) A2
62 )\glax (7)
wherex is an integer, and( = /2. This operator issotropic min

because its sensitivity to horizontal, vertical, and diagonal stefierec > 1, and we need to determing,in and A ax.
edges is the same. Therefore, at each image loc@tioy) there  In general, thekth principal component direction of a
is themaximum gradient magnitude(x, ), and itsorientation  distribution is along an eigenvector direction belonging to the

6(z, y), i.e., forming alocal gradient vector. kth largest eigenvalue of the covariance matrix. Therefore, the
eigenvalues can be calculated from the covariance matrix, which
B. Local Anisotropy and its Spatial Variability is defined in terms of the)(r, ¥) projections along the hori-

zontal and vertical directions (i.ep(r, V) = ¢(r, ¥) cos ¥

Let us consider two pixelée;, v;) and(x;, y;), with their a?gdfﬁ(?’, T), = ¢(r, T) sin ¥), as well as their means; -
r, ¥

gradient magnitudes normalized to unity. These pixels
located at a distaneefrom each other, with the line connecting®"®#y

them rotated of an angl& with respect to the horizontal axis

(see Fig. 1). Thanner productof the two gradient vectors Cv = E{(d)(r, W), — ‘T’) ((/)(7’, V), — oy T’)} (8)
associated with the pixel&e;, y;) and (z;, y,) is given by

d(r, ¥) = cos[@(xi, ;) — 8(x;, y;)]. Papermakers report theor

existence of an underlying weak anisotropic process favoring

the direction of paper formingi(r, V) tends to be higher when Cv = [
measured along the directions of anisotropy than along other

directions, where gradients are less likely to be aligned. Basgflerey,, is the covariance about the mears? andy’: Y.

on this observation, we can estimate the local anisotropy andrpig rﬁatrix is symmetric, i.e(v,y = Cv,e, Which inanIies

its variability, within different region sizes. that its eigenvalues are all real and its eigenvectors are orthog-
Local anisotropy is detected via the distribution of the averagg 5| Also, because the bilinear forfiy is positive semi-defi-

inner productvaluesg(r, V), obtained by varying and¥. The pjte jts eigenvalues are positive or zero, and given by
range ofr andW¥ values defines a particular region size, i.e., the

neighborhood where local anisotropy is analyzed det[Cv — AI] = 0 (10)

©)

Upz Uy }

Vyz  Uyy

1 A where) is the diagonal matrix of eigenvalues, ahis the iden-

T 6 ! s the diag g ! ;
#(r 1) MN ; ;::1 cos{b(z, y) tity matrix. This system can be expressed as a polynomial
—60(z+7cos ¥, y+7rsin V)] (5) A — (Vg + V)N + (VaaVyy — VayVye) = 0. (12)
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Fig. 2. Images of3-radiographs (a) md1j44al and (b) pxxe50cl; alght transmission(c) md1j44al and (d) pxxe50cl.

Finally, the eigenvalues are calculated as We use as descriptors of anisotropy of spatial variability the
reciprocal of the eigenvalues,,;, and \,.x, here denoted
simply as and~,_.

(Vo + Vyy) + \/(Uacac — uyy)? + 402, PlY aSyx,ax VAsin
)\max = 9 (12) _ 1
Yrmax =
)\max
(v —|—v,,)—\/(v — vyy)? + 42, 1
Ampin = " @ Mroin = 31— (14)
and the eccentricity is obtained using (7). C. Correlations and Spectra

2) Spatial Variability of Local Anisotropyin the previous ¢ e want to analyze the contents of images statistically, the
section we discussed how anisotropy can be gstlmgtgd aénﬁreimage must be considered as a statistical quantity, namely,
global measure for the sample. However, sometimes it is al$Q,1dom field.In this case, alV x M image consists of an
important to determine how anisotropy varies spatially WithiR; ., 17 matrix whose elements are random variables. The gray
the sample. values at two distinct positions can be related with each other

