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1. Introduction

This paper surveys recent progress in algorithmic motion planning in robotics.

Research on theoretical problems in robotics looks ahead to a future generation of

robots that v.-ill be considerably more autonomous than present robotic systems. The

main objective is to endow robotic systems v-ith various basic capabilities that they

will need to possess in order to operate in an intelligent and independent manner.

These improved capabilities can be grouped into three broad categories: sensing,

planning, and control. That is, the system should be able to gather information

about its workspace through a variety of sensing devices (vision, tactile, or proxim-

ity sensing, etc.), analyze and transform the raw sensory data into a world model of

the environment, use this model to plan tasks that it is commanded to execute (navi-

gation, assembly, inspection, machining, etc.), where planning amounts to breaking

up the complex task into a sequence of simple subgoals, whose combined execution

will accomplish the desired task, and finally obtain a low-level control loop which

monitors the actual execution of each planned substep of the task.

Of these three categories, the planning stage aims to allow the robot's user to

specify a desired activity in very high level, general terms, and then have the system

fill in the missing low-level details. For example, the user might specify the end

product of some assembly process, and ask the system to construct a sequence of

assembly substeps; or, at a less demanding level, to plan collision-free motions

which pick up individual subparts of an object to be assembled, transport them to

their assembly position, and msert them into their proper places.

Studies in this area have shown it to have significant mathematical content;

tools drawn from various subfields of mathematics, such as classical geometry,

topology, algebraic geometry, algebra, and combinatorics have all proved relevant.

The algorithmic approach to robot planning, which is the one emphasized in this

survey, uses a variety of tools drawn from computational geometry and other areas
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of computer science, and involves the design and analysis of geometric algorithms,

which are required to be non-heuristic, exact (if the input data is accurate), and

asymptotically efficient.

We will mainly concentrate in this survey on the (collision-avoiding) motion

planning problem, and give only scant attention to the substantially more difficult

area of general task planning; the motion planning problem has been studied inten-

sively over the last decade, and has turned out to possess a substantial amount of

mathematical depth and sophistication, as the reader will hopefully realize from this

survey.

In addition, the interaction between motion planning and computational and

discrete geometry has produced rich cross-fertilization between the fields, leading to

many deep new results in geometry on one hand (some of w^hich will be reviewed

below), and to better understanding of the motion planning problem on the other

hand, reaching the stage of a few initial successful implementations of some of the

efficient algorithms that have been devised.

The approach to motion planning that is surveyed here, which emphasizes

object-oriented, exact and discrete (or combinatorial) algorithmic techniques, in

which asymptotically worst-case efficient solutions are being sought, is relatively

new. It has been preceded by (and currently "competes" with) several alternative,

usually more engineering or Al-based, approaches which emphasize heuristic,

approximating, rule-based, or best-case-tailored solutions. Several interesting solu-

tions of this kind have been developed by Lozano-Perez, Brooks, Mason, Taylor

and others; see [Brl], [Br2], [BLP], [LP], [LP2], [Ma], [Er], Pol] for a sample.

Other approaches are non-discrete, in the sense that they view the motion planning

problem as an integral part of the low-level control of the robot. A typical such

approach regards the obstacles as sources of repelling potential field while the target

placement of the robot is regarded as a strong attractor. The hope is that the moving

body, as it attempts to follow the potential gradient vector field, will be able to

reach the destination while avoiding collision with the obstacles (see e.g. [Kh]). Yet

another approach, which is non-heuristic but not quite discrete, and applies in situa-

tions where the environment is not known a priori, has been developed by Lumel-

sky and his collaborators (see [LuS], [Lul], [Lu2]); it will be reviewed below.

We will not divulge in the issue of which method is superior, since each has its

advantages and disadvantages. For example, many of the heuristic approaches have

been implemented for several years now, and have working prototypical systems

capable of planning motions in a variety of situations. However, our contention is

that because the problem has such a rich geometric and combinatorial structure, it is

imperative to at least understand this structure in detail from a mathematically

rigorous point of view, and explore it for potential algorithmic improvement?,

before beginning to negotiate approximating or heuristic shortcuts, which, if done
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naively, can completely miss this structure, often resulting in considerable loss of

efficiency at best, and in complete misunderstanding of the issues at the heart of the

problem at worst. As v,e will see below, exact solutions of the problem for complex

moving systems may be (provably) computationally intractable in the worst case, so

in practice heuristic shortcuts may have to be made, but again we believe that they

can be made most effectively once the exact solution and its limitations are well

understood.

2. Statement of the problem

In its simplest form, the motion planning problem can be defined as follows.

Let B be a robot system consisting of a collection of rigid subparts (some of which

may be attached to each other at certain joints while others may move indepen-

dently) having a total of k degrees of freedom, and suppose that B is free to move in

a two or three dimensional space V amidst a collection of obstacles whose geometry

is known to the robot system. Typical values of k range from two (e.g. for a rigid

object translating on a planar floor (without rotating)) to six (which is the typical

number of joints for a manipulator arm), but can also be much larger (e.g. when we

need to coordinate the motion of several independent systems in the same

workspace).

The motion planning problem for B is: Given an initial placement Zj and a

desired target placement Zj of B, determine whether there exists a continuous

obstacle-avoiding motion of B from Zj to Z2, and if so plan such a motion. See Fig-

ure 1 for an illustration of this problem.

Since we are interested in an exact, non-heuristic, and non-approximating algo-

rithmic approach, we want any algorithm for solving the motion planning problem

to always be able to find a motion if one exists. It is intuitively clear that in favor-

able layouts of the obstacles (e.g. relatively few obstacles well separated from each

other) even simple-minded techniques will generally yield a solution. However, if

the obstacles are very densely cluttered, it might be quite difficult, often beyond

normal human capabilities, to find a solution. It is in such circumstances that the

exact algorithmic approach has the highest pay-off.

Before plunging into discussion of the problem as posed above, we note that

there are many useful extensions and variants of the problem that can arise in prac-

tice. For example, if the environment is not fully known to the system, then it has to

use its sensors to continually update the environment model and its planned motion.

Another situation is that the objects might not be stationary, but rather move along

predictable and known trajectories, in which case the system needs to 'dodge' the

obstacles while moving tov.ards its goal. Yet another case to be considered is when

the geometric model of the environment is not accurately known; the system will

then need to allow for such errors and to come up with a robust planning strategy
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that would adjust itself automatically when unanticipated contacts are being made.

This is especially crucial in cases of compliant motion, when the system moves in

contact with some obstacle whose shape is known only approximately. Other vari-

ants require the planned motion to be optimal, in the sense that it minimizes the

time needed for its execution, or the total distance travelled, or the total energy con-

sumed, etc. Also, in the way in which the problem has been posed it ignores the

dynamics of the moving system. For example, the system might be constrained so

that its velocity and/or acceleration cannot exceed certain thresholds, in which case

even simple motions such as turning around a corner may be non-trivial to plan.

We will have more to say about these extensions of the problem later on, but

for now let us focus on the simpler, static, and purely geometric version of the

problem as posed above. As we shall see, it is difficult enough to solve the problem

as it is, and each of the extensions just mentioned tends to make the solution ever so

much more complicated.

This problem has been studied (from the algorithmic point of view) in many

recent papers (cf. [LPW], [Mol], [Ud], [Re], [SSI], [SS2], [SS3], [SA], [SS4], [SS5],

[Ya], [Ya2], [OY], [OSYl], [0SY2], [LSI], [LS2], [LS3], [KSl], [KS2]. [KLPS],

[SiS], [HJWl], [HJW2], [HW], [HSS2], [JP], [Ca], [CR], [Ca2], [PSS], [GSS], [SSi],

[ABF], [AgS], [ArS], [OR], [KO]). See also [HSS3] for a compendium of works in

this area, and [Ya3], [SS7], [Sh5] for a few recent surveys.

An alternative formulation of the problem, which will help us understand its

geometric context, can be obtained as follows. Let FP denote the "free configura-

tion space" of the moving system B, i.e. FP is the ^-dimensional space of all free

placements of B (i.e. the set of placements of B in which B does not intersect any

obstacle). Each point Z in FP is a it-tuple giving the values of the parameters con-

trolling the k degrees of freedom of B at the corresponding placement. For example,

if fi is a planar rigid body moving in a planar region, then it has three degrees of

freedom, and each placement of B can be specified by three parameters (j:,y,e),

where (x,y) is the coordinates of some fixed reference point on B, and 6 is the angle

between some fixed reference axis attached to B and the j:-axis. As another exam-

ple, if B is a line segment moving in three-dimensional space, B has five degrees of

freedom and each placement of B can be specified by a 5-tuple giving the x, y and r

coordinates of one designated endpoint p of B and the spherical coordinates of the

direction along B from p to the other endpoint.

Obviously, not every placement of a moving system B is free. For a placement

Z to be free, it needs to satisfy a collection of collision constraints, each of which

forbids a specific feature of B (a corner, straight link, etc.) to contact or to intersect

a specific feature of some obstacle (a vertex, edge, face, etc.). Each such collision

constraint corresponds to a "forbidden region" in the configuration space, and the

free configuration space is simply the complement of the union of these regions.



In this setting, the motion planning problem becomes a problem in "computa-

tional topology", that is the problem of calculating and obtaining a discrete

representation of FP . More precisely, what one needs is to decompose FP into its

path-connected components, because a collision-free path exists between the two

given placements Z\, Zi of B if and only if they both lie in the same connected com-

ponent of FP. An appropriate discrete representation of the connected components

of FP usually assumes the form of a connectivity graph, whose nodes represent cer-

tain local portions of FP and whose edges connect portions that are adjacent to each

other in FP. Once such a representation has been obtained, actual motion planning

reduces to searching for a path in the connectivity graph which connects between the

initial and final placements of B. Having found such a path, the system finally

transforms it into a sequence of actual "elementary" motions, each of which can be

executed by a single command to the motors controlling the robot motion.

Section 3 of this survey will discuss the inherent computational complexity of

the basic motion planning problem, detail several general techniques developed for

treating it, and review various efficient algorithms for planning the motions of cer-

tain special robot systems having only few degrees of freedom.

In more detail, we will show that when the number k of degrees of freedom

becomes arbitrarily large, then the problem complexity substantially increases, and,

for certain types of systems with an arbitrarily large value of k, such as a collection

of many independent rectangular objects moving in coordinated fashion inside a rec-

tangular region, the problem becomes "computationally intractable", meaning that it

is highly unlikely that efficient worst-case solutions will ever be found. Intuitively,

this is because for large k the space FP is a high-dimensional space with irregular

boundaries, and is thus hard to calculate efficiently. There have been developed

general techniques for solving the motion planning problem in rather full generality,

and we will describe some of them, but, in accordance with what has just been said,

these general algorithms are hopelessly inefficient in the worst case, and although

their development is significant from a theoretical point of view, they are com-

pletely useless in practice. However, when k is small the problem becomes more

tractable, and efficient algorithms have been developed for a variety of simple sys-

tems; a prototypical example has been that of a line segment (a "ladder", "rod" or

"pipe") moving in the plane amidst polygonal obstacles (cf. [SSI], [LSI], [SiS],

[OSYl], [0SY2], [OR]), but many other systems have also been handled success-

fully. We will describe these specialized algorithms in Section 3.

In section 4 we will survey some of the extensions to the motion planning prob-

lem mentioned above, such as the case of moving obstacles, the case of optimal

motion, the case of unknown or only partially known environment, etc. As can be

expected, these extensions are substantially more difficult to handle than the original

problem version, which makes efficient solutions thereof much harder to obtain,

except in certain very special cases.
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To illustrate this, consider the issue of producing a collision free path which

satisfies some criterion of optimality. For example, if a mobile robot is approxi-

mated as a single moving point, one might want to find the shortest Euclidean path

between the initial and final system placements, which avoids (the interiors of) the

given obstacles. In more complex situations the notion of optimal motion is less

clearly defined, and has as yet been little studied. However, even in the simplified

case of the Euclidean shortest path problem, the situation becomes considerably

complicated. While in the planar case the shortest path can be found in time that is

worst-case quadratic in the number of obstacle corners and edges, finding the shor-

test path between two points in three dimensions, which avoids a collection of

polyhedral obstacles, is already computationally intractable (whereas the coarser

original problem of just determining whether a path exists at all can be solved by a

reasonably efficient algorithm).

As already noted, studies of the motion planning problem tend to make heavy

use of many algorithmic techniques in computational geometry, and to motivate the

development of new and deep results in this area. Various motion-planning related

problems in computational geometry will be reviewed in Section 5.

Before starting, a final note about notation. We will use the standard "big-Oh"

notation to bound various quantities, such as the time (or storage size) required by

an algorithm. For example, we will speak of an 0{n^) algorithm to mean an algo-

rithm whose running time is at most within a constant factor of n^ for some input

parameter n. In this asymptotic complexity notation, the constant factors that appear

implicitly in such bounds are being ignored, arguing that for sufficiently large n

these constants are much less significant than the order of magnitude of the expres-

sion (as a function of n). Still, in most cases these constants are not too large.

3. Motion Planning in Static and Known Environments.

As above, let B be a moving robot system, k be its number of degrees of free-

dom, V denote the two- or three-dimensional space in which B is free to move, and

FP denote the free configuration space of all free placements of B, as defined

above. The space FP is determined by the collection of equalities and inequalities

which express the fact that at a free placement the system B avoids collision with

any of the obstacles present in its workspace. We will denote by n the number of

equalities and inequalities needed to define FP, and call it the "geometric (or com-

binatorial) complexity" of the given instance of the motion planning problem. We
will make the reasonable assumption that the parameters describing the degrees of

freedom of B can be chosen in such a way that each of these inequalities is alge-

braic. Indeed, the group of motions (involving various combinations of translations

and rotations) available to a given robot can ordinarily be given algebraic represen-

tation, and the system B and its environment V can typically be modeled as objects

bounded by a collection of algebraic surfaces (e.g., polyhedral, quadratic, or
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spline-based).

To illustrate these concepts and get a somewhat better feeling for the structure

of FP, consider the following simple example. Let B be a line segment pq translat-

ing in the plane amidst a collection of polygonal obstacles having a total of n corners

(or edges). Since B is not allowed to rotate, its position is fully specified by the

(x.y) coordinates of its endpoint p. The forbidden regions of collision are bounded

by a collection of constraint curves, each expressing a possible contact between some

fixed feature of B and some fixed obstacle feature. In this case, each such contact is

either between an endpoint p or q of B and some obstacle edge, or between an obs-

tacle corner and the line segment B. It is a fairly simple exercise in geometry to

show that each of these curves (namely the locus of the endpoint p of B as it makes

such a contact) is a line segment either at the orientation of B (in case of contact

between B and an obstacle corner) or otherwise parallel to the corresponding obsta-

cle edge. Thus each forbidden region is polygonal, so that their union (and thus its

complement FP) is also a polygonal region bounded by portions of these constraint

curves (see Figure 2 for an illustration). Note that the number of constraint curves

is proportional to n. Another way of thinking about FP is by considering the

arrangement of the 0(n) constraint segments, i.e. the planar subdivision obtained

by drawing all these segments. Each face of this arrangement (i.e. a connected com-

ponent of the complement of the union of the segments) is either fully contained in

FP or fully contained in a forbidden region. This follows easily from the fact that

any transition between a free region and a forbidden one must occur at a point lying

on some constraint segment. Thus FP is simply a collection of faces of the arrange-

ment of the constraint curves. These arguments lead to a crucial observation which

simplifies the problem still further. That is, if the initial placement Z\ of B is known

in advance, then it suffices to calculate only the connected component (face) of FP
which contains Zj, because no other free placement can ever be reached from Zj by

a continuous obstacle-avoiding motion.

In this setting, the special case of the motion planning problem just discussed

has been reduced to the problem of calculating a single connected component in an

arrangement of Oin) segments in the plane. Essentially the same arguments show

that to solve the motion planning problem for an arbitrary system with two degrees

of freedom it suffices to calculate a single face in an arrangement of arcs in the

plane. When the system has more degrees of freedom, the problem becomes that of

calculating a single cell in an arrangement of (algebraic) surface patches in a

higher-dimensional space.

To recap, a typical instance of the motion planning problem will involve a col-

lection of n constraint surfaces in the /:-dimensional parametric space of all system

placements, where each surface is a patch of some algebraic surface, and our goal is

to analyze and calculate a single cell in the arrangement of these surfaces. We note

here that in most practical instances the maximal degree of these algebraic surfaces
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is fixed and small (because these surfaces describe only a few types of possible con-

tacts between B and the obstacles), while the number of surfaces is generally large.

Thus in what follows we will tend to ignore the algebraic complexity of handling

these surfaces (e.g. finding the intersection points of any k of these surfaces), and

concentrate on the combinatorial complexity of their arrangement, i.e. the size of a

discrete representation of the arrangement as a function of the number of surfaces

n. Nevertheless, the algebraic complexity of the motion planning problem is also an

important topic; see e.g. [BK].

To get some intuition about the structure of such an arrangement, think of a

simple special case involving flat triangular surfaces in 3-space (this special case

actually arises in the motion planning problem for a polyhedral object B translating

in 3-space amidst polyhedral obstacles; see [ArS] and below). These triangles

decompose 3-space into connected cells, the boundary of which consists of 2-D por-

tions of these triangles which meet one another along 1-D edges, each being the

intersection segment of a pair of triangles, which terminate at endpoints, each being

either an intersection point of three of the triangles or an intersection of an edge of

one triangle with the interior of another. If we think of each triangle as the locus of

placements of B in which it makes some specific contact with some obstacle, then

edges of the arrangement (that appear along the boundary oi FP) correspond to loci

where B makes simultaneously two different obstacle contacts (while otherwise

remaining free of collisions), and vertices correspond to placements of B at which it

makes three simultaneous contacts with the obstacles. Abstracting to a general

instance involving k degrees of freedom, we see that each face on the boundary of

FP consists of placements of B in which it makes some j^k distinct contacts with the

obstacles simultaneously (while otherwise remaining free). A simple combinatorial

argument implies that the number of faces comprising the boundary of FP is at most

proportional to n^. Specifically, consider the vertices oi FP. Each vertex is an inter-

section point of k of the n surfaces. There are
n

distinct /:-tuples of the given sur-

faces, and, by the classical Bezout's Theorem in algebraic geometry, each such k-

tuple of surfaces intersect in at most d^ points, where d is the maximum degree of

the surfaces. Assuming d is small, thus ignoring the factor d^ , the claim follows.

To see that the complexity of FP can be that high, consider a simple spider-like

planar system B consisting of k rigid straight links all jointed together at a common
endpoint, which is constrained to lie at a fixed point O in the plane (so each link can

rotate independently around O). This system has k (rotational) degrees of freedom.

Suppose the obstacles consist of n small discs arranged along some circular arc

about O (see Figure 3). Thinking of FP as a semi-algebraic set in £*, a vertex of its

boundary corresponds to a placement of B where k obstacle contacts are being made

simultaneously, i.e. where each link touches some obstacle. It is thus easy to obtain

an example where the boundary of FP has about n^ vertices, as claimed.
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At this point it is prudent to add the following parenthetical disclaimer. Even

though the combinatorial complexity of the entire FP may be high, it is conceivable

that to plan a motion of B one does not need to calculate FP in full. Indeed, we have

already remarked that it suffices to calculate just a single connected component of

FP. But even that might be too much when all we really want to produce is a

collision-free path, or, in a further restricted version of the problem, just to deter-

mine whether such a path exists. To bring this argument to the extreme, suppose FP

is known to be a convex region. Then we do not need to compute it at all, because

any two placements in FP can be connected by the straight segment joining them,

which necessarily lies within FP. We will return to this issue later on, but for a

starter, we first consider techniques that do aim to calculate the entire FP.

(a) General solutions of the motion planning problem.

Assuming then that FP is an algebraic or semi-algebraic set in £*, it was shown

in Schwartz and Sharir [SS2] that the motion planning problem can be solved in time

polynomial in the number n of (algebraic) geometric constraints defining FP and in

their maximal degree, but doubly exponential in k. This initial result has since been

extended and improved in several papers [KY], [Ya3], [RSh], culminating in the

recent fundamental work of Canny [Ca], which provides a general technique for

solving the motion planning problem for a system with k degrees of freedom under

n geometric constraints of fixed maximal degree, in time 0(n*log n), where unfor-

tunately the constant of proportionality, which depends on the maximal degree of

the collision constraints, is prohibitively large. Still, from a theoretical point of view

this has been a significant progress, because, as we have noted above, the combina-

torial complexity of FP can indeed be as high as proportional to n* in the worst

case, which makes Canny's algorithm nearly worst-case optimal. Canny [Ca2] and

Renegar [Ren] have later improved the technique slightly, by showing that it can be

implemented in PSPACE (i.e. using only a polynomial amount of storage).

Both techniques of [SS2] and of [Ca] are fairly complicated, and apply to gen-

eral semi-algebraic sets to produce some discrete representation of the topological

structure of such a set. We will give here only a sketchy description of both tech-

niques.

We begin with the technique of [SS2]. Even though this method gives inferior

performance, it is significant because of its (relatively) simple structure, which

makes variants of the method quite attractive for solving the motion planning prob-

lem for several special instances. This technique is a variant of Collins' cylindrical

algebraic decomposition technique [Co], which was originally applied to Tarski's

theory of real closed fields. (In this theory one is given a quantified Boolean for-

mula whose variables can assume real values, and whose atomic subformulae are

equalities and inequalities involving polynomials in these variables, and the problem

is to decide whether the formula is true.)
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Collins' decomposition proceeds recursively through the dimension k (the

number of degrees of freedom in our case). At each level j it maintains a polyno-

mial Sj(xi, . . . ,Xj) in the ;' remaining variables (starting at j = k, in which case Sj

is just the product of all the given constraint polynomials, and ending at ; = 1). and

seeks a decomposition of E-' into cells (of various dimensions between and ;) such

that Sj is sign-invariant over each of these cells (i.e. is everywhere positive, every-

where negative, or everywhere zero on each cell). When ; = 1 this amounts to find-

ing all real roots of Si, which can be done symbolically, using precise rational arith-

metic, by various "root isolation" techniques. For ;>1, the method first eliminates

the variable xj by computing from Sj, certain polynomials in the first j-\ variables,

using resultants and subresultants of Sj and some other related polynomials (see

[SS2] for details). The collection of resulting polynomials has the property that if c

is a connected cell of E-'"^ in which all these polynomials are sign-invariant, then as

(xi Xj-\) varies over c, the polynomial Sj{xi, . . . ,Xj-\,Xj), viewed as a

polynomial in Xj only, has the same number of real roots, and each root varies con-

tinuously with x\, . . . ,Xj-i. We then multiply all the produced polynomials to

obtain Sj-\, recursively obtain a cylindrical algebraic decomposition of E-'"^ for

Sj-\, and then, for each cell c in the decomposition, over which Sj has q distinct

real roots, we obtain the following collection of cells in E^ (where x represents

(jri, . . . ,Xj-i)):

{[\,Xj] : X € c, j:;</i(x)} (lower semi-infinite "segment" of cXE^),

{[x, /,(x)] : X € c} ("section" of cXE^),

{[\,Xj] : X C c, /,(x)<a:j</, + i(x)} ("segment" of cxE^),

{[\,Xj] : X € c, fq{\)<Xj] (upper semi-infinite "segment" of cy-E^),

where /i fq denote the q distinct roots of Sj over c. Together, all these cells

constitute the Collins decomposition of E-'.

It follows easily by induction that each of the sets constituting such a cylindrical

algebraic decomposition K of E* is topologically equivalent to an open cell of some

dimension j^k. We can therefore refer to the elements c i K zs the (open) Collins

cells of the decomposition K.

The original paper of Collins [Co] shows how to compute effectively all these

cells, using only purely rational arithmetic, by representing each cell by an algebraic

point inside it (given implicitly so that its coordinates are roots of certain specified

polynomials), plus some other tricks. The number of cells, as well as the time

needed to produce them all, is shown to be doubly exponential in the number of

dimensions k, but to depend only polynomially on the number of polynomials and

on their maximal degree.

In terms of the motion planning application, if we apply the Collins decomposi-

tion technique to the collection of collision constraints, each cell c in the resulting
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decomposition has the property that each constraint has a fixed sign over c. Conse-

quently either c is fully contained within FP or lies fully in the forbidden region.

Thus by scanning each of the Collins cells we can collect all cells whose union forms

FP.

This is still not quite sufficient to solve the motion planning problem, because

we also need to know how these cells are connected ("glued") to each other in FP,

so as to be able to deduce the topological structure of FP. This extra ingredient is

supplied in [SS2], where a (somewhat complicated) method for determining all pairs

of adjacent Collins cells in FP is given; subsequent improvements to this method

have been provided in [KY], [Pr] and others.

The motion planning problem is then solved by constructing a connectivity

graph CG, whose nodes are the Collins cells constituting FP and whose edges con-

nect pairs of adjacent such cells. Then, for a given pair of initial and final place-

ments Zi, Z2 of B, we locate the two nodes cj, cj of CG that contain these place-

ments, and then search for a path in CG connecting cj and C2- If such a path exists

then B can be moved continuously from Zi to Zj without collision along a path

which is easily obtained from the graph path; otherwise no such motion is possible.

Many ingredients of the above technique (decomposing FP into simple cells,

establishing adjacency between the cells, transforming the problem to a discrete

path searching in a graph) have proved useful in many related approaches, where

efficient solutions for specific systems have been obtained (see below). However,

the general method as sketched above is very inefficient. To get some intuitive feel-

ing as to the main weakness of this decomposition technique, we illustrate it in the

simple case where the constraint surfaces are all planes in three dimensions. It is

easy to check that n such planes decompose 3-space into convex polyhedral cells

whose total complexity is at most Oin^) (see e.g. [Ed]). However, the Collins

decomposition will produce many more cells. Specifically, one can show that in this

case the Collins technique first finds all 0{n^) intersection lines between the given

planes, and then projects all these lines into the ry-plane. This gives an arrangement

of O(n^) lines in the plane, which decomposes the plane into a number of cells pro-

portional to n'* (the actual Collins technique decomposes these cells still further).

For each of these cells we then construct a vertical prism with that cell as its base,

and then cut this prism into pieces by the n original planes. Altogether, we obtain

O(n^) cells, much more than necessary to represent the way in which the given

planes decompose 3-space.

Canny's technique is quite different. Instead of decomposing FP into cells, his

idea is to construct a 1-dimensional skeleton 5 (which he calls a "roadmap") of

curves within FP, having two crucial properties:

(i) Reachability: each placement Z in FP can be (effectively) moved continuously to

a placement in 5;
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(ii) Connectiviry: the intersection of S with each connected component of FP is

(nonempty and) connected.

Clearly, if such a roadmap can be found, the motion planning problem is easily

solved as follows. Apply the reachability procedure to the initial and final place-

ments Zi, Zi of B to obtain two respective placements Wj, W2 on S. Then search

for a path in 5 (which is easy to do since S is 1-dimensional) between these two

placements. If no path exists, then the connectivity property of S guarantees that Zi

and Z2 cannot be reached from one another by a collision-free continuous motion.

Otherwise, the required motion is simply the concatenation of the paths connecting

Z\ to Wi and Z2 to W2 and the path connecting Wi to W2 within S.

To obtain a roadmap, Canny uses a recursive procedure on the dimension d of

FP. If (f = 1 then FP is a curve, and is taken to be its own roadmap. Otherwise, FP

is projected onto some two-dimensional plane, and the silhouette (i.e. boundary

curve) 2 of the projected image is being formed. Next one finds all critical levels of

2, i.e. the y coordinates (in the projected plane) of points at which 2 is either singu-

lar or has a horizontal tangent. Then FP is sliced at each of these critical levels, and

the algorithm is applied recursively to each cross-section. Finally, all roadmaps

obtained for each cross section are glued to the silhouette 2, and the union of all

these curves and of 2 is the desired roadmap for FP. It is shown in [Ca] that this

roadmap satisfies conditions (i) and (ii) above.

This basic algorithm is not as efficient as possible, because the slices of FP

through successive critical levels of the silhouette are essentially very similar in

shape, except for a "local" change that occurs near the points of criticality of 2.

Using this observation. Canny derives an improved algorithm, whose running time

is shown to be

0{n\\ogn-d°^''^ + (j;-)^^*^)))

wher d is the maximum algebraic degree of the constraint polynomials (and where

we have omitted factors that depend on the magnitude of the coefficients of the con-

straint polynomials). In other words, if d and k are both small and fixed, the time

complexity of Canny's algorithm is 0(n*log n).

