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Stochastic Texture Image Estimators for Local Spatial
Anisotropy and Its Variability

J. Scharcanski and C. T. J. Dodson

Abstract—A new image analysis technique is proposed for the
evaluation of local anisotropy and its variability in stochastic tex-
ture images. It utilizes the gradient function to provide informa-
tion on local anisotropy, from two-dimensional (2-D) density im-
ages for foil materials like polymer sheets, nonwoven textiles, and
paper. Such images can be captured by radiography or light-trans-
mission; results are reported for a range of paper structures, and
show that the proposed technique is more robust to unfavorable
imaging conditions than other approaches. The method has poten-
tial for on-line application to monitoring and control of anisotropy
and its variability, as well as local density itself, in continuous man-
ufacturing processes.

Index Terms—Anisotropy, density variability, machine control,
monitoring, stochastic structures, texture image analysis.

I. INTRODUCTION

SEVERAL approaches have been considered to analyze sto-
chastic texture images with respect to their anisotropy. Gra-

dient based methods have been proposed [1], in particular, for
texture analysis applications. However, such methods have lim-
itations [9] because they rely only on local angular information,
which may lead to imprecise anisotropy estimation; and also
they are susceptible to mutual vector cancellation, which may
affect the results of local gradient vector operations. However,
these deficiencies found in the proposed gradient based methods
can be overcome by considering anisotropy as a global feature,
described in terms of the distribution of local gradient directions
[12]. A limitation of this approach is the lack of information
about local anisotropy variability. Most recent research on this
topic is reported by Praast and Göttsching concerning the local
orientation in fiber assemblies.

The modeling of the local anisotropic process, and how it af-
fects the stochastic textures originating from it, has been inten-
sively studied. The geometric optics of anisotropic fiber assem-
blies, originating stochastic textures, were studied by Charrier
and Marchessault [4]. The early work of Corte and Kallmes
[2], [3], laid the basis for statistical geometric representation
of anisotropy in web-based materials like paper, and Perkins
and Mark [6] emphasized the need for more than one param-
eter in characterizing anisotropy. Niskanen and Sadowski [5]
compared different methods of measuring orientation in images
of fiber assemblies, and Schaffnitet al. [10], [11], developed a
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model to analyze the effect of anisotropy on the mass variability
in planar stochastic materials. These methods have been useful
to understand better the underlying anisotropic process, and its
effect on the stochastic textures. However, their application to
direct anisotropy measurement is not trivial.

A different approach based on texture spectral density anal-
ysis in the Fourier domain was discussed in [9]. This method is
discussed later, as well as some of its limitations for anisotropy
detection in stochastic textures, and it is shown that these diffi-
culties can be reduced by using our approach.

The next sections describe the method we propose for de-
tection of anisotropy and its variability in stochastic textures.
Finally, some experimental results, on texture images of paper
samples are presented.

II. L OCAL SPATIAL ANISOTROPY FROMIMAGE GRADIENTS

We apply our methods to the anisotropy of a paper sample,
estimated via analysis of its grey-level image, which may be
obtained through different transmission imaging techniques.
Initially, the image is convolved with a gradient operator, and
at the gradient maxima we estimate the gradientmagnitudes
and orientations.This information is then used to estimate
the anisotropy of the sample, and its spatial variability. The
next sections describe thegradient operatorwe use, and our
technique for anisotropy estimation. The anisotropy spatial
variability is also estimated and constitutes a relevant feature
for image discrimination.

A. Detection of Local Image Gradients

Theisotropic operatorfor grey-level images is utilized to ob-
tain the image gradients, represented by alocal gradient vectorat
each image position [8]. The version of this operator
is described using the following pixel numbering convention:

(1)

Therefore, the magnitude of the gradient maximum at the image
location is obtained by

(2)

where
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Fig. 1. Local angular difference for a givenr and .

(3)

and the direction of the gradient maximum at is given
by

(4)

where is an integer, and . This operator isisotropic
because its sensitivity to horizontal, vertical, and diagonal step
edges is the same. Therefore, at each image location there
is themaximum gradient magnitude , and itsorientation

, i.e., forming alocal gradient vector.