Considering that eigenvectors describe axes of extremal vasy- measuring their correlation. One measure for the correlation
ance of thep(r, W) distribution of values, the eigenvalugs;, of the gray values is the expectation value for the product of the
andn.x are related to the spatial variability of anisotropy alongray values at two positions, tlaitocorrelation functiorf9]
those axes. Indeed, strong anisotropy along a particular direction
is characterized by a slow decayd#(fr, ¥) values, and a small Rz, ys 2+ 12, y +1y)
eigenvalue associated with that direction. =E{I(z, Il(x+ry, y+7y)}
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Fig. 3. Distribution ofe(r, ¢) for re [1], [5], shown as surfaces: (a) md1j44al and (b) pxxe50cl; and shown as contours: (c) md1j44al and (d) pxxe50c1.
(3-radiographs.

TABLE | Q-1e-1
COMPARATIVE RESULTS FORe2 VALUES IN = Z Z P(m,n;x, y; £+ 7z, y+1y). (15)
THE SAMPLES OFFIG. 2 FOR ¢(r, ¥') DATA 0 el
Samples | B-radiographs || light transmission The probability functionP(m, n; =, y; « +74, y+r,) has six
md1j44al 2.5933 2.9130 parameters and tells us the probability of simultaneously mea-
pxxeblcl 17.4554 11.0301 suring the gray valuen at the pixel(z, y) andr at the pixel
(z; + m, y; + n). If the statistics do not depend on the po-
TABLE I sition of the pixel, the random field is calldtbmogeneousdt
COMPARATIVE RESULTS FOR7,... VALUES IN THE SAMPLES OF implies that the mean valyeis constant over the whole image,
FIG. 2 FOR ¢(r, U') DATA and the autocorrelation function beconsegt-invariant.There-
fore, the autocorrelation takes a simple form, and only depends
Samples || B-radiographs || light transmission on the positions of the pixels. Extending to two dimensions the
mdljd4al 9.0089 9.0852 Blackman—Tuckey method for autocorrelation estimation, we
pxxeb0cl 7.5396 7.8931 have
TABLE Il R(re, ry) =E{I(z, ))I(z + e, y +1y)}
COMPARATIVE RESULTS FOR”/)\min VALUES IN THE SAMPLES OF 1 2N—-22M -2
FIG. 2 FOR ¢(r, ¥) DATA :W Z Z Iz, Y)I(x 472, y+7y). (16)
=0 y=0
Samples | B-radiographs || light transmission ‘ Y
dij44al 11.4324 11.8691 . : . .
maita According to this method, the imagéz, v) has sizeN x M
pxxe50cl 15.4111 14.3844

and it is appended with zeros to the sf2év — 1) x (2M — 1)
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Fig. 4. Distribution of 2(r.., r,) for r, andr,e [1], [5], shown as surfaces: (a) md1lj44al and (b) pxxe50cl; and shown as contours: (c) mdlj44al and (d)
pxxe50cl. §-radiographg.

before it is used in (16). If we subtract the megarfrom each The Fourier transform of the autocorrelation function is the

pixel, we obtain the correlation power spectrun®(w,, w,), or spectral densitypf the random
Mol N_1 field. It contains only information about amplitudes of the wave
Cra, 7y) = 1 Z Z numbers of the Fourier transform, and can be associated to the
YT NM energy in the wave number domain.

y=0 x=0 . . .
) ) A stochastic texture image is often modeled as a sample of
y) =t y+ry) =) (A7) G order Markov process, where the correlation between

which is calledautocovarianceand can be written in a simpler Points is proportional to their geometric separation. The au-

form as tocovariance function for the two-dimensional (2-D) Markov
process is [8]
Clras ry) = Rlra, 1) = 4. (18)
Clry, ry) = KemVoirirais (19)

