A “vanilla” approach
to modeling, together
with powerful notions
of executability and
code generation, may
have a profound
impact on the
“essence” of developing
complex systems.

Biting the
Silver Bullet

Toward a Brighter Future
for System Development

David Harel, Weizmann Institute of Science

n an eloquent and thoughtful 1986 article, Frederick Brooks expresses his
feelings about the illusions and hopes software engineering offers.' He argues
. that many proposed ideas are not “silver bullets” that will deliver us from the
horrors of developing complex systems.

Brooks’ article is reminiscent of Parnas’ series of minipapers? that accompanied
his widely publicized resignation from the Strategic Defense Initiative Organiza-
tion (SDIO) Panel on Computing in 1985. Parnas claims that current proposals are
vastly inadequate to build reliable software as complex as that required for the SDI
project.

We thus have two rather discouraging position papers, authored by two of the
most influential figures in the software world. Neither is a critique of software
engineering per se, although both make an effort to dissolve myths of magical
power that people have cultivated concerning certain trends in the field.

This article was triggered by those of Brooks and Parnas. It is not a rebuttal.
Indeed, I agree with most of the specific points made in both papers. Instead, the
goal of this article is to illuminate the brighter side of the coin, emphasizing
developments in the field that were too recent or immature to have influenced
Brooks and Parnas when they wrote their manuscripts.

The two main aspects of these developments have to do with a carefully wrought
“yanilla” approach to system modeling and the emergence of powerful methods to
execute and analyze the resulting models. It can be argued that the combined effect
of these and other ideas is already showing positive signs and appears to have the
potential to provide a truly major improvement in our present abilities — pro-
foundly affecting the essence of the problem. This might take more than the 10
years Brooks focuses on. It will surely be a long time before reliable software for
the likes of the SDI project can be built. Such a system remains an order of
magnitude too large and too critical to construct today, mainly because of its first-
time-must-work nature. But I also believe that we are on the royal (main) road and
that the general impression you get from reading the Brooks and Parnas articles is
far too bleak.

0018-9162/92/0100-008$03.00 © 1992 IEEE COMPUTER

Past versus present

Brooks’ arguments. The main prob-
lem, as Brooks rightly sees it, is in spec-
ifying, designing, and testing the “con-
ceptual construct” underlying the system
being developed, and not in “the labor
of representing it and testing the fideli-
ty of the representation.”

“The hard thing about building soft-
ware,” he claims, “is deciding what one
wants to say, not saying it.” In elaborat-
ing, he mentions the superlinear growth
in the number of system states, the dif-
ficulty of comprehending the conceptu-
al construct and communicating it to
others, and what he believes to be its
inherent unvisualizable character.

Brooks further argues that, in con-
trast to their apparent appeal, several
proposed ideas in the field do not con-
stitute magical solutions to the essential
problems. Among the “nonbullets” he
discusses are high-level languages, ob-
ject-oriented programming, artificial
intelligence and expert systems, auto-
matic programming, graphical languag-
es, program verification, and hardware
improvements.

In his introduction, Brooks says that
although he sees no startling break-
throughs in the next decade, “many en-
couraging innovations are under way,”
and eventually they will be exploited to
“yield an order-of-magnitude improve-
ment.”

Brooks mentions two sets of innova-
tions. The first set includes those of the
above proposals that he doesn’t totally
discard (for example, high-level languag-
es and object-oriented programming).
However, he claims that they deal only
with representation issues, which con-
stitute the accidental part of the prob-
lem.

The second set of innovations, the
ones Brooks claims will influence the
essence, include

s buying sufficiently general ready-
made software, instead of having it
tailor-made;

erefining the requirements itera-
tively and interactively with the cli-
ent, using increasingly better proto-
types;

¢ enhancing the designin aniterative,
top-down fashion, adding lower-lev-
el details at each step; and

e finding, hiring, and cultivating ex-
tremely talented designers.

January 1992

Despite the encouraging way the
points are expressed, we come away
feeling distinctly uncomfortable. Apart
from ideas that deal with the accidental
parts of the problem, we are told to buy
good software from others, hire better
people than we already have, and con-
tinue with the well-established practic-
es of prototyping and iterative design.
All the rest is marginal.

I have discussed Brooks’ article with
many people over the past few years.
Most stated that while they agree with
many of its individual points, the paper
presents a far gloomier assessment of
the situation than seems appropriate. I
feel that this is rooted in some of its
underlying adopted themes.

The first is the sharp separation be-
tween the accidental and essential as-
pects of the problem, relegating every-
thing related to representation,
language, and levels of abstraction to
the former and only the process of think-
ing about the concepts to the latter.

The second is the treatment of each
proposed idea in isolation, with the ac-
companying claim that most of the pro-
posals address representation, so that
they cannot help with the essence.

The third involves concentrating on
only 10 years of the future, which is
probably too short a period in which to
expect any significant improvement.
(About half of this period is already
behind us.)

Finally, the discussion is presented as
a search for a miracle-working silver
bullet that will slay the werewolf of
constructing complex software. By ar-
guing that current motifs will not bring
about that miracle, at least not within
the next few years, we are left with the

On biting bullets

troubling feeling that the werewolf is
here to stay.

We’ve been there before. Since this
article takes a longer term point of view,
itisinstructive to'carry out a brief thought
experiment. Let’s go back, say 40 years.
That was the time when instead of grap-
pling with the design of large, complex
systems, programmers were in the busi-
ness of developing conventional one-
person programs (which would be on
the order of 100-200 lines in a modern
programming language) that were to
carry outlimited algorithmic tasks. Giv-
en the technology and methodology
available then, such tasks were similar-
ly formidable. Failures, errors, and
missed deadlines were all around.

Imagine an article appearing then and
claiming the essence of the problem to
be deciding what one wants to say, that
is, conceiving the algorithm. Writing
the program is the accidental part. Such
an article might have asked about the
availability of a one-stroke solution that
deals with the essence. From the way
the issue is presented, it would follow
that any ideas that relate to representa-
tion and levels of detail can be discount-
ed, because they deal with the nones-
sential parts of the problem. The article
could very well go on to argue thatideas
like high-level programming languages,
compilation, and algorithmic paradigms
can be safely set aside, since they do not
deal with the essence.

However, while none of these ideas
alone has solved the problem, and while
it did take more than 10 years for the
situation to change, we have indeed
witnessed an order-of-magnitude ad-
vance in our ability to tackle the very

There are two opinions about the origin of the phrase “Biting the bullet.” One
is that it came from the need to bite the top off the paper cartridge prior to firing
a certain kind of British rifle used in the mid 19th century. This often had to be
done under enemy fire and required keeping a cool head. ’

The other is that it is an old American phrase, rooted in the folklore of the US
Civil War. It supposedly emerged from the practice of encouraging a patient who
was to undergo field surgery to bite down hard on a lead bullet to “divert the
mind from pain and prevent screaming” (R.L. Chapman, American Slang, Harper

and Row, New York, 1986).

In more recent years, the phrase has come to signify having to do something
painful but necessary, or to undertake an activity despite criticism or opposition,
while exhibiting a measure of courage and optimism.