B. Local Anisotropy and its Spatial Variability

Let us consider two pixels and , with their
gradient magnitudes normalized to unity. These pixels are
located at a distancefrom each other, with the line connecting
them rotated of an angle with respect to the horizontal axis
(see Fig. 1). Theinner productof the two gradient vectors
associated with the pixels and is given by

. Papermakers report the
existence of an underlying weak anisotropic process favoring
the direction of paper forming; tends to be higher when
measured along the directions of anisotropy than along other
directions, where gradients are less likely to be aligned. Based
on this observation, we can estimate the local anisotropy and
its variability, within different region sizes.

Local anisotropy is detected via the distribution of the average
inner productvalues , obtained by varying and . The
range of and values defines a particular region size, i.e., the
neighborhood where local anisotropy is analyzed

(5)

where is the number of pixels within the image area
under consideration.

The shape of these distributions encode important
structural information. The stronger the local anisotropy, the
higher is the local alignment of gradient vectors, and more ellip-
tical is the distribution of values. A quantitative mea-
sure of how elliptical is the distribution may be provided by the
eccentricity factor, denoted by, which is detailed next [12].

1) Eccentricity of the Angular Distribution:Thedistribution
of values over all locations , varying the distance

and the angle , represents structural anisotropy. In the case
where the values are equally probable in all angles, the sample
is isotropic (i.e., cylindrically symmetric distribution).

The distribution of in an anisotropic sample is asym-
metric; it is approximately elliptical and determines two orthog-
onal axes of extremal variance. These axes coincide with eigen-
vectors of the distribution of values, belonging to the
two distinct eigenvalues of the covariance matrix.
The eigenvalues define an ellipse with semimajor axes given by

, which is described by

(6)

The eigenvalues are related to the eccentricityof this ellipse
(and of the distribution). We represent the eccentricity simply
as the ratio

(7)

where , and we need to determine and .
In general, the th principal component direction of a

distribution is along an eigenvector direction belonging to the
th largest eigenvalue of the covariance matrix. Therefore, the

eigenvalues can be calculated from the covariance matrix, which
is defined in terms of the projections along the hori-
zontal and vertical directions (i.e.,
and ), as well as their means
and

(8)

or

(9)

where is the covariance about the means and .
This matrix is symmetric, i.e., , which implies

that its eigenvalues are all real and its eigenvectors are orthog-
onal. Also, because the bilinear form, is positive semi-defi-
nite, its eigenvalues are positive or zero, and given by

(10)

where is the diagonal matrix of eigenvalues, andis the iden-
tity matrix. This system can be expressed as a polynomial

(11)
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Fig. 2. Images of�-radiographs: (a) md1j44a1 and (b) pxxe50c1; andlight transmission: (c) md1j44a1 and (d) pxxe50c1.

Finally, the eigenvalues are calculated as

(12)

(13)

and the eccentricity is obtained using (7).
2) Spatial Variability of Local Anisotropy:In the previous

section we discussed how anisotropy can be estimated as a
global measure for the sample. However, sometimes it is also
important to determine how anisotropy varies spatially within
the sample.

Considering that eigenvectors describe axes of extremal vari-
ance of the distribution of values, the eigenvalues
and are related to the spatial variability of anisotropy along
those axes. Indeed, strong anisotropy along a particular direction
is characterized by a slow decay of values, and a small
eigenvalue associated with that direction.

We use as descriptors of anisotropy of spatial variability the
reciprocal of the eigenvalues and , here denoted
simply as and

(14)

C. Correlations and Spectra

If we want to analyze the contents of images statistically, the
entire image must be considered as a statistical quantity, namely,
a random field.In this case, an image consists of an

matrix whose elements are random variables. The gray
values at two distinct positions can be related with each other
by measuring their correlation. One measure for the correlation
of the gray values is the expectation value for the product of the
gray values at two positions, theautocorrelation function[9]
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Fig. 3. Distribution of�(r;  ) for r� [1], [5], shown as surfaces: (a) md1j44a1 and (b) pxxe50c1; and shown as contours: (c) md1j44a1 and (d) pxxe50c1.
(�-radiographs).