In this case, the autocovariance is a linear function of the auto-
correlation. whereK is an energy scaling constant amglandc,, are spatial

If the autocorrelation gradually decreases with the distandecay constants.
of the pixels, the pixels become more and more statistically in-The autocovariance function can be calculated-fgrr, =
dependent. In this sense, the autocorrelation function is a de2, 3, -- -, L, whereL is thecorrelation lengthconsidered. In
scription of the interrelation between the gray values of neigthis case, the parameters, v, and K have physical meaning.
boring pixels. Therefore, if gray values of adjacent pixels have The spatial decay constants anda, are related to the de-
a stronger correlation along one direction, than along anottggee of anisotropy of the stochastic structure (i.eq,if= «,
direction, the random field ianisotropic.However, if correla- the structure is isotropic, and a deviation from this condition in-
tion between gray values decreases equally in all directions, thieates an anisotropic structure). The energy scaling conktant
random field isisotropic. provides information regarding the degree of variability within
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Fig. 5. Distribution ofp(r, ¢) for re [1], [5], shown as surfaces: (a) md1j44al and (b) pxxe50cl; and shown as contours: (c) md1j44al and (d) pXigBOcl.
transmission

the structure (e.g., small reflects small gray values variance)and is expressed by
These parameters can be obtained from the autocovariance func-
tion C(ry, ry)

K =C(0, 0) (20) Pluny, 1) = — 2K

and 1+

2 1 2 0(77"0)
o = g log K (21)

(24)

The discussion above shows that there exists a relationship be-
tween the shape of the autocorrelation (and the autocovariance)

} (22) function, and the corresponding power spectrum. Both func-
tions have their decay controlled by the parametgrsindcy,,.

The effect of noise can be reduced by taking the average of W&ena., = «,, the process represented is isotropic. However,

estimates of, anda,,, at various-, andr,. if o, # «, the process is anisotropic.

For the particular case of a real stochastic process, such as Bherefore, methods proposed for anisotropy detection (e.g.,
stochastic texture image, and provided the autocovariance fuitgtensor metho]) which are based on the shape analysis of
tion, the power spectrun?(w,, w,) can be estimated as fol-the spectral density (such as fitting a straight line to detect orien-
lows: tation), actually measure anisotropy based on the shape of the

Nl M—1 autocorrelation function (or even on, the autocovariance func-

P(w,, w,) = Z Z Clrg, ry) cos(rawe +ryw,) (23) tion). Suph methods are expected to suffer from limitations dis-

e cussed in the next section.

y o2 K

Y

o2 =2 log® [—O(O’Ty)
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Fig. 6. Distribution of 2(r.., r,) for r, andr,e [1], [5], shown as surfaces: (a) md1lj44al and (b) pxxe50cl; and shown as contours: (c) mdlj44al and (d)
pxxe50cl. [jght transmission

TABLE IV I1l. EXPERIMENTAL RESULTS AND DISCUSSION
COMPARATIVE RESULTS FORe? VALUES IN THE SAMPLES OF FIG. .
2FORR(r,, r,) DATA In order to illustrate the concepts developed, we analyzed

the stochastic textures obtained througtradiographic and
optical density images (using light transmission), of paper
samples for which data is in the public domain and accessible
via a hypertext document on the World Wide Web pages:
http://lwww.chem-eng.utoronto.ca/papersci/PaperSci.html.

TABLE V These images have resolution bf4 mm? per pixel, which
COMPARATIVE RESU"TSZ FORYApax VALUES IN THE SAMPLES OFFIG. was found experimentally to be sufficient to capture the texture

FOR R(r,, r,) DATA ) .
structural information.