(b) Lower bounds

The results just cited suggest that motion planning becomes harder rapidly as

the number k of degrees of freedom increases; this conjecture has in fact been

proved for various model 'robot' systems. Specifically, Reif [Re] proved that

motion planning is PSPACE-hard for a certain 3-D system involving arbitrarily

many links and moving through a complex system of narrow tunnels. (Intuitively

speaking, a computational problem is PSPACE-hard if it is at least as difficult to

solve as any problem that can be solved using storage whose size is a polynomial

function of the input size. The collection of such problems is huge and includes
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many well known difficult problems that no one has yet found a way to solve effi-

ciently (i.e. in time that depends only polynomially on the input size). It thus

appears highly unlikely that a PSPACE-hard problem will ever be solvable by such

an efficient algorithm; see Garey and Johnson [GJ] for more details.)

Since then PSPACE-hardness has been established for simpler moving systems,

including 2-D systems of mechanical linkages (Hopcroft, Joseph, and Whitesides

[HJ\V2]), a system of 2-D independent rectangular blocks sliding inside a rectangu-

lar box (Hopcroft, Schwartz and Sharir [HSS2]), and a single 2-D arm with many
links moving through a 2-D polygonal space (Joseph and Plantinga [JP]). Several

weaker results establishing NP-hardness (a somewhat weaker form of intractability)

for still simpler systems have also been obtained.

The Hopcroft-Joseph-Whitesides result is established by showing that, given an

arbitrary Turing machine T with a fixed bounded tape memory, one can construct a

planar linkage L whose motions simulate the actions of T, so that L can move from a

specified initial to a specified fmal configuration only if the Turing machine T even-

tually halts. The size of the linkage L constructed is polynomially bounded by the

size of the state table and memory tape of T. (This suffices because it is well known

that the halting problem for Turing machines of bounded tape size is PSPACE-hard

[GJ].) One proceeds by noting that the actions of an arbitrary 7 can easily be

characterized by a set of polynomial constraints, and then by using the (classical; cf.

[Ke]) result which shows how to construct a mechanical linkage capable of

representing any specified multivariate polynomial P(xi, . . . ,j:„).

In more detail, a planar linkage is a mechanism consisting of finitely many rigid

rods, of prespecified lengths, joined together at some of their endpoints by hinge-

pins about which they are free to rotate. Any number of rod-ends are allowed to

share a common hinge-pin; and particular pins can be held at specified points by

being 'fastened to the plane'. Aside from this, the hinge-pins and rods are free to

move in the plane, and it is assumed that the motion of one rod does not impede the

motion of any other (i.e. the rods are allowed to 'pass over' each other). Such a

linkage is said to represent the multivariate polynomial P{x\ jr„) if there exist

n hinge pins p\, . . . ,p„ which the linkage constrains to move along the real axis,

and an n + l-st hinge pin po which the linkage constrains to lie at the real point

P(xi,...,Xn) whenever pi p„ are placed at the real points xi, . . . ,x„. (It is

assumed that the linkage leaves pi, . . . ,p„ free to move independently over some

large interval of the real axis.)

The existence of a linkage representing an arbitrary polynomial P in the case

just explained is established by exhibiting linkages which realize the basic operations

of addition, multiplication, etc. and then showing how to represent arbitrary combi-

nations of these operations by fastening sublinkages together appropriately.
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The Hopcroft-Schwartz-Sharir result on PSPACE-hzrdntss of the coordinated

motion planning problem for an arbitrary set of rectangular blocks moving inside a

rectangular frame is proved similarly. It is relatively easy to show that the actions

of an arbitrary tape-bounded Turing machine can be imitated by the motions of a

collection of similarly-sized nearly rectangular 'keys' whose edges bear protrusions

and indentations which constrain the manner in which these 'keys' can be juxta-

posed, and hence the manner in which they can move within a confined space. A
somewhat more technical discussion then shows that these keys can be cut appropri-

ately into rectangles without introducing any significant possibilities for motion of

their independent parts that do not correspond to motions of entire keys.

The results of [HJW2] and [HSS2] are interesting because they provide two

relatively simple physical devices for simulating bounded-tape Turing machines. In

addition, these lower bounds are fairly strong, because they apply to the decision

problem in motion planning (i.e. only determining whether two given placements

are reachable from one another), and do not presume that the entire configuration

space, or even the path itself, