
The Rochester
Checkers Player
Multimodel Parallel Programming
for Animate Vision

Brian Marsh, Chris Brown, Thomas LeBlanc, Michael Scott, Tim Becker,

Cesar Quiroz, Prakash Das, and Jonas Karlsson

University of Rochester

Checkers, a complex
real-time application,

demonstrates the
advantages of

decomposing animate
vision systems by

function and
independently selecting

an appropriate '

parallel-programming
model for each

function.

v ision can be viewed as a passive, observational activity, or as one intimate
ly related to action (for example, manipulation, navigation). In passive
vision systems the camera providing the image input is immobile. In

active vision systems observer-controlled input sensors are used.' Active vision
results in much simpler and more robust vision algorithms, as outlined in Table 1.

Another dimension for classifying computer vision approaches is reconstruc-
tive versus animate. In the reconstructionist or general-purpose paradigm, the
vision task is to reconstruct physical scene parameters from image input, to
segment the image into meaningful parts, and ultimately to describe the visual
input in such a way that higher level systems can act on the descriptions to
accomplish general tasks. During the last decade, substantial progress in recon-
structionist vision has been made using both passive and active systems that
exploit physical and geometric constraints inherent in the imaging process.
However, reconstructionist vision appears to be nearing its limits without reach-
ing its goal.

An alternative to reconstructionist vision derives from the observation that
biological systems do not, in general, perform goal-free, consequence-free vi-
 ion.^ This observation suggests that vision may, of necessity, be a more interac-
tive, dynamic, and task-oriented process than is assumed in the reconstructionist
approach. Animate vision researchers, inspired by successful biological systems,
seek to develop practical, deployable vision systems by discovering and exploiting
principles that link perception and action. Animate systems use active vision and
are structured as vertically integrated skills or behaviors, rather than as visual
modules that try to reconstruct different aspects of the physical world.

Despite the computational simplifications of the animate vision paradigm, a
parallel implementation is necessary to achieve the required performance. Fortu-
nately, many of the tasks in an animate vision system are inherently parallel.
Inputs from multiple sensors can be processed in parallel. Low-level-vision
algorithms are intensely data parallel. Planning and strategy algorithms frequent-
ly search a large state space, which can be decomposed into smaller spaces that are

0018-9162/92/0200-0012$03.00 0 1992 IEEE COMPUTER

searched in parallel. Thus, finding par-
allelism in the application is easy. How-
ever, the type of parallelism we would
like to exploit varies among tasks in the
system, and no single model of parallel
computation is likely to suffice for all
tasks.

The difficulty arises because parallel-
ism can be applied in many ways, using
different programming constructs, lan-
guages, and runtime libraries to express
it. Each environment can be character-
ized by the process model it provides:
the abstraction for the expression and
control of parallelism. The process model
typically restricts the granularity of com-
putation that can be efficiently encap-
sulated within a process, the frequency
and type of synchronization, and the
form of communication between pro-
cesses. A typical animate vision appli-
cation will likely consist of many tasks.
Each task may require a different paral-
lel-programming model, and all must
cooperate to achieve the desired behav-
ior. These rnultirnodelprograms require
an underlying software system that sup-
ports several different models of paral-
lel computation simultaneously and also
allows tasks implemented in different
models to interact.

We believe that to exploit fully the
parallelism inherent in animate vision
systems, an integrated vision architec-
ture must support multiple models of
parallelism. To support this claim, we
first describe the hardware base of a
typical animate vision laboratory and
the software requirements of applica-
tions. We then briefly overview the
Psyche operating system, which we de-
signed to support multimodel program-
ming. Finally, we describe a complex
animate vision application, Checkers,
constructed as a multimodel program
under Psyche.

Architecture for
animate vision systems

Systems for animate vision have at
least three components: sensor input,
cognition, and action. The goal of our
work is to provide mechanisms for the
efficient integration of thesecomponents
at both the hardware andsoftware levels.

Hardware environment. Animate vi-
sion systems require movable, comput-
er-configurable sensors, sophisticated
effectors or mobile vehicles, and sever-

al high-bandwidth computing devices. * a special-purpose parallel proces-
Our hardware currently consists of six sor for high-bandwidth, low-level
key components: vision processing,

general-purpose MIMD (multiple
a binocular head containing mov- instruction, multiple data) parallel
able cameras for visual input, processors,
a robot arm that supports and moves a dextrous manipulator, and
the head, a Data Glove input device.

Table 1. Computational features of passive and active vision systems.

Passive Vision Active Vision

A fixed camera may not have
an object in view.