Samples | B-radiographs || light transmission
md1j44al 1.0035 1.0003
pxxeb0cl 1.0238 1.0296

Samples || B-radiographs || light transmission The stochastic texture samples utilized were supplied by J.
mdljadal 174953 17.3054 Silvy, and have been studied in detail by different researchers
prxeb0cl 17.5887 17.6761 [13]. The oriented sample selected, namely, pxxe50cl, was
made on a pilot plant paper-machine of Fourdrinier type, at a
TABLE VI medium to high level of flocculation. For comparison purposes,
COMPARATIVE RESULTS FORY_. VALUES IN THE SAMPLES OF FIG. the sample mdlj44al was also included, as an example of
2FORR(r, ry) DATA a well-formed nearly isotropic paper from a commercial

paper-machine. Thes-radiographic and light transmission

Samples | f-radiographs | light transmission images of these samples are in Fig. 2.
mdljddal | 175255 17.3080 Similar trends are observed in the plots of ie, ¥) distri-
pxeSOcl | 17.7968 17.9357

butions obtained frong-radiographsandlight transmissionm-
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ages, as shown in Figs. 3 and 5. It is visible in these figures thméthod has potential to be applied for monitoring and control
¢(r, ) decreases with more slowly along the directiong of of continuous web-making processes (e.g., papermaking ma-
higher anisotropy; on the other hary, V) decreases almostchines), or for quality control purposes of 2-D monitoring. It is
uniformly with » along all directions for the nearly isotropicsuitable for multiple resolution (i.e., different zone size) analysis
sample. Also, the shape of these distributions presents nonwfistructural properties and the distribution of local anisotropy
formities [e.g., Figs. 3(b) and 5(b)] due to inhomogeneities walues.
the paper structure.

The global anisotropy measured in theradiographicand
light transmissionimages of these samples?(values) are
shown in Table I. Thex? descriptor appears to be consistent, The authors would like to thank Prof. J. Silvy for supplying
and ranks the samples correctly in terms of their anisotroome samples and W. K. Ng for image acquisition gagdi-
Also, the descriptorsy,,,, and v may be found in ography.
Tables Il and 1ll. We clearly see the difference between the
Yanm @nd va,. values, measured for the anisotropic and
the nearly isotropic samples. Thg,_ . values are usually
associated with the direction of stronger anisotropy’ which [1] J. Bigun, G. H. Granlund, and J. Wilklund, “Multidimensional orien-

. . tation estimation with application to texture analysis and optical flow,”
corresponds to the coordinatein our examples. IEEE Trans. Pattern Anal. Machine Intellol. 13, pp. 775-790, Aug.

The autocorrelation function&(r, =) of the texture im- 1991.
ages shown in Fig. 2 were calculated, and the performance of2] H. Corte, “The structure of paper,” iHandbook of Paper Sciencd. F.

. . Rance, Ed. Amsterdam, The Netherlands: Elsevier, 1982, vol. 2, ch. 9.
the proposed descriptors measured with these data. The Sha?ﬁ H. Corte and O. J. Kallmes, “Statistical geometry of fibrous networks,”

of these functions are in Figs. 4 and 6, shown as contours ~ inTrans. 2nd Fundamental Research Symp. Oxfaoddon, U.K., Sept.
and surfaces. It is evident that illumination changes, and/or _ 1961, pp. 13-46.

. 4] J. Charrier and R. Marchessault, “Light scattering by random and ori-
structural defects, affect strongly the shape of those functions:™ 4 anisotropic rodsFiber Sci. Technolvol. 5, pp. 263283, 1972,

For example, Fig. 6(a) and (c) reflects the shift in illumination [5] K.J. Niskanenand J. W. Sadowski, “Evaluation of some fiber orientation

(and/or light transmission) intensity along the field of view, in measurements,J. Pulp Paper Scjvol. 15, no. 6, pp. 220-224, 1989.

; : T T Aictr : [6] R. W. Perkins and R. E. Mark, “The role of fundamental research in
they direction. However, the shape of tﬁ’é” \I/) distribution papermaking,” infrans. 7th Fundamental Research Symp. Cambridge

was not significantly affected by this artifact, as Figs. 5(a) and  Bury St Edmunds, Sept. 1981, 1983, pp. 479-526.
(c) shows. [7] Trans. 11th Fundamental Research Symp. Cambri@g€. Baker, Ed..