More on the vanilla approach

It is impossible to provide a detailed account of the vanilla approach to model-
ing in this article. The discussion of it in the text is thus extremely brief. As men-
tioned, the ideas are based on much early work on the specification and design
of nonreactive systems, suitably extended.

The three independent efforts that led to this approach are described, respec-
tively, in the Ward and Mellor book,® the Hatley and Pirbhai book,* and in the
Harel et al.® publication related to the Statemate system.

The latter is less informative on the modeling aspects of the approach than
the two books; its main intention was to describe the supporting tool. However, a

more detailed description of this modeling framework appears in the following
manuscript, which should appear in book form in due time:

Harel, D., and M. Politi, “The Languages of Statemate,” Tech. Report, i-Logix,

Burlington, Mass., 1991.

The following paper compares and evaluates these three research efforts (as
well as a related fourth one). it is quite illuminating and emphasizes the differ-
ences between them, particularly those relevant to modeling behavior:

Wood, D.P., and W.G. Wood, “Comparative Evaluations of Four Specification
Methods for Real-Time Systems,” Tech. Report CMU/SEI-89-TR-36, Software
Eng. Inst., Carnegie Mellon Univ., Pittsburgh, 1989.

The following book contains interesting discussions and comparisons of these
and other modeling approaches. It also features a valuable annotated bibliogra-

phy of some 600 items:

Davis, A. M., Software Requirements: Analysis and Specification, Prentice

Hall, Englewood Cliffs, N.J., 1980.

essence of designing one-person pro-
grams. There is absolutely no compari-
son between the process of writing a
correct and efficient one-person pro-
gram 40 years ago and now. (Actually,
we need not come all the way to 1992; it
suffices to compare 1950 with, say, 1975.)
The grand sum of the many innovations
that have been suggested and pursued
in the interim has worked wonders!
Of course, the situation isn’t perfect.
There still is a great deal of bad pro-
gramming around, and there are lots of
incompetent programmers, some terri-
ble programming languages, many mis-
leading methods and guidelines, and
widespread ignorance of the fundamen-
tals. Nevertheless, most people would
agree that the werewolves of one-per-
son programis are gone, never to return.

Vanilla frameworks. Most instrumen-
tal in triggering the revolution in one-
person programming has been the evo-
lution of a fitting, general-purpose
conceptual framework, which we shall
call “vanilla.” Its main contribution was

10

to free the programmer from having to
think on an inappropriate level of de-
tail, enabling him or her to conceive of
an idea for solving an algorithmic prob-
lem and to map it easily from the mind
into an appropriate high-level medium.
The cornerstone of this framework is
a collection of fundamental notions and
concepts that includes the basic dichot-
omy between data and control and con-
venient means for structuring and com-
bining them into an algorithmic whole.
Thus, elementary control structures, data
types, and data structures were identi-
fied, and we learned how to wield them.
A rich variety of algorithmic methods
was devised, including divide and con-
quer,dynamic programming, and greedy
paradigms; these were adapted to fit a
variety of problem sets. Notions of cor-
rectness and efficiency were introduced,
together with methods for establishing
the former and estimating the latter.
In parallel, and based on these con-
cepts,acorresponding set of vanilla high-
level programming languages evolved,
supported by powerful and sophisticat-

ed tools for testing and analyzing. We
learned to rely on the theory of compu-
tational complexity to help us find effi-
cient algorithms or to detect our stum-
bling upon an intractable problem; we
have begun to understand the great vir-
tues of parallelism, approximation, and
randomization in obtaining even better
solutions.

Thus, for one-person programs, acci-
dental and essential issues were inti-
mately and unavoidably intertwined.

Of course, as time went by, other
flavors, more exotic than vanilla, natu-
rally emerged, such as applicative, func-
tional, and logic programming styles, as
well as more esoteric approaches like
systolic arrays and neural nets. For each,
the basic notions and concepts have had
to be redefined, and new languages and
tools have been developed. The arsenal
has thus grown considerably and has
become richer and more varied — a
sure sign of healthy evolution.

Back to the future. I believe the cur-
rent situation is similar, except that we
are now in the business of developing
very complex systems. These systems
are to consist of large amounts of soft-
ware and hardware and are often of a
distributed nature. Their size and com-
plexity, as Brooks and Parnas observe,
is formidable when compared to one-
person programs. By their very nature,
they also involve large numbers of tech-
nical personnel.

The rest of this article is restricted to
a class of systems that has been termed
reactive.>$ This class includes many kinds
ofembedded, concurrent, and real-time
systems, but excludes data-intensive
ones such as databases and manage-
mentinformation systems. Reactive sys-
tems are widely considered to be partic-
ularly problematic, posing some of the
greatest challenges in this field.

Building on a solid foundation of time-
honored work in software and systems
engineering, a number of developments
have taken place in the past several
years. Although not yet universally ac-
cepted as such, I submit that they com-
bine to form the kernel of a solid gener-
al-purpose vanilla approach (see the
sidebar) to the development of complex
reactive systems. Moreover, encourag-
ing research is under way in a number of
related fields that has fundamental im-
plications regarding these ideas.

The climate suggests that we stand to
witness a grand-scale improvement in

COMPUTER

the process of constructing such
systems. It is hard to predict a
time frame for this, but the scope
of the benefits it will bring about
could very well match the strik-
ing changes we have witnessed in
solving one-person algorithmic
problems.

We now discuss the two com-
ponents of these developments:
means for modeling the system,
and techniques for inspecting and
analyzing the model.

Modeling the
system

To model systems, we need an
underlying set of fundamental
concepts and notions —some call
them “abstractions” — that, in
Brooks’ terminology, capture the

© 1991, D. Harel

and written, and sense when such
things have happened — thus
affecting subsequent behavior.
The resulting combination is the
system’s conceptual model.

The recommendations also call
for a structural, or architectural,
description of the system to deal
with such notions as subsystems
and modules, channels and phys-
ical links, and storage compo-
nents. This description can thus
be considered the system’s phys-
ical model. The conceptual and
physical models are related by a
mapping that assigns implemen-
tational responsibility for the var-
ious parts of the former to those
of the latter.

Modeling behavior. While the
functional description s the back-
bone of the conceptual model,
the behavioral descriptions (that
is, the control activities) are,in a

“conceptual construct” of com-
plex systems. Deciding what they
are and how they relate is analo-
gous to the separation of data
andcontrolin the vanilla approach
to one-person programs and the identi-
fication of appropriate ways of structur-
ing, expressing, and combining them.
For a nonexotic first cut at the problem,
these concepts must be sufficiently gen-
eral to be widely applicabie, even at the
expense of being somewhat mediocre.
To be amenable to inspection and anal-
ysis, they must also be rigorous and
precise, with underlying formal seman-
tics.

The vanilla approach is rooted in the
early work of Parnas and others on
modularization and information hiding,”
and in that of several researchers on
structured analysis and structured de-
sign®® that dealt mainly with data-inten-
sive systems. The backbone of the sys-
tem model should be a hierarchy of
activities,as we’ll call them, that capture
the functional capabilities of the system
— suitably decomposed to a level with
which the designer is happy. (The activ-
ities need not be arranged in strict hier-
archies. The breakup, or decomposi-
tion, may have overlappings, with
elements on any level being shared by
multiple parent elements. The term “hi-
erarchy” used here thus carries a more
flexible connotation.)

Data elements and data stores are
also specified therein, and are associat-
ed as inputs and outputs that flow be-

January 1992

A system model.

tween the activities on the various lev-
els. The semantics of this kind of func-
tional description is dynamically non-
committing in that it merely asserts that
activities can be active, information can
flow, and so on. It does not contain
information about what will happen,
when it will happen, or why it will hap-
pen. As a consequence, this hierarchy
can only serve as part of a conceptual
model for truly reactive systems — such
as control and communication systems
or embedded real-time systems, which
have a crucial behavioral side that has
to be addressed, too.

Some time ago, a number of indepen-
dent research groups extended these
widely accepted ideas to deal with reac-
tive systems.>* Their efforts resulted in
asurprisingly similar set of conclusions.
Using their own terminology and em-
phasis, they each recommended that the
hierarchy of activities be enriched with
behavioral descriptions we’ll call con-
trol activities, which potentially appear
on all levels.

Control activities serve as the central
nervous system, so to speak, of the mod-
el. They are meant to sense and control
the dynamics of that portion of the func-
tional description on their level. This
includes the ability to activate and de-
activate activities, cause data to be read

crucial sense, its heart and soul.

Behavior over time is much less

tangible than either functional-

ity or physical structure, and
more than anything else, this is the as-
pect that renders reactive systems so
slippery and error-prone.

In the realm of dynamic behavior,
there is a particularly dire need for ap-
proaches that are sufficiently clear and
well-structured to enable designers to
capture their thinking in a coherent and
comprehensive fashion. Moreover, be-
havioral descriptions must possess rig-
orous underlying semantics; all too of-
ten, insufficient attention has been paid
to semantics. The discussion of analysis
below will show how important this is.

The aforementioned research groups®?
more or less agree that behavioral con-
trollers should be described using modes,
or states, together with control elements,
such as events and conditions, that trig-
ger transitions between them. Implicit-
ly, they have also adopted a subtle ab-
straction, termed the synchrony
hypothesis,'® according to which every-
thing takes zero time unless explicitly
prescribed otherwise. However, there
is no agreement as to exactly how this is
to be turned into a workable medium
for modeling reactive behavior. It is
clear that conventional finite-state ma-
chines will not do, due to their lack of
structure, their verbosity, and the noto-
rious state-explosion phenomenon.

The basic elements of reactive behav-

11

jor (states, transitions, events, condi-
tions, and time) must be allowed to be
properly and naturally conceptualized,
structured, and combined so that fun-
damental patterns of reactive behavior
— like sequentiality, concurrency, and
synchronization — will mesh smoothly
with the functional decomposition.

A number of solutions have been sug-
gested by these groups. They range from
variants of communicating finite-state
machines,*# through combinational de-
cision tables and other similar means,*
toarelative newcomer —statecharts.>!!
Other formalisms, such as Petri nets,
temporal logic,® or certain languages
especially tailored for real-time sys-
tems,!® would be reasonable choices,
too.

Modeling data. Although data-inten-
sive systems are not the subject of this
article, @ few words regarding the issue
of incorporating data modeling into the
vanilla framework are in order.

Conventional data elements and data
structures can be specified and manipu-
lated in standard ways within behavior-
al descriptions or in bottom-level activ-
ities. To deal with large-scale pools of
data, such as databases or knowledge-
bases, we would have to use a separate
data-modeling medium, such as a suit-
ably adapted version of Chen’s entity-
relationship approach.3#'2 The result-
ing descriptions would then be associated
with the data stores.

Incorporating data-modeling tech-
niquesinto the present framework could
serve as an excellent melting pot for
combining ideas from the world of data-
intensive systems with ones from the
world of reactive systems.

Strata of conceptual models. Brooks
states that descriptions of software that
abstract away its complexity often also
abstract away its essence — the com-
plexity itself being part of the essence.
Obviously, he is right. Indeed, it is im-
portant to use the vanilla approach in a
way that does not hide the system’s
essential complexity. Proper use actual-
ly enables harnessing and taming that
complexity by allowing the designer to
capture the system’s inherent concep-
tual structure in a natural way.

Regardless of how well devised it
might be, one conceptual model might
not be enough to take us from ourinitial
thoughts to a final working implemen-
tation. While it is possible to construct a

12

Using appropriate
visual formalisms
can have a
spectacular effect
on engineers and
programimers.

good functional hierarchy, interweaved
with its controlling activities, the map-
ping we specify between that model and
the physical model often turns out to be
naive, rarely constituting a satisfactory
full-fledged implementation. Conse-
quently, we must often add a new di-
mension to the modeling process by re-
peatedly refining the conceptual model.

This can be done by preparing a new
tier, or stratum, of functional hierar-
chies, one for each of the subsystems
appearing in the structural view, and
providing alower-level mapping between
these refined models and the subsystems
themselves. This process may continue
downward until a satisfactory level of
design is reached.

These ideas are quite in line with
Brooks’ sympathetic discussion of top-
down design. Of course, two crucial parts
of this process concern the methodolog-
ical issue of providing guidelines and
heuristics for actually carrying it out,
and the technical issue of showing con-
sistency between the resulting strata.
These are briefly discussed below.

Visual representation. Most issues of
representation have beenskirted above;
indeed, some justification could be found
in giving them second-class status. How-
ever, I believe that convenient media
for representing the concepts and struc-
tures inherent in a model impact the
very thinking that goes into construct-
ing that model. In the one-person pro-
gramming world, the availability of pro-
gramming languages such as Pascal and
C and even their precursors like For-
tran, Algol, and PL/I has had a profound
influence on a programmer’s ability to
conceive of good algorithms. Moreover,
good representation is also instrumen-
tal in communicating those algorithms
and their underlying ideas to others.

I agree with Brooks that flowcharts

have become pitiful visualizations of
programs,and even with amore general
claim concerning the hopelessness of
finding a general-purpose visual pro-
gramming language that could replace
conventional languages. But this opin-
ion comes to a screeching halt where
complex reactive systems are con-
cerned.

Much of the conceptual construct
underlying a complex reactive system is
inherently topological in nature, and
this is reflected in the vanilla approach
outlined above. Hierarchies, with or
without overlapping, and multilevel re-
lationships, whether they concern struc-
ture, function, or behavior, can be cap-
tured naturally by simple, rigorous, and
well-known notions from set theory and
topology; these, in turn, have natural
counterparts as spatial/graphical repre-
sentations.

As argued elsewhere,'? this fact gives
rise to visual formalisms, in which en-
capsulation, connectedness, and adja-
cency play central roles, and lesser fea-
tures, such as size, shape, and color, can
alsobe exploited. Furthermore, all these
graphical features come complete with
rigorous mathematical semantics.

Visual formalisms have indeed been
proposed for representing the various
aspects of vanilla models.**!*> From
several years of following their applica-
tion in large real-world projects, I have
become convinced that using appropri-
ate visual formalisms can have a spec-
tacular effect on engineers and program-
mers. (An example of thisis the avionics
system for the state-of-the-art Lavi fight-
er at Israel Aircraft Industries, where
the visual language of statecharts'! was
used for specification. Although these
experiences are too recent to have yield-
ed statistics, some comparisons and eval-
uations have already appeared.)

Moreover, this effect is not limited to
mere accidental issues; the quality and
expedition of their very thinking was
found to be improved. Successful sys-
tem development in the future will re-
volve around visual representations. We
will first conceptualize, using the “prop-
er” entities and relationships, and then
formulate and reformulate our concep-
tions as a series of increasingly more
comprehensive models represented in
an appropriate combination of visual
languages. A combination it must be,
since system models have several fac-
ets, each of which conjures up different
kinds of mental images.

COMPUTER

Of course, the job is far from com-
plete. Some aspects of the modeling
process have not been as forthcoming
as others in lending themselves to good
visualization. Algorithmic operations on
variables and data structures, for exam-
ple, will probably remain textual. In
addition, as Brooks aptly observes,some
of theless obvious connections between
the various parts of system models are
not easily visualized. However, for a
number of years, we have been doing
far, far better than the “several, general
directed graphs, superimposed one upon
another” Brooks’ describes. The graph-
ical languages currently used are still
two-dimensional, whereas some of the
concepts could definitely do with high-
er dimensional visualization. This may
still happen. In fact, realistic motion-
based 3D techniques are rapidly com-
ing into reach. A new aspect of visual
languages that will have to be addressed
is computerized support for the “nice
looking” layout of diagrams. This is a
difficult and challenging problem in
which only marginal progress has been
made.

Regarding hardware, our scopes are
currently of limited scope, to use Brooks’
captivating phrase, making the extent
to which we can comfortably display
very large visual models dependent on
the availability of dramatically improved
graphical hardware. Rather than taking
this as a reason to abandon visual ap-
proaches, we should find it enlighten-
ing. For once, concepts and software
ideas are ahead, waiting for the devel-
opment of matching hardware. If the
past record of hardware improvements
isany measure, these developments will
not be long in coming.

It is our duty to forge ahead to turn
system modeling into a predominantly
visual and graphical process. I believe
this is one of the most promising trends
in our field.

Methods and guidelines. In addition
to thinking with the “right” concepts
and representing the resulting thoughts
in appropriate programming languag-
es,aprogrammer can call on a variety of
well-established methods, guidelines,
and techniques to help formulate a good
solution to a one-person algorithmic
problem. These constitute alarge reser-
voir of knowledge accumulated over
years, embodying the experience and
expertise of generations of program-
mers, algorithm designers, and comput-

January 1992

It is our duty to
forge ahead to turn
system modeling into
a predominantly
visual and graphical
process.

erscientists. As might be expected, there
has always been a great deal of cross-
fertilization between the world of meth-
ods and techniques and the world of
concepts and languages.

The story for complex reactive sys-
tems is no different, except thatitisata
far more embryonic stage. Despite the
proliferation of so-called methodolo-
gies, it is still too early to see a wide-
ranging and well-understood collection
of guidelines and techniques for the
step-by-step process of system develop-
ment.

Many of the proposed methodologies
are not methodologies at all in that they
do not contain recommendations about
how to actually do things. For that mat-
ter, the vanilla approach described here
is not a methodology either. However,
what is worse is that many do prescribe
recipes, but these often suffer from be-
ing too restrictive, hard to apply, or
downright wrong.

One of the most unfortunate trends
has been in presenting a method as ex-
clusive, that is, preaching about its be-
ing the step-by-step way to develop en-
tire systems. This can be compared in
naiveté to someone advocating divide-
and-conquer or branch-and-bound as
the method to write programs.

The availability of a solid, general-
purpose framework within which one
can conceptualize, capture, and repre-
sent a system model seems to be far
more important right now. All-encom-
passing recipes for how to get the work
done simply do not exist; guidelines and
techniques that work in special cases do
exist, and more will surface in time.
Obviously, they will be influenced by
the choice of the framework and will, in
turn, influence that framework and its
evolution. And they will draw heavily
on our experience in wielding the no-
tions, concepts, languages, and tools.

Among the guidelines suggested are
top-down and bottom-up approaches,
which prescribe the raw order of things,
as well as approaches related to the
nature of the elements that are to drive
the process, such as state-driven, func-
tion-driven, or data-driven techniques.

In principle, all of these can be fol-
lowed quite smoothly within the vanilla
framework, though constructing really
good models, as well as choosing which
of these guidelines to use for what sys-
tems, will obviously remain something
of an art.

Some methods are further removed
from the vanilla framework, since they
advocate a somewhat different set of
basic concepts. One of the better-known
examples is the object-oriented ap-
proach, in which objects and their capa-
bilities take precedence over activities
and states. While it is possible to follow
this approach within the confines of our
basic framework, it’s perhaps not as
smooth-going as one would like. This is
an excellent example of a more special-
ized, or exotic, flavor, which is already
resulting in correspondingly specialized
advances in languages and tools.

In addition to guidelines for the over-
all process of development, a number of
heuristics have been addressed at the
nontrivial process of mapping the con-
ceptual model onto the physical one.
They are often based on taking subtle
advantage of the cohesion and coupling
of activities.*’

For pure software systems, this task is
usually less perplexing, since the struc-
ture of the final product can be taken to
correspond reasonably well with that of
the conceptual model. However, em-
bedded systems are different. In them,
the physical breakup into components
and subcomponents might be acutely
orthogonal to the conceptual structure.
These cases require more iterations in
the design process, giving rise to several
strata of physical and conceptual mod-
els, as discussed above. The importance
of such heuristics stems from such cas-
es. (These heuristics could well find their
way into useful expert-system support
tools, as envisioned by Brooks.)

Designers would do well to master all
of these techniques, guidelines, and heu-
ristics, and to use them to devise models
in a manner that they deem most natu-
ral. In time, I’m certain we will outgrow
the deep convictions we have cultivated
around the various methodologies. We
will stop trying to get everyone to use

13

Tools for model execution

Although model execution is not a new idea, its vast potential has not yet been
fully exploited. All the executability features discussed in the text-are available in
the Statemate tool,s the first release of which was developed between 1984 and
1987. It is currently being used mainly in the areas of avionics, telecommunica-

tion, and process control.

A number of additional tools support some of these features. A couple of them
are commercially available, and others are still in research and development stag-
es. Here are a few additional publications deseribing techniques and tools for ex-

ecuting models:

Diaz-Gonzalez, J., and J. Urban, “Prototyping Conceptual Models of Real-Time
Systems: A Visual Perspective,” Proc. 22nd Hawaii int’] Conf. System Sciences,
IEEE CS Press, Los Alamitos, Calif., Order No. 1912, 1989, pp. 358-367.

Jensen, K., “Computer Tools for Construction, Modification, and Analysis of
Petri Nets,” Advances in Petri Nets, Part Il, W. Brauer, W. Reisig, and G. Ro-
zenberg, eds., Lecture Notes in Computer Science, -Vol. 255, Springer-Verlag,

New York, 1987, pp. 4-19.

Pulli, P. J., “Pattern-Directed Real-Time Execution of SA/RT Specifications,”
Proc. Euromicro Workshop on Real-Time, IEEE CS Press, Los Alamitos, Calif.,

Order No. 1956, 1989, pp. 3-9.

Wang, Y., “A Distributed Specification Model and its Prototyping,” IEEE Trans.
Software Eng., Vol. 14, No. 8, Aug. 1988, pp. 1,090-1,097.

Zave, P., and W. Schell, “Salient Features of an Executable Specification Lan-
guage and lts Environment,” IEEE Trans. Software Eng., Vol. 12, No.2, Feb.

1986, pp. 312-325.

them exclusively for all systems, and
they will reduce to their proper dimen-
sions — taking their place side by side in
our bag of tricks, just as conventional
algorithmic methods have for one-per-
son programs.

Analyzing the model

The preceding sections have repeat-
edly invoked the analogy between con-
ventional algorithms and models of com-
plex systems. Whenit comes tosemantics
and analysis, this analogy takes on a
particularly interesting twist.

Although the importance of testing
and analyzing one-person algorithms has
always been acknowledged, the world
of complex systems has long suffered
from something of an indifference to
such needs. By analogy, the situation
was as if we were asked to solve one-
person algorithmic problems without
the possibility of running programs, and
hence without being able to test and
debug them at all.

14

Indeed, many past approaches to sys-
tem development provided no means
for capturing behavior, being centered
instead on the functional aspects and
dataflow. The approaches that did pro-
vide such means were informal, lacking
the rigorous semantics necessary for even
beginning to analyze the dynamics.
Hence, it was impossible to predict in
early stages how the system would be-
have if constructed according to the
model.

Not until actual code was written —
usually at a very late stage in the project
by people other than those responsible
for and capable of developing the “con-
ceptual construct” and at much greater
expense — could one expect to get reli-
able answers to “what if?” questions.
This, of course, has had a deplorable
effect on the expedition and quality of
development efforts for large and com-
plex systems.

As a consequence, most computer-
ized tools that flourished around such
methods (computer-aided software en-
gineering — CASE — tools, as they are

often called) concentrated on provid-
ing mere graphic-editing capabilities,
sometimes accompanied by document
generation, version control, and project
management facilities. Their propo-
nents heralded the ability of these tools
to check model “consistency and com-
pleteness,” which is really just a grand
form of syntax checking.

To use my analogy again, it is like
making sure, in a conventional pro-
gram, that the begins and ends match,
that procedure calls have the right num-
ber and types of parameters, and that
all declared variables are indeed used.
In the complex system arena, such
checking includes the consistency of
level-labeling schemes and of inputs
and outputs within the hierarchies, the
nonredundancy of flow elements, and
so on; it is analogous to the checking
carried outin one-person programming
environments on-the-fly or in simple
precompilation stages.

Since designing a complex reactive
system is so much more massive and
intricate an undertaking than writing a
conventional one-person program, test-
ing for consistency and completeness
in system modeling is far more impor-
tant than syntax checking in programs.
Nevertheless, it remains a mere test of
the syntactic integrity of the model and
has very little to do with that model’s
conceptual and logical aspects.

Checking that a model is consistent
and complete cannot prevent logical
errors that cause a missile to fire un-
intentionally or a stock market system
to run amok — exactly the kinds of
mishaps that are at the heart of our
problem. For this, we need the ability
to carry out real testing and analysis.

You may feel the following discus-
sion is unrealistically futuristic. Not so.
All the possibilities we mention have
been implemented in a computerized
tool that supports the vanilla approach
and that is being used in the develop-
ment of real systems.* Several other
tools also support some of these possi-
bilities (see the “Tools for model exe-
cution” sidebar).

None of the implementations is per-
fect; each requires improvements and
extensions. However, they do corrobo-
rate the feasibility of the ideas sum-
marized below. In fact, since many of
these ideas are standard practice in
the world of conventional programming,
the tools appear to be the first complex-
system analogs of useful general-pur-

COMPUTER

pose programming en-
vironments.

Model execution.
One of the most inter-
esting notions to come
out of recent work in
systems engineering is
that of executable spec-
ifications or, to fit in
better with the termi-
nology used here, exe-
cutable models. Exe-
cuting a model is
analogous to running
a program directly,
with the aid of an in-
terpreter. Unfortu-

execution, the user
playstherole of all parts

of the model that are

external to the portion

being executed, even if

© 1991, D. Harel

those parts will eventu-
ally be specified and
thus become internal.
Again, from several
years of seeing such ex-
ecution capabilities
used, mainly in large
aerospace and electron-
ic industries, I have be-
come convinced of their
value (again, no statis-
tics are yet available to
quantify this impres-
sion, although a couple

nately, the term has
been erroneously
equated with the ani-
mation of diagrams
only. However, execut-
abilityisin fact many-sided and far more
significant.

A prerequisite to executing complex
system models is the availability of a
formal semantics for those models —
most notably, for the medium that cap-
tures the behavioral view. Thus, while
the adjective “visual” in the term “visu-
al formalism”'? was justified earlier on
grounds pertaining to model represen-
tation, the word “formalism” is justified
now on grounds pertaining to model
analysis.

The core of model execution is the
ability to carry out a single step of the
system’s dynamic operation, with all
consequences taken into account. Dur-
ing a step, the environment can gener-
ate external events, change the truth
values of conditions, and update vari-
ables and other data elements. Such
changes then affect the status of the
system; they trigger state changes in the
controllers, activate and deactivate ac-
tivities, modify conditions and variables,
andso on. In turn, each of these changes
can cause many others, often yielding
intricate chain reactions.

A semantics for the model must con-
tain sufficient information to capture
these ramifications precisely. Given the
current status and the changes made by
the environment, calculating the effect
of a step usually involves complicated
algorithmic procedures, which are de-
rived from, and reflect, that semantics.

Interactive and batch execution. The
simplest way to execute, or “run,” the

January 1992

Model execution.

model using a computerized tool is in a
step-by-step interactive fashion. Ateach
step, the user emulates the system’s
environment by generating events and
changing values. The tool, in turn, re-
sponds by transforming the system into
the new resulting status. If the model is
represented visually, the change in sta-
tus will also be reflected visually, say, by
changes in color or emphasis in the dia-
grams.

Once we have the basic ability to
execute a step, our appetite grows. We
might now want to see the model exe-
cuting noninteractively. To check, for
example, that a telephone call connects
when it should, we can prepare the rel-
evant sequence of events and signals in
a batch file, set up the model to start in
the initial status, and ask our tool to
execute steps iteratively, reading in the
changes from the file. The graphic feed-
back from such a batch execution be-
comes an (often quite appealing) ani-
mation of the diagrams.

By executing scenarios that reflect
the way we expect our system to be-
have, we are able to verify that it will
indeed do so — long before final imple-
mentation. If we find that the system’s
response is not as expected, we may go
back to the model, change it, and run
the same scenario again. This is analo-
gous to single-step — or batch — de-
bugging of conventional programs.

It should be emphasized that scenar-
ios can be run at any time in the devel-
opment effort, as long as the portion of
interest is syntactically legal. During an

of preliminary case

studies have appeared).

These execution capa-

bilities appear to intro-
duce an entirely new and powerful di-
mension into the task of verifying and
debugging system models.

I have seen model executions uncov-
ering hitherto unknown patterns of be-
havior, when the members of the devel-
opment team thought they had covered
everything. As a result, these people
were able to discuss deep behavioral
issues that would otherwise have been
swept under a rug of enormous unread-
able specification documents.

I have seen engineers use executabil-
ity to tackle crucial problems and, very
early in the project, correct subtle con-
ceptual errors — ones that could other-
wise go undiscussed or undetected until
it was too late. And typically, all these
phenomena start to take place as soon
as the first executions are run.

Customer representatives are often
involved in these stages, which further
supports what Brooks and others have
urged: extensive prototyping and simu-
lation of the system early on with the
client.

Programmed execution. Our appe-
tite now becomes even greater. We now
might ask ourselves: If the tool can ex-
ecute the modelin detail, reading events
in from a file, why should we be satisfied
with merely witnessing the run in action
andinspecting the final status? We would
like to be able to incorporate break-
points, causing the execution to sus-
pend and the tool to take certain actions
when particular situations come up.
These actions can range from tempo-

15

rarily entering interactive mode (in
order to monitor careful step-by-step
progress) to executing a piece of ready-
made code that describes a bottom-
level activity.

In fact, we need not restrict our-
selves to running self-devised scenari-
os. We might want to see the model
executing under circumstances that we
do not care to specify in detail. We
might like to see its performance un-
der random conditions and in both
typical and less-than-typical situations.
Such a capability gets to the heart of
the need for an executable model: to
minimize the unpredictable in the de-
velopment of complex systems.

This more powerful notion of in-
specting a model is achieved by the
idea of programming executions, using
a special metalanguage supported by
the tool. Programs in this language
(which might be appropriately termed
an execution control language) can be
setup to look out for predefined break-
points and accumulate information
regarding the system’s progress as it
takes place.

As a simple example, in a typical
flight of an aircraft we are specifying,
we might want to know how many
times the radar loses a locked-on tar-
get. Since it might be difficult for the
engineer to put together a typical flight
scenario, we can tap the power of our
tool by instructing it to run many typ-
ical scenarios, using the accumulated
results to calculate average-case infor-
mation.

The tool follows typical scenarios by
generating random numbers to select
new events according to predefined
probability distributions. The statis-
tics are then gathered using appropri-
ate breakpoints and simple arithmeti-
cal operations. The ideas behind these
techniques are, of course, well known.
However, the point is to extend them
to conceptual models of complex sys-
tems, long before the costly final-im-
plementation stages.

In a similar vein, we can use pro-
grammed executions to apply other,
more powerful kinds of dynamic tests
to system models. For example, we
might set up an execution control pro-
gram to carry out performance analy-
sis. If we want to check whether an
operating system we are modeling will
ever require more main memory than
some maximum allowed value, we can
associate with the relevant activities in

16

We can use

programmed executions
to apply other, more
powerful kinds of
dynamic tests to system
models.

the functional view values that repre-
sent our knowledge about their memo-
ry consumption. We can then program
the tool to run many typical scenarios,
calculating the maximum memory con-
sumption of all activities that are active
simultaneously.

Despite its being applied to a system
model, and not to a final implementa-
tion, this approach to analysis is far
more informative than the extraction of
worst-case estimates from simple graphs
of process dependencies. The model
being analyzed will (hopefully) be real-
istic and detailed, and executing it re-
flects precisely what would have hap-
pened had we run the real systeminstead.

If our analysis shows that the memory
limit might indeed be exceeded, the tool
can support that prediction by supply-
ing the actual sequence of events that
would cause it. Clearly, by replacing
memory values with time information,
similarly meaningful timing analysis can
be carried out as well.

In general, then, carefully pro-
grammed executions can be used to in-
spect and debug the system model un-
der a wide range of test data to emulate
both the environment and the as-yet-
unspecified parts of the system and to
analyze the model for performance and
efficiency.

Exhaustive executions. When execut-
ing the model, we might detect such
unpleasant anomalies as deadlocks or
behavioral ambiguities (nondetermin-
ism). However, finding and eliminating
these in the cases that we happen to
encounter does not ensure they will
never occur in the lifetime of the sys-
tem. It would be extremely useful to be
able to run through all possible scenar-
ios in search of such situations, by gen-
erating all possible external events and

all changes in the values of conditions
and variables.

We might also be interested in reach-
ability tests, which would determine
whether — when started in some given
initial situation — the system can ever
reach a situation in which some speci-
fied condition becomes true. This con-
dition can be made to reflect desired or
undesired situations. Moreover, we
could imagine the test’s being set up to
report on the first scenario it finds that
leads to the specified condition, or to
report on all possible ones, producing
the details of the scenarios themselves.
We thus arrive at the idea of exhaustive
executions.

Are such tests realistic? Could we
subject the model to an exhaustive
reachability test, for example, after
which we will know for sure whether
there is any possibility of its occurring
under any possible circumstances? The
answer, in principle, is yes, but with
serious reservations. The number of
possibilities that might have to be con-
sidered in an exhaustive execution can
easily become incredibly large, even if
we ensure that itis finite by limiting the
possible values of the variables.

To get a feel for the sizes involved, a
behavioral model that contains about
40 concurrent components, each with
about 10 states, has more state config-
urations and, hence, might have more
possible scenarios than the number of
elementary particles in the entire uni-
verse. There can never be a language,
method, or tool with which one can, in
general, consider all of these in any
reasonable amount of time.

This doesn’t mean, however, thatsuch
tests are a bad idea.

First, the above numbers denote
worst-case asymptotic estimates; a real
system might very well have far fewer
scenarios that can actually happen, and
a careful process of considering only
those that are feasible will take far less
time than the worst-case estimate.

In fact, just such a reachability test
was recently applied to a model of the
firing mechanism of a certain, already
deployed, ballistic missile system. (The
Statemate system® was used for this.
The main part of the underlying model
consisted of a statechart! with about
80 states. However, since these includ-
ed parallel state components, the real
number of states was much larger.) In
less than three hours on a standard
workstation, the test terminated, in the

COMPUTER

process discovering a new sequence of
events, unknown to the design team,
that leads to the firing of the missile!

Second, exhaustive tests can be run
onsmall, critical, and well-isolated parts
of the model. We can instruct the tool to
ignore some of the external events or to
avoid simulating the details of certain
activities. Clearly, this can cause it to
overlook crucial situations, but the ad-
vantage is that the set of scenarios it
considers is greatly reduced. To maxi-
mize the test’s effectiveness, such limit-
ing constraints should be prepared very
carefully, using as much knowledge of
the modeled system as possible. This is
another place where expert systems
might come in handy.

Third, even if exhaustive tests cannot
always be completed in reasonable
amounts of time, it would be wise to
have them run in the background, per-
haps at night or on weekends, for as
long as we can afford. There is nothing
wrong with routinely submitting large
system models to powerful supercom-
puters for exhaustive testing, even non-
exhaustively. Since the tool can be set
up to report on phenomena as they are
discovered, the more time we observe
such tests running without surprises the
more confidence we have in the integri-
ty of our model.

Watchdogs and temporal verification.
Often, we are interested in establishing
properties of the model that are of a
global nature but are more involved
thanreachability or freedom from dead-
lock. Suppose we want to make sure
that a certain party in a communication
protocol never sends two consecutive
messages unless a special item, say, an
acknowledgment, is sent in the interim.

Although seemingly more complicat-
ed, this query can be cast in the form of
areachability test in the following way.
First, construct a small special-purpose
“piece” of behavioral specification that
iscarefully set up to enter a special state
if and when the offending situation oc-
curs. Next, attach this watchdog, as it is
called, to the original model as a con-
current behavioral component and run
areachability test on the extended model
to find out whether the special state can
ever be entered. Since the watchdog
runs in parallel with the rest of the mod-
el, the effect will be as desired.

Watchdogs can be used to verify the
model against a wide variety of proper-
ties. Temporal logic,® one of the most

January 1992

© 1991, D. Harel

Code generated from model.

useful and well-known media for speci-
fying global constraints on the behavior
of a system, nicely complements model-
ing approaches that specify behavior in
a more local, operational fashion. Un-
der certain technical conditions, any
temporal logic formula can be system-
atically translated into a watchdog, re-
ducing the problem of verifying the com-
plicated formula to that of establishing
amuch simpler property, such as reach-
ability. The watchdog is then attached
to the high-level controlling activity of
the original model, resulting in a modi-
fied model, and an appropriate exhaus-
tive test is run.

Actually, such verification need not
be based solely on exhaustive execu-
tions. Researchinto the theory and tech-
nology of automatic verification of very
large (but finite-state) systems against
properties in temporal logic is already
showing promising results. The tech-
niques being developed in this area are
far more subtle and efficient than brute-
force exhaustive executions, and I be-
lieve that they will eventually find their
way into system analysis tools. This di-
rection of work might very well bring
true system verification into the living
room, so to speak.

Code generation. Even in its most
advanced forms, executability is analo-
gous to running conventional programs
using interpretation. Complex systems
are also amenable to the analog of com-
pilation — that is, translating a model
into runnable code in a lower level lan-
guage. We call this ability code genera-
tion, although the term is often used to
denote the more humble ability to re-

cast an unadorned functional descrip-
tion as a template of code that contains
empty-body procedures for the control-
lers and the bottom-level activities.
However, since the behavioral view does
not exist (or is not covered) in such
cases, the resulting code is but a scaffold
that has to be enriched by handwritten
code for the most crucial parts — nota-
bly, those that depict the dynamics. It is
thus like an automobile without an en-
gine. The notion we have in mind here is
far stronger. (Indeed, new terms, such
as codifier and codification, might be
more appropriate than code generator
and code generation.)

Using the vanilla approach terminol-
ogy discussed earlier, we are talking
about the translation of an entire con-
ceptual model, that is, an activity hier-
archy with all of its add-ons, including
the controlling statecharts, into a pro-
gramming language such as C, Modula
2, or Ada.

If the model contains bottom-level
activities that were left unspecified, but
have library routines or specially pre-
pared code supplied by the user, this
code can be linked to the code genera-
tor’s output, thus completing the pic-
ture. Since the behavioral aspects are
an integral part of the conceptual model,
they too are included in the translation.
Hence, the resulting code can be run as is
and, in terms of its dynamic semantics, is
equivalent to the model itself. Needless
to say, as in model execution, code gen-
eration can be carried out on any syntac-
tically legal portion of the model and at
any stage of its development.

Generated code is sometimesreferred
to as prototype code, since it reflects
only the design decisions made in the
process of preparing the conceptual
model, and not decisions driven by im-
plementation concerns. In many real-
time applications, this code is not as
efficient as the required real-time code.
Nevertheless, it runs much faster than
executions of the raw model itself, just
as compiled code usually runs faster
than an interpreted program.

Using generated code. One of the
main uses of code-generator outputisin
observing the system performing under
close-to-real-world circumstances. For
example, the code can be ported to, and
executed in, the actual target environ-
ment or, as is often the case in earlier
stages, in a simulated version of the
target environment.

17

The code can be linked to “soft” pan-
els — graphical mock-ups of control
boards, complete with images of display
screens, switches, dials, and gauges —
that represent the actual user interface
of the final system. These panels appear
on the screen and can be manipulated
with mouse and keyboard.

In the past few years, a number of
companies have used this approach in
design reviews involving customers and
contractors, and it has proved to be
extremely helpful —much more so than
the typical documentation that accom-
panies such reviews.

It’s important to point out that these
system interface panels are not driven
by hastily written code prepared espe-
cially for prototype purposes, but by
code that was generated automatically
from a model that is typically thorough-
ly tested and analyzed before being sub-
jected to code generation. Moreover,
when parts of the real target environ-
ment are available, they too can be linked
to the code, and the runs become even
more realistic.

Code generation is thus to be used for
goals that go beyond the development
team, in that code-driven mock-ups can
be used as part of the standard commu-
nication between customer and contrac-
tor or contractor and subcontractor. It
is not unreasonable that such a running
version of the system model be a re-
quired deliverable in certain develop-
ment stages.

A good code-generation facility would
also have a debugging mechanism, with
which the user can trace the executing
parts of the code back up to the system
model. Breakpoints can be inserted to
stop the run when specified events oc-
cur, at which point the model’s status
can be examined and elements can be
modified on-the-fly before resuming the
run.

If substantial problems arise, chang-
es can be made in the original model,
which is then recompiled downinto code
and rerun. As in executions, trace files
can be requested, recording crucial in-
formation for future inspection. Carry-
ing the analogy between compilation
and code generation a step further, this
ability is tantamount to source-level
debugging.

In addition to compiling, or codify-
ing, the model itself, we can automati-
cally produce code from specially pre-
pared segments of behavior, such as
watchdogs or test suites that are not

18

As more and more
code becomes final
production code,
the entire system
comes closer to its
final form.

part of the model but are used to exe-
cute and analyze it. For these, of course,
the code generator output is actually
final code.

An interesting variation calls for re-
placing high-level programming lan-
guages as the target medium for gener-
ated code by hardware description
languages. A particular example is
VHDL (which stands for VHSIC
hardware description language, with
VHSIC the abbreviation for very high-
speed integrated circuit). In this way,
hardware designers can also benefit
from the virtues of the modeling and
analysis techniques discussed above, and
then translate their models into VHDL
code, which can be subjected to silicon
compilation or other appropriate pro-
cedures.

Verifying consistency between lev-
els. Recall the process of preparing tiers,
or strata, of conceptual models accord-
ing to the physical model of the system.
How can we establish the consistency of
one level with the next?

There are a number of ways in which
model-analysis techniques can help. The
basic idea is to redirect the efforts from
the task of inspecting and debugging a
single model to the task of comparing
two models. This applies to all manner
of analysis and verification: interactive,
programmed, and exhaustive execution;
watchdogs and temporal verification;
and code generation.

For example, we may execute the con-
ceptual model prepared for asubsystem
under the same conditions used to exe-
cute the original model of the entire
system, and compare the results. One
way to do this involves preparing sce-
narios for executing the new model di-
rectly from trace files of executions run
on the original model. Clearly, this is

not as simple as it sounds, and much
research on this topic is still needed.

As far as code generation goes, we
can often replace parts of the code gen-
erated from the original model by code
generated from the newly designed sub-
system models. If the final system is to
be implemented in software, this has
the effect of gradually bringing the orig-
inal prototype code down toward a real
implementation.

As subsystems are remodeled, their
generated code is incorporated into the
code that was generated one level high-
er. As more and more of the code be-
comes final production code, the entire
system comes closer to its final form.

It is not out of the question that this
process will also become amenable to
computerization. We can envision a user
making restructuring decisions in the
design stages (perhaps aided by an ex-
pert system) and the tool taking over
from there, reorganizing the generated
code in new, more efficient ways that
reflect those decisions.

Combined with optimization proce-
dures, which are badly needed and will
hopefully be developed in the future,
code generation has a chance to go far
beyond prototyping, further justifying
its role as the true complex system ana-
log of conventional compilation.

he vanilla framework for system

I modeling outlined above is far

from being universally accept-

ed. Many of its facets are rooted in well-

established and familiar ideas, but oth-

ers are more recent and immature and
require further work and experience.

On some issues, there is little agree-
ment among researchers and practi-
tioners, such as how to best approach
the specification of behavior. I believe
that the general framework is a good
one and that there are also adequate
proposals for behavioral specification.
However, even the overall mold could
easily turn out to be inadequate.

If it does not become the accepted
analog of good old vanilla program-
ming, then some other approach will.
The precise form the winning effort takes
on will be secondary, though I am fully
convinced that reactive behavior will be
one of its most crucial and delicate com-
ponents, rigorous semantics included,
and that visuality will play center stage.
From this basic framework will evolve
more specialized and exotic ones, for

COMPUTER

which appropriate modeling languages
will be designed and implemented and
methods and guidelines conceived and
mastered.

Things are far clearer in the analysis
realm, where most of the abilities we
have discussed are, to some extent, in-
dependent of the idiosyncrasies of the
particular modeling approach. I believe
that system development tools that lack
powerful execution and code-genera-
tion capabilities will all but disappear.

Whichever approach people ultimate-
ly use to conceptualize and model their
systems, the ability to thoroughly exe-
cute the resulting models and to com-
pile them down into conventional high-
level code will become indispensable.
In a way, this too is vanilla. I believe
that in time more exotic kinds of exe-
cutability features will emerge, such as
ones tailored to carry out timing and
performance analysis, gather statistics,
or compare the behavioral aspects of
separate models.

A number of research directions
present themselves, and in some there
is already a promising body of work.
Among the most important are

The current situation
and prospects for
significant improvement
indicate that we are at
the start of a new and
exciting era.

(1) improving the techniques for gen-
erating high-quality code from
conceptual models, and provid-
ing (semi)automated help to make
design decisions in the process,
and

(2) enabling truly useful computer-
ized verification of conceptual
models against global constraints.

One of the crucial ingredients for suc-
cess in these areas is extensive cooper-
ation and collaboration of researchers

insoftware and systems engineering with
those in compilers, optimization, and
heuristics for item (1) and in logic, se-
mantics, and verification for item (2).

The current situation and the pros-
pects for significant improvement indi-
cate that we are at the start of anew and
exciting era. il

Acknowledgments

Discussions over the years with Amir Pnue-
li, Michal Politi, Rivi Sherman, and Moshe
Cohen were extremely beneficial in helping
me form the opinions voiced in this article. I
am indebted to Derek J. Hatley, C.A.R.
Hoare, Daniel Jackson, Ray Moritz, David
L. Parnas, and the anonymous referees for
commenting on a preliminary version of this
material. This research was supported in part
by grants from the Gutwirth Foundation and
the Yeda Foundation for Applied Research.

References

1. F.P. Brooks, Jr., “No Silver Bullet: Es-
sence and Accidents of Software Engi-
neering,” Computer, Vol. 20, No. 4, Apr.

1987, pp. 10-19. Also appeared in Infor-
mation Processing 86, H.-J. Kugler, ed.,
Elsevier Science Publishers B.V., North-
Holland, 1986, pp. 1,069-1,076.

2. D.L. Parnas, “Software Aspects of Stra-
tegic Defense Systems,” Comm. ACM,
Vol.28,No.12,1985,1,326-1,335. Alsoin
Am. Scientist, Vol. 73, No. 5, 1985, pp.
432-440.

3. P. Ward and S. Mellor, Structured Devel-
opment for Real-Time Systems, Vols. 1-3,
Yourdon Press, New York, 1985.

4. D.J. Hatley and 1. Pirbhai, Strategies for
Real-Time System Specification, Dorset
House, New York, 1987.

5. D. Harel et al., “Statemate: A Working

Environment for the Development of
Complex Reactive Systems,” IEEE Trans.
Software Eng., Vol. 16, No. 4, Apr. 1990,
pp. 403-414. Preliminary version in Proc.
10th Int’l Conf. Software Eng., IEEE CS
Press, Los Alamitos, Calif., Order No.
849 (microfiche only), 1988, pp. 396-406.

. A. Pnueli, “Applications of Temporal

Logic to the Specification and Verifica-
tion of Reactive Systems: A Survey of
Current Trends,” Current Trends in Con-
currency, de Bakker et al., eds., Lecture
Notes in Computer Science, Vol. 224,
Springer-Verlag, Berlin, 1986, pp. 510-
584.

. D.L. Parnas, “On the Criteria to be Used

in Decomposing Systems,” Comm. ACM,
Vol. 15, No. 5, 1972, pp. 1,053-1,058.

8. T.DeMarco, Structured Analysis and Sys-
tem Specification, Yourdon Press, New
York, 1978.

9. L.L. Constantine and E. Yourdon, Struc-
tured Design, Prentice Hall, Englewood
Cliffs, N.J., 1979.

10. G. Berry and G. Gonthier, “The Esterel
Synchronous Programming Language:
Design, Semantics, Implementation,” to
appear in Science of Computer Program-
ming, North-Holland. Also in INRIA
Research Report 842, 1988.

11. D. Harel, “Statecharts: A Visual Formal-
ism for Complex Systems,” Science of
Computer Programming,North-Holland,
Vol. 8, No. 3, 1987, pp. 231-274. Prelimi-
nary version appeared as Tech. Report
(CS84-05, Weizmann Inst. of Science,
Rehovot, Israel, 1984.

12. D. Harel, “On Visual Formalisms,”
Comm. ACM, Vol. 31, No. 5, 1988, pp.
514-530.

David Harel is the William Sussman Profes-
sor of Mathematics at the Weizmann Insti-
tute of Science in Israel and chair of its
Department of Applied Mathematics and
Computer Science. He cofounded i-Logix,
Burlington, Massachusetts. Harel received a
best paper award at the 10th International
Conference on Software Engineeringin 1988,
and his book Algorithmics: The Spirit of
Computing (Addison-Wesley, 1987) was the
spring 1988 main selection of the Macmillan
Library of Science.

Harel received the BSc degree from Bar-
Ilan University in 1974, the MSc from Tel
Aviv University in 1976, and the PhD from
the Massachusetts Institute of Technology in
1978. He is a senior member of the IEEE,
and a member of the IEEE Computer Soci-
ety and the ACM.

Readers can contact Harel at the Depart-
ment of Applied Mathematics and Comput-
er Science, Weizmann Institute of Science,
Rehovot, Isracl. His e-mail address is
harel@wisdom.weizmann.ac.il.