Static camera placement re-
sults in nonlinear, ill-posed
problems.

Stereo fusion is intractable.

A single fixed camera imposes
a single, possibly irrelevant,
coordinate system.

Fixed spatial resolution limits
imaging effectiveness.

Segmentation of static, single
images is a known intractable
problem.

Active vision can use physical search,
by navigation or manipulation, chang-
ing intrinsic or extrinsic camera
parameters.

Known, controlled camera movements
and active knowledge of camera place-
ment provide self-generated constraints
that simplify processing.

An actively verging system simplifies
stereo matching.

Active vision can generate and use exo-
centric coordinate frames, which yield
more robust quantitative and qualitative
algorithms and serve as a basis for spatial
memory.

Variable camera parameters can compen-
sate for range, provide varying depth of
field, and indirectly give information
about the physical world.

Gaze control helps segmentation: Active
vergence or object tracking can isolate
visual phenomena in a small volume of
space, simplifying grouping.

Tenets of animate vision

Vision does not function in isolation, but is instead part of a complex behav-
ioral system that interacts with the physical world.

General-purpose vision is a chimera. There are simply too many ways to
combine image information and too much to know about the world for vision to
construct a task-independent description.

Directed interaction with the physical world can permit information not readily
available from static imagery to be obtained efficiently.

Vision is dynamic. Fast vision processing implies that the world can serve as
its own database, with the system retrieving relevant information by directing
gaze or attention.

Vision is adaptive. The functional characteristics of the system may change
through interaction with the world.

February 1992

The head, shown in Fig-
ure 1, has two movable gray-
scale CCD (charge-coupled
device) television cameras
and a fixed color camera pro-
viding input to a MaxVideo
pipelined image-processing
system. One motor controls
the tilt angle of the two-eyed
platform. Separate motors
control each camera's pan
angle, providing indepen-
dent vergence control. The
controllers allow sophisticat-
edvelocity and position com-
mands and data readback.

The robot body is a Puma
761 six-degrees-of-freedom
arm with a 2-meter-radius
workspace and a top speed
of about 1 meter per second.
It is controlled by a dedicat-
ed Digital Equipment Corp.
LSI-11 computer imple-
menting the proprietary Val
execution monitor and pro-
gramming interface.

The MaxVideo system
consists of several indepen-

Figure 1. In this configuration, the robot head has one
large color camera and two small gray-scale cameras, a
single tilt motor, twin pan motors, and a passively compli- -

ant checker-pushing tool.

dent boards that can be connected to
achieve a wide range of frame-rate im-
age-analysis capabilities. The MaxVid-
eo boards are all register programma-
ble and can be controlled via a VMEbus.
The Zebra and Zed programming sys-
tems, developed at the University of
Rochester, make this hardware easily
and interactively programmable.

An important feature of our labora-
tory is the use of a shared-memory mul-
tiprocessor as the central computing
resource. Checkers, our animate vision
application, uses a 32-node BBN But-
terfly Plus parallel processor. Each node
contains a Motorola MC68020 proces-
sor with floating-point hardware and 4
Mbytes of memory. The Butterfly is a
shared-memory multiprocessor. Each
processor can directly access any mem-
ory in the system, although local mem-
ory is roughly 12 times faster to access
than nonlocal memory. The Butterfly
has a VMEbus connection that mounts
in the same card cage as the MaxVideo
and motor controller boards, replacing
aprocessor in the physical address space
of the multiprocessor. The Butterfly also
has a serial port on each board. We use
the port to communicate directly with
the Val robot controller software on its
dedicated LSI-11. A Sun 41330 worksta-
tion acts as a host for the system.

Several components have only recent-
ly been installed in our laboratory and
therefore were not used in Checkers.
These include an array of eight trans-
puters for real-time control, a 16-de-
grees-of-freedom Utah hand, andaData
Glove used to gather manipulation data
from humans and for teleoperation of
the Utah hand.

Software requirements. Animate vi-
sion systems are inherently parallel. The
hardware devices they use provide one
source of parallelism. The algorithms
used for device control and for combin-
ing perception and action provide an-
other source. The real issue is how to
harness the application's inherent par-
allelism without being overwhelmed by
the complexity of the resultingsoftware.
Our experiences with two DARPA
benchmarks for parallel computer vi-
sion3 illustrate the utility of multiple
parallel-programming environments for
implementing computer vision algo-
rithms, and the difficulty of successfully
integrating the components of an ani-
mate vision system.

The first benchmark contains a suite
of noninteracting routines for low- and
high-level-vision tasks. The low-level-
vision routines require manipulation of
two-dimensional pixel arrays using data

parallelism, conveniently ac-
complished using the SIMD
(single instruction, multiple
data) style of computation pro-
vided by the Uniform System
library from BBN.4 The func-
tions for high-level vision re-
quire coarser grain parallel-
ism and communication, for
which we used two parallel-
programming environments
developed at Rochester: a
message-passing library and a
parallel-programming lan-
guage (Lynxs). Each environ-
ment made programming a
particular application easier
in some way.

The second benchmarkcalls
for an integrated scene-de-
scribing system. This bench-
mark emphasizes integration
of several levels of image un-
derstanding to describe a scene
of polygons at various discrete
depths. It thus underscores the
usefulness of a unified ap-
proach to multimodel paral-
lelism. Unfortunately, we im-

plemented the parts of our scene-
describing system using several differ-
ent programmingmodels, and we lacked
the system support necessary to inte-
grate the various models. Processes in
our MIMD computations could not di-
rectly access the data structures pro-
duced by our SIMD computations, and
processes of different types could not
synchronize. Ironically, the very diver-
sity that facilitated our success in the
first benchmark prevented a successful
implementation of the second.

The DARPA benchmarks and our
other applications experience showed
the potential advantages of using a large-
scale MIMD multiprocessor as the con-
trolling architecture in integrated ani-
mate vision systems. Our experiences
also demonstrated the importance of
matching each application, or parts of a
large application, to an appropriate par-
allel-programming environment, and the
importance of integrating functions
across environment boundaries.

Multimodel
programming in Psyche

Psyche is a multiprocessor operating
system designed to support multimodel

COMPUTER

pr~gramrning.~The abstractions provid-
ed by the Psyche kernel allow user-level
runtime libraries to implement custom-
ized programming models, with each
library retaining full control over how
its processes are represented and sched-
uled, and how they synchronize with the
processes implemented by other librar-
ies7The kernel is responsible for coarse-
grain resource allocation and protec-
tion, while runtime libraries implement
short-term scheduling and process man-
agement.

A multimodel program consists of a
set of modules, each of which may im-
plement a (potentially different) pro-
gramming model. Each module defines
a set of interface procedures used to
access the code and data encapsulated
by the module. In addition, each mod-
ule that implements a programming
model defines a set of process-manage-
ment routines used to control the be-
havior of the model's processes. To com-
municate between modules, and hence
between different programming mod-
els, processes call interface procedures,
which may in turn call process-manage-
ment routines. The two key aspects of
this approach are

Procedural access to shared data.
The interface procedures of a module
implement a communication protocol.
Shared data in the module represents
the state of the protocol and is manipu-
lated by the procedures defined in the
interface. By invoking interface proce-
dures, processes take on the communi-
cation style provided by the called mod-
ule. Interface procedures allow processes
to gain access to arbitrarily complex
styles of communication through a mech-
anism - the procedure call -found in
every model.

Dynamically bound process man-
agement. The process-management rou-
tines of a module allow interface proce-
dures to tailor their behavior to different
programming models. Interface proce-
dures call process-management routines
whenever they must create, destroy,
block, or unblock a process. They need
not embody assumptions about any par-
ticular model. Among other things, pro-
cess-management routines are required
for scheduler-based synchronization.

To facilitate the use of shared data
and procedures, Psyche arranges for
every module to have a unique system-
wide virtual address. This uniform ad-

dressing allowsprocesses to share point-
ers without worrying about whether they
might refer to different data structures
in different address spaces. It also al-
lows processes to call interface proce-
dures regardless of the current address
space. Depending on the degree of pro-
tection desired, a call to an interface
procedure can be as fast as a normal
procedure call (optimized invocation),
or as safe as a remote procedure call
between heavyweight processes (pro-
tected invocation). The two forms of
invocation are initiated in exactly the
same way in Psyche, with the native
architecture's jump-to-subroutine in-
struction. In some cases this instruction
generates a page fault, allowing the ker-
nel to intervene.

To implement a programming model,
the user-level library must manage a set
of virtual processors, which are kernel-
provided abstractions of the physical
processors. The kernel delivers a soft-
ware interrupt to a virtual processor
whenever it detects an event that might
require the library to take immediate
action. Events of this sort include pro-
gram faults, the imminent end of a ker-
nel-scheduling quantum, the need to
block during a system call, and the initi-
ation (via page fault) of a protected
invocation. Data structures shared be-
tween the kernel and the user (writable
in part by the user) allow the library code
to control the behavior of the software
interrupt mechanism. They also provide
a location in which to store the addresses
of process-management routines.

When creating a virtual processor,
the user-level library specifies the loca-
tion of a data structure describing that
virtual processor. The kernel maintains
a pointer to this descriptor (distinct on
every physical processor) among the
data structures shared between the ker-
nel and the user. By convention, the
descriptor in turn contains the address
of a vector of pointers to process-man-
agement routines. When multiprogram-
ming virtual processors on top of a sin-
gle physical processor, the kernel
changes the pointer to the virtual pro-
cessor descriptor on every context
switch. When multiprogramming user-
level processes on top of a single virtual
processor (or on a collection of virtual
processors), the user changes the ad-
dress of the vector of process-manage-
ment routines on every context switch.
As a result, an interface procedure can
always find the process-management

routines of the currently executing pro-
cess without knowing the origin or rep-
resentation of the process.

Using interface procedures and pro-
cess-management routines, Psyche pro-
grammers have developed two distinct
idioms for interaction between dissimi-
lar programming models. Both of these
idioms appear in Checkers. In the first,
a module encapsulates a passive shared
data structure that is accessed by other
modules containing different process
types. In the second, a process from one
model calls directly into a module that
implements a different model. This sec-
ond approach occurs both when calling
an interface procedure directly and when
implementingsynchronization inside an
interface procedure.

When a process needs to wait for
some condition while executing in an
interface procedure, the code can fol-
low pointers in well-known locations to
find the addresses of the process-man-
agement routines of the process's pro-
gramming model. It can then save the
address of the unblock routine in a shared
data structure and call the block rou-
tine. Later, when another process es-
tablishes the condition, it can retrieve
the pointer to the unblock routine and
call into the module that manages the
waiting process, causing that process to
unblock.

When calling an interface procedure
or process-management routine, a pro-
cessmust obey certain well-defined con-
straints to avoid interfering with the
correct operation of the host environ-
ment. In the general case, it may be
necessary to create a native process to
obtain the full capabilities of that envi-
ronment.

Multimodel robot
checkers player

Checkers is a multimodel vision ap-
plication implemented on top of Psyche.
A checkers-playing robot conducts a
game against a human opponent, cycli-
cally sensing the opponent's move and
then planning and executing its response.

An inexpensive, standard-size check-
ers game is used. The camera's internal
parameters (aperture and focus) are
manually adjusted before the game, and
the external parameters (the exact posi-
tions of the pan and tilt motors, and the
robot's position) are adjusted by an ini-

February 1992 15

tial calibration procedure (finding pixel
coordinates of the corners of the board).

The normal rules of play are obeyed,
including multiple captures, crowning,
and the extended capabilities of kings.
The robot pushes pieces around the
board; it does not pick them up. During
play the human player modifies the
board by moving a piece. The sensing
task detects the change in the board
configuration and interprets it symbol-
ically in terms of the primitive moves of
checkers. In a symbolic, strategic task,
the robot considers the change to be a
potentially legal move by the human.
The robot validates the move and, if it is
valid, accepts it. Once the human makes
a valid move, the robot runs a symbolic
game-playing algorithm to find its re-
sponse to the human move. The effec-
tor task uses the board position report-
ed by the vision subsystem and the
computed symbolic move to plan a se-
quence of primitive, physically realiz-
able actions. When this movement plan
is available, the robot arm is engaged to
execute the plan. A board maintenance
task provides central control, commu-
nication, data representation, and syn-
chronization. The robot emits status
information, error messages, and occa-
sional gratuitous remarks through a
voice-synthesis board. A complete ro-
bot move, including sensing and com-
mentary, takes about 6 seconds.

Parallel-programming environments.
Checkers, like many animate vision ap-
plications, consists of tasks to imple-
ment sensing, planning, and action. We
implemented each of these functions
using a different parallel-programming
environment: Multilisp, Lynx, the Uni-
form System, or Uthread.

The unit of parallelism in Multilisp is
the f u t ~ r e , ~ which is a handle for the
future evaluation of an arbitrary S-ex-
pression. Any attempt to reference a
future before the value is determined
causes the caller to block. These two
mechanisms - parallel execution via
futures and synchronization via refer-
ences to futures - are used to build
parallel Lisp programs.

Lynx programs consist of multiple
heavyweight processes, each with its own
address space.5 The processes exchange
messages using named communication
channels (links). Each heavyweight pro-
cess consists of multiple lightweight
threads of control that communicate
using shared memory. Condition vari-

ables are used for synchronization be-
tween threads in the same process. Syn-
chronous message passing provides syn-
chronization between threads in
different processes.

The Uniform System4 is a shared-
memory, data-parallel programming
environment. Task generators create a
potentially large number of parallel tasks,
each of which operates on some portion
of a large shared address space. Task
descriptors are placed on a global FIFO
work queue and are removed by proces-
sors looking for work. Each task must
run to completion, at which time another
task is removed from the task queue.
Spin locks are used for synchronization.

Uthread is a simple, lightweight thread
package that can be called from C++
programs. Uthread is the general-pur-
pose programming environment of
choice in Psyche and is frequently used
to implement single-threaded servers.

We chose these environments for four
reasons:

(1) Each was specifically developed
for a particular application domain that
was a subset of our problem domain.

(2) Implementations of all four envi-
ronments were either already available
for our hardware or could be easily port-
ed to our hardware.

(3) The principals involved in the
project had extensive experience with
one or more of these implementations
and would not have to learn a new sys-
tem.

(4) We already had a software base
for vision, planning, and checkers play-
ing, composed of programs written in
the Uniform System, Lisp, and Lynx,
respectively.

Checkers tasks. The primary data
structures used to implement Checkers
are the representations of the board
and the moves. A short pipeline of rep-
resentations is needed to support back-
ingup to legal or stable states. There are
four different board representations:
digitized image, calibration information,
(x, y , z) location of the piece centroids,
and a symbolic description of the board.
Each is used for different tasks.

Three different representations for
moves are used: the new board state
that results from the move, a sequence
of physical coordinates for the robot
motion commands, and the list of par-
tial moves (that is, a push or a sequence
of jumps) needed to execute a move.

These representations for the board
and the moves are encapsulated in the
board module, which provides synchro-
nized access to the data structures and
translation routines between the vari-
ous representations. We implemented
the board module using the Uthread
package. A single thread of control is
created to initialize the data structures,
after which the module becomes a pas-
sive data structure shared by tasks from
other programming models. The board
module synchronization routines use the
Psyche conventions for process man-
agement to implement semaphores that
any model can call.

Six different tasks cooperate to im-
plement Checkers. Two manage the
camera and robot devices; the remain-
der implement vision, recognition of
moves, checkers strategy, and motion
planning.

The camera manager is a Uthread
module that maps and initializes a mem-
ory segment for the VME memory used
to control and access the MaxVideo
hardware. This module registers the
name and address of the memory seg-
ment with a name server. The board
interpreter (discussed below) accesses
this segment directly to retrieve an im-
age from the MaxVideo frame buffer.
The frame buffer is filled at 30 Hz by the
digitizer but is read out only when the
board interpreter is ready to analyze
another image.

The board interpreter is a Uniform
System program that transfers an image
from the camera manager (in VME
memory) to local Butterfly memory and
produces a symbolic description of the
checkers in the image. The data transfer
of 0.25 Mbyte of image information over
the VMEbus takes 280 milliseconds.
After transferring the image, the board
interpreter segments the image into 64
board squares and analyzes each square
in parallel. Each task attempts to deter-
mine the color of its square, whether the
square contains a piece, and, if so, the
piece's color. Each square is then la-
beled according to the square's color
and the piece's color. Piece centroids
are calculated, as are centers of empty
squares, in image and world coordinates.
Once a complete interpretation con-
taining no unrecognized squares is cal-
culated, the board interpreter accepts
the interpretation. If the new interpre-
tation differs from the previous inter-
pretation, the result is reported to the
board module. Using four processors,

16 COMPUTER

the board interpreter can interpret the
image input about once every second.

The move recognizer is a Uthread
module that compares two successive
symbolic board interpretations produced
by the board interpreter. It recursively
decomposes the differences into a se-
quence of legal partial moves (single
jumps or moves) that transforms the
first interpretation into the second.

The checkersplayer is a game-playing
program written in Lynx. It takes as
input the list of partial moves describ-
ing the human's move and produces as
output the list of partial moves to be
made in response. A single multithread-
ed master process manages the parallel
evaluation of possible moves. Slave pro-
cesses perform the work, implementing
a parallel a-B game-tree search.

The move planner is a trajectory cal-
culation and planning program written
in Multilisp. It constructs, in parallel,
artificial potential fields that have peaks
reflecting square occupancies and a glo-
bal bias reflecting off-board goal loca-
tions. For individual moves, the goal
location is a particular square. When
removing pieces, the goal location is
one of eight goal areas off the board.
The program considers these potential
fields in parallel, using a local search
procedure that yields a gradient-descent
path along which a checker can be
pushed. Since the algorithm allows pieces
to be temporarily moved aside or
swapped with the moving piece, it is a
route-maker as well as a route-finder.
The result is a set of plans. The algo-
rithm chooses one plan on the basis of
some cost function, such as the total
estimated time to complete the move or
the shortest distance to push the checker.

The robot controller is a Uthread
module that controls a serial line con-
nection between the Butterfly and the
Puma robot. The robot controller sends
movement commands in the Val lan-
guage (equivalent to MoveTo
(X,Y,Z,SPEED)) and waits for notifi-
cation of successful completion.

Implementation of moves. Program
execution is implemented as a series of
moves, each of which requires the coop-
eration of several modules and program-
ming models. Lettered arrows in Figure
2 show control flow among the modules.

The board interpreter continuously
receives an image from the camera (a,
b) and analyzes it. When the board po-
sition changes, the board interpreter

Peripherals
Â¥ I Butterfly

I

1Ã‘Ã‘Ã‘
I

Ãˆ
!

Camera manager (b)
(Zebra, Uthread)

(Uthread) (Uthread)

Puma robot Robot controller Move planner
(Val) (h) I (C+t/Ulhread) 1 (Multilisp)

Peripherals
-< I

!
Butterfly

Figure 2. Functional modules and communication paths in Checkers. Multiple
models of parallelism (to the right of the dotted line) are implemented under
Psyche on the Butterfly. Perceptual and motor modules (to the left of the dot-
ted line) reside on the Butterfly and in peripherals.

invokes the board module (c) to update
the board description, passing the sym-
bolic and quantitative positions of the
checkers.

When the board module receives a
new board position from the board in-
terpreter, it invokes the move recogniz-
er (d) to parse the difference between
new and old board positions into partial
checkers moves. These partial moves
are stored in the board module to be
retrieved by the checkers player. After
a successful return from the move rec-
ognizer, the original invocation from
the boardinterpreter to the board mod-
ule returns, causing the board inter-
preter to resume evaluation of raw im-
age data.

When the invocation from the check-
ers player to the board module (e) dis-
covers that a new valid list of partial
moves has appeared in the board mod-
ule, it returns the first partial move to
the checkers player module. If several
partial moves are needed to complete
the move, additional invocations from
the checkers player to the board mod-
ule (e) follow. If any partial move rep-
resents an illegal move, the checkers
player resets its internal state to the

beginning of the move sequence and
flushes the current state information
and list of partial moves in the board
module. It also synchronizes with the
board interpreter (e, c), which informs
the human and produces a new board
state.

As long as the incoming list of partial
moves is legal, the checkers player will
wait for moves to appear in the board
module. As a result, board interpreta-
tion can occur several times while the
human makes a move, particularly if the
move is a complex jump. The checkers
player and board module interact (e)
until a complete move is made. At this
point the checkers player module runs
and generates its reply to the human's
move in the form of a symbolic board
position. This board position is passed
to the board interpreter, which gener-
ates a list of partial moves required to
implement the differences between the
updated board position and the current
position.

Once the board interpreter has pro-
duced a list of partial moves that define
the robot's response, the checkers play-
er invokes the move planner (f) with the
partial move sequence. Partial moves

February 1992

Table 2. Functional modules and source code statistics (number of lines) for
Checkers. The runtime environment code and the Lynx game player were port-
ed from existing systems; 4,482 lines of new code were written, including 2,902
lines of application code and 1,580 lines of interface code.

1 Function Model Application ~untim-1

Game player Lynx 1,800 8,838 504
Board interpreter Uniform System 380 8,057 170
Move planner Multilisp 900 13,127 572
Board module Uthread 1,300 2,436 170
Robot controller Uthread 27 2,436 110
Speech controller Uthread 211 2,436 34
Camera manager Uthread 84 2,436 20

are passed to the move planner one at a
time, and each one causes a sequence of
low-level move commands and acknowl-
edgments to flow back and forth be-
tween the move planner, the robot con-
troller, and the robot (g, h).

Intermodel communication. The im-
plementation of a single move illustrates
two distinct styles of interaction among
programming models: data structures
shared between models and direct pro-
cedure calls (or invocations) between
models. Both styles of interaction re-
quire synchronization between processes
of different types.

The board module must synchronize
access to data structures shared by pro-
cesses from the Multilisp, Lynx, Uni-
form System, and Uthread environ-
ments. To access these data structures,
processes call directly into the board
module and execute the associated code.
When a process must block within the
board module, the code uses pointers
provided by the kernel to find the cor-
rect block and unblock routines for the
currently executing process type. Apro-
cess that must block on a semaphore
first places the address of its unblock
routine in the semaphore data structure
and then calls its block routine. When
another process wants to release a pro-
cess that is blocked on a semaphore, it
simply retrieves the address of the ap-
propriate unblock routine from the
semaphore data structure and calls the
routine. If protection between process
types is desired, the appropriate rights
can be stored with the address of the
routines, and protected invocations can
be required.

There are several advantages to com-

municating between models via shared
data structures:

Because we use a simple procedural
interface to access shared data, there is
a uniform interface between models,
regardless of the number or type of
programming models involved.

Communication is efficient because
processes can use shared memory to
communicate directly.

Synchronization across models is
efficient because of the underlyingmech-
anisms for implementing synchroniza-
tion (a kernel pointer to user-level pro-
cess-management routines, and a
procedural interface to routines that
block and unblock a process).

The board module resembles a black-
board communication structure, but we
can use shared data abstractions be-
tween models to implement a wide vari-
ety of communication mechanisms, in-
cluding message channels and mailboxes.

A different type of interaction occurs
between the checkers player and the
move planner: A Lynx thread calls di-
rectly into the Multilisp environment of
the move planner. Since the move plan-
ner already provides exactly the func-
tionality required by the checkers play-
er, an intervening data structure would
simply add unnecessary generality and
overhead (such as the cost of extra invo-
cations). Instead, every entry point ex-
ported by the move planner refers to a
stub routine designed for invocation by
processes outside the Multilisp world.
This stub routine copies parameters into
the Multilisp heap and dispatches a
Multilisp future to execute the Lisp func-
tion associated with the invocation. After

the future executes the correct Mul-
tilisp function, the Multilisp runtime
environment calls the Lynx scheduler
directly to unblock the Lynx thread.

Direct calls between arbitrary envi-
ronments are often complicated by the
fact that the code in each environment
makesmany assumptions about the rep-
resentation and scheduling of process-
es. Psyche facilitates direct calls between
modules by separating the code that
depends on the semantics of processes
from the code used as an external inter-
face. As a result, an application like
Checkers can be constructed from a
collection of self-contained modules
without regard to the programming
model used within each module.

c heckers demonstrates the advan-
tages of decomposing animate
vision systems by function and

independently selecting an appropriate
parallel-programming model for each
function. By extending the well-known
software engineering principle of mod-
ularity to include different parallel-pro-
gramming environments, we increase
the expressive power, reusability, and
efficiency of parallel-programming sys-
tems and applications. These proper-
ties add significantly to our ability to
build complex animate vision applica-
tions.

The entire Checkers implementation
required only two months of part-time
effort by five people. Our use of multi-
ple parallel-programming models was
not an artificial constraint; it was a rea-
soned choice based on the tasks to be
performed, the expertise of the people
involved, the available software, and
the available programming environ-
ments.

We resurrected a Lynx checkers-play-
ing program that had been implement-
ed years ago as a stand-alone program.
The Uniform System image-analysis li-
brary was plugged into Checkers after
several years of disuse. The board inter-
preter, move planner, board module,
and move recognizer, as well as neces-
sary Psyche support for the particular
models we used, were all developed si-
multaneously by people who had exper-
tise in a particular problem domain and
the related software environment. Cod-
ing these modules was a part-time activ-
ity extending over several weeks.

Integration was a full-time activity
that took only a few days. During inte-

COMPUTER

gration, w e m a d e (and subsequently
changed) many decisions abou t which
modules would communicate directly
with each other , and which should use
the shared da ta structures. O u r experi-
ences have convinced us of t he impor-
tance of integration through shared da ta
abstractions a n d customized communi-
cation protocols accessible f rom every
parallel-programming model. Tab le 2
shows t h e relatively small amoun t of
coding w e had t o d o t o in tegra te t h e
various Checkers subsystems.

O u r ability t o build t h e stylized da ta
abstractions a n d communication proto-
cols used in Checkers suggests that w e
will have little difficulty experimenting
with alternative communication proto-
cols o r processor assignments. This is
precisely the type of flexibility required
in animate vision systems, and o u r ex-
periences suggest that multimodel pro-
gramming in general, a n d the Psyche
mechanisms in particular, can provide
the needed flexibility. I

Acknowledgments

This research was supported by the Na-
tional Science Foundation under grants IRI-
8920771, CDA-8822724, CCR-9005633, and
IRI-8903582. Support also came from ONRI
DARPA Contract N00014-82-K-0193. Brian
Marsh was supported by a DARPAINASA
graduate research assistantship in parallel
processing.

References

1. Y. Aloimonos and D. Shulman, lntegra-
tion of Visual Modules, Academic Press,
New York, 1989.

2. D.H. Ballard, "Animate Vision," Artifi-
cialIntelligence, Vol. 48, No. 1, Feb. 1991,
pp. 57-86.

3. C.C. Weems et al., "IU Parallel Process-
ing Benchmark," Proc. Computer Soci-
ety Conf. Computer Vision and Pattern
Recognition, CS Press, Los Alamitos,
Calif., Order No, 862,1988, pp. 673-688.

4. R.H. Thomas and W. Crowther, "The
Uniform System: An Approach to Run-
time Support for Large-Scale Shared-
Memory Parallel Processors," Proc. 1988
Int'l Conf. Parallel Processing, Vol. I1 -
Software, CS Press, Los Alamitos, Calif.,
Order No. 889, 1988, pp. 245-254.

5. M.L. Scott, "The Lynx Distributed Pro-
gramming Language: Motivation, Design,
and Experience," Computer Languages,
Vol. 16, No. 314, 1991, pp. 209-233.

February 1992

6. M.L. Scott,T.J. LeBlanc, andB.D. Marsh,
"Multi-Model Parallel Programming in
Psyche," Proc. Second ACM Conf. Prin-
ciples and Practice of Parallel Program-
ming, ACM, New York, 1990, pp. 70-78.

7. B.D. Marsh et al., "First-class User-Lev-
el Threads," Proc. 13th Symp. Operating
Systems Principles, ACM, New York,
1991, pp. 110-121.

8. R. Halstead, "Multilisp: A Language for
Concurrent Symbolic Computation,"
ACM Trans. Programming Languages
and Systems, Vol. 7, No. 4, Oct. 1985, pp.
501-538.

Brian Marsh is a re-
search scientist at the
Matsushita Information
Technology Laboratory
in Princeton, N.J. His
research interests in-
clude multiprocessor
and distributed operat-
ing systems. Marsh re-
ceived his MS and PhD

in computer science from the University of
Rochester in 1988 and 1991, respectively.

Chris Brown is a profes-
sor in the Computer Sci-
ence Department of the
University of Rochester.
His research interests in-
clude geometric invari-
ance, cognitive and rc-
flexivegaze control, and
the integration of com-
puter vision, robotics,

and parallel computation into active intelli-
gent systems. Brown received his PhD in
information sciences from the University of
Chicago in 1972.

Thomas LeBlanc is an
associate professor and
chairman of the Com-
puter Science Depart-
ment at the University
of Rochester. His re-
search interests include
parallel-programming
environments and mul-
tiprocessor operating

systems. LeBlanc received his PhD in com-
puter sciences from the University of Wis-
consin - Madison in 1982. He is a member of
the IEEE Computer Society.

Michael Scott is an as-
sociate professor in the
Computer Science De-
partment at the Univer-
sity of Rochester. His
research focuses on pro-
gramming languages,
operating systems, and
program development
tools for parallel and dis-

tributed computing. Scott received his PhD
in computer sciences from the University of
Wisconsin - Madison in 1985. He is a mem-
ber of the IEEE and the IEEE Computer
Society.

Tim Becker is on the
technical staff of the
Computer Science De-
partment at the Univer-
sity of Rochester. His
recent work has includ-
ed projects in computer
vision and robotics, and
the implementation of
the Psyche multiproces-

sor operating system. Becker received his BS
in industrial engineering from Pennsylvania
State University in 1980.

Cesar Quiroz is a soft-
ware engineer with EX-
ELE Information Sys-
tems, East Rochester,
New York. His research
interests center on the
study of parallelism in
programming-language
implementation, espe-
ciallv the oarallelization , .

of imperative code. Quiroz received his PhD
in computer science from the University of
Rochester in 1991. He is a member of the
IEEE Computer Society.

Prakash Das is a system
designer at Transarc
Corporation in Pitts-
burgh. His research in-
terests include multi-
processor operating
systems. Dasreceived his
MS in computer science
from the University of
Rochester in 1991.

- Jonas Karlsson is a arad-
uatestudent in theeom-
puter Science Depart-
ment at the University
of Rochester. His re-
search interests include
multiagent planningand
robot motion planning.
Karlsson received his BS
in comouter science

from Stanford University in 1990.

Readers may contact Chris Brown at the
Computer Science Department, University
of Rochester, Rochester, NY 14627-0226, e-
mail brown@cs.rochester.edu.