L . . Leatherhead, Sept. 20-26, 1997, pp. 1293-1324.
The decay OfR(“f’ 72/) values as a functloLfthe distance 8] W. K. Pratt,Digital Image Processing New York: Wiley, 1991.

(re, ry) is slower (between 3-5%), than fgi(r, V) values [9] B.JahneDigital Image Processing: Concepts, Algorithms and Scientific

(near 100%). This indicates that larger areas are necessary to es- Applications Heidelberg, Germany: Springer-Verlag, 1995.

- . . [10] C. Schaffnit, C. T. J. Dodson, and J. Silvy, “Orientation density distri-
timateR(r,, r,), and also that descriptors based on these fundk butions of fibers in paperNordic Pulp Paper Res. Jvol. 3, no. 7. pp.

tions have a lower sensitivity to local variability. Tables IV-VI 121-125, 1992,
confirm that descriptor values are very similar for all textures[11] C. Schaffnit and C. T. J. Dodson, “A new analysis of fiber orientation

within the specified range ofr,, r,) distances, and not al- ‘ig‘;?,s on paper formationPaperija Puu, vol. 75, no. 9, pp. 68-75,

lowing a clear discrimination between them with respect to theif12) J. Scharcanskiand C. T. J. Dodson, “Texture analysis for estimating spa-
anisotropy (both samples appear to be nearly isotropic). Prob- tial variability and anisotropy in planar stochastic structur€pt. Eng.
ably’. this occurs b.ecause. gray_levels ha\_/e a stronger_spatlal C?{é] j \S/ﬁ\llyasE?l?desSFt)rrchjgzle %io&i&u& éﬁ)?e?ux Cas des Fibers Cellu-
relation than gradient orientations within a stochastic texture. ~ |osiques,” Doctorat D'Etat Es-Sciences Thesis, LInstitut National Poly-
For this reason, techniques based on the analysis of the shape of technique de Grenoble, 1980.
the autocorrelation function are expected to be less sensitive to
local spatial variability, and also to be more influenced by illu-
mination and/or structural artifacts than our approach.

The proposed descriptors contain information on anisotropy
required for monitoring and control purposes. The analysis of

_ ; ; f i : -~ Jacob Scharcanskreceived the B.Eng. degree in electrical engineering and the
the p radleraphlcand“ght transmissionmages lead to sim M.Sc. degree in computer science from the Federal University of Rio Grande

ilar results. This observation is of practical interest becausej# sul, Brazil, in 1981 and 1984, respectively, and the Ph.D. degree in systems
indicates that our technique has the potential to be applied égsign engineering from the University of Waterloo, Waterloo, ON, Canada, in
93

therin Iaboratory, as well as, in on-line measurements. His main areas of interest are image processing and analysis, pattern recog-
Finally, we should mention that global anisotropy arises asion, and industrial automation. He was a Post-Doctoral Fellow at the Pulp
locally oriented regions within the texture, as our results showfd Paper Centre, University of Toronto, Toronto, ON, working on simulation
of paper forming using neural networks, and on the analysis and interpretation
of paper formation. Also, he was a Post-Doctoral Fellow at the Communica-
tions Group, Department of Electrical and Computer Engineering, University
IV. CONCLUDING REMARKS of Toronto, working on image processing and analysis. Currently, he is a Pro-
fessor at the Institute of Informatics, Federal University of Rio Grande do Sul.
A thod f lyzi isot in ol tochastic st He has authored and coauthored more than 60 publications in journals and con-
method 1or analyzing anisotropy In planar stochastic s ruﬁ{rences, and has led to innovations in paper structural analysis by combination

tures, as well as its spatial variability has been presented. Thiignage analysis and statistical geometry.
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