TABLE I
COMPARATIVE RESULTS FOR e VALUES IN

THE SAMPLES OFFIG. 2 FOR�(r;	) DATA

TABLE II
COMPARATIVE RESULTS FOR
 VALUES IN THE SAMPLES OF

FIG. 2 FOR�(r;	) DATA

TABLE III
COMPARATIVE RESULTS FOR
 VALUES IN THE SAMPLES OF

FIG. 2 FOR�(r;	) DATA

(15)

The probability function has six
parameters and tells us the probability of simultaneously mea-
suring the gray value at the pixel and at the pixel

. If the statistics do not depend on the po-
sition of the pixel, the random field is calledhomogeneous.It
implies that the mean valueis constant over the whole image,
and the autocorrelation function becomesshift-invariant.There-
fore, the autocorrelation takes a simple form, and only depends
on the positions of the pixels. Extending to two dimensions the
Blackman–Tuckey method for autocorrelation estimation, we
have

(16)

According to this method, the image has size
and it is appended with zeros to the size
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Fig. 4. Distribution ofR(r ; r ) for r andr � [1], [5], shown as surfaces: (a) md1j44a1 and (b) pxxe50c1; and shown as contours: (c) md1j44a1 and (d)
pxxe50c1. (�-radiographs).

before it is used in (16). If we subtract the meanfrom each
pixel, we obtain the correlation

(17)

which is calledautocovariance,and can be written in a simpler
form as

(18)

In this case, the autocovariance is a linear function of the auto-
correlation.

If the autocorrelation gradually decreases with the distance
of the pixels, the pixels become more and more statistically in-
dependent. In this sense, the autocorrelation function is a de-
scription of the interrelation between the gray values of neigh-
boring pixels. Therefore, if gray values of adjacent pixels have
a stronger correlation along one direction, than along another
direction, the random field isanisotropic.However, if correla-
tion between gray values decreases equally in all directions, the
random field isisotropic.

The Fourier transform of the autocorrelation function is the
power spectrum , or spectral density,of the random
field. It contains only information about amplitudes of the wave
numbers of the Fourier transform, and can be associated to the
energy in the wave number domain.

A stochastic texture image is often modeled as a sample of
a first-order Markov process, where the correlation between
points is proportional to their geometric separation. The au-
tocovariance function for the two-dimensional (2-D) Markov
process is [8]

(19)

where is an energy scaling constant andand are spatial
decay constants.

The autocovariance function can be calculated for
, where is thecorrelation lengthconsidered. In

this case, the parameters, and have physical meaning.
The spatial decay constants and are related to the de-

gree of anisotropy of the stochastic structure (i.e., if
the structure is isotropic, and a deviation from this condition in-
dicates an anisotropic structure). The energy scaling constant
provides information regarding the degree of variability within
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Fig. 5. Distribution of�(r;  ) for r� [1], [5], shown as surfaces: (a) md1j44a1 and (b) pxxe50c1; and shown as contours: (c) md1j44a1 and (d) pxxe50c1. (light
transmission)

the structure (e.g., small reflects small gray values variance).
These parameters can be obtained from the autocovariance func-
tion

(20)

and

(21)

(22)

The effect of noise can be reduced by taking the average of the
estimates of and , at various and .

For the particular case of a real stochastic process, such as a
stochastic texture image, and provided the autocovariance func-
tion, the power spectrum can be estimated as fol-
lows:

(23)

and is expressed by

(24)

The discussion above shows that there exists a relationship be-
tween the shape of the autocorrelation (and the autocovariance)
function, and the corresponding power spectrum. Both func-
tions have their decay controlled by the parametersand .
When , the process represented is isotropic. However,
if the process is anisotropic.

Therefore, methods proposed for anisotropy detection (e.g.,
thetensor method[9]) which are based on the shape analysis of
the spectral density (such as fitting a straight line to detect orien-
tation), actually measure anisotropy based on the shape of the
autocorrelation function (or even on, the autocovariance func-
tion). Such methods are expected to suffer from limitations dis-
cussed in the next section.
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Fig. 6. Distribution ofR(r ; r ) for r andr � [1], [5], shown as surfaces: (a) md1j44a1 and (b) pxxe50c1; and shown as contours: (c) md1j44a1 and (d)
pxxe50c1. (light transmission)

TABLE IV
COMPARATIVE RESULTS FORe VALUES IN THE SAMPLES OF FIG.

2 FORR(r ; r ) DATA

TABLE V
COMPARATIVE RESULTS FOR
 VALUES IN THE SAMPLES OFFIG.

2 FORR(r ; r ) DATA

TABLE VI
COMPARATIVE RESULTS FOR
 VALUES IN THE SAMPLES OF FIG.

2 FORR(r ; r ) DATA

III. EXPERIMENTAL RESULTS AND DISCUSSION

In order to illustrate the concepts developed, we analyzed
the stochastic textures obtained through-radiographic and
optical density images (using light transmission), of paper
samples for which data is in the public domain and accessible
via a hypertext document on the World Wide Web pages:
http://www.chem-eng.utoronto.ca/papersci/PaperSci.html.
These images have resolution of mm per pixel, which
was found experimentally to be sufficient to capture the texture
structural information.

The stochastic texture samples utilized were supplied by J.
Silvy, and have been studied in detail by different researchers
[13]. The oriented sample selected, namely, pxxe50c1, was
made on a pilot plant paper-machine of Fourdrinier type, at a
medium to high level of flocculation. For comparison purposes,
the sample md1j44a1 was also included, as an example of
a well-formed nearly isotropic paper from a commercial
paper-machine. The -radiographic and light transmission
images of these samples are in Fig. 2.

Similar trends are observed in the plots of the distri-
butions obtained from-radiographsandlight transmissionim-



978 IEEE TRANSACTIONS ON INSTRUMENTAITON AND MEASUREMENT, VOL. 49, NO. 5, OCTOBER 2000

ages, as shown in Figs. 3 and 5. It is visible in these figures that
decreases with more slowly along the directions of

higher anisotropy; on the other hand, decreases almost
uniformly with along all directions for the nearly isotropic
sample. Also, the shape of these distributions presents nonuni-
formities [e.g., Figs. 3(b) and 5(b)] due to inhomogeneities in
the paper structure.

The global anisotropy measured in the-radiographicand
light transmissionimages of these samples ( values) are
shown in Table I. The descriptor appears to be consistent,
and ranks the samples correctly in terms of their anisotropy.
Also, the descriptors and may be found in
Tables II and III. We clearly see the difference between the

and values, measured for the anisotropic and
the nearly isotropic samples. The values are usually
associated with the direction of stronger anisotropy, which
corresponds to thex coordinatein our examples.

The autocorrelation functions of the texture im-
ages shown in Fig. 2 were calculated, and the performance of
the proposed descriptors measured with these data. The shape
of these functions are in Figs. 4 and 6, shown as contours
and surfaces. It is evident that illumination changes, and/or
structural defects, affect strongly the shape of those functions.
For example, Fig. 6(a) and (c) reflects the shift in illumination
(and/or light transmission) intensity along the field of view, in
the direction. However, the shape of the distribution
was not significantly affected by this artifact, as Figs. 5(a) and
(c) shows.

The decay of values as a function of the distance
is slower (between 3–5%), than for values

(near 100%). This indicates that larger areas are necessary to es-
timate , and also that descriptors based on these func-
tions have a lower sensitivity to local variability. Tables IV–VI
confirm that descriptor values are very similar for all textures,
within the specified range of distances, and not al-
lowing a clear discrimination between them with respect to their
anisotropy (both samples appear to be nearly isotropic). Prob-
ably, this occurs because graylevels have a stronger spatial cor-
relation than gradient orientations within a stochastic texture.
For this reason, techniques based on the analysis of the shape of
the autocorrelation function are expected to be less sensitive to
local spatial variability, and also to be more influenced by illu-
mination and/or structural artifacts than our approach.

The proposed descriptors contain information on anisotropy
required for monitoring and control purposes. The analysis of
the -radiographicandlight transmissionimages lead to sim-
ilar results. This observation is of practical interest because it
indicates that our technique has the potential to be applied ei-
ther in laboratory, as well as, in on-line measurements.

Finally, we should mention that global anisotropy arises as
locally oriented regions within the texture, as our results show.

IV. CONCLUDING REMARKS

A method for analyzing anisotropy in planar stochastic struc-
tures, as well as its spatial variability has been presented. This

method has potential to be applied for monitoring and control
of continuous web-making processes (e.g., papermaking ma-
chines), or for quality control purposes of 2-D monitoring. It is
suitable for multiple resolution (i.e., different zone size) analysis
of structural properties and the distribution of local anisotropy
values.
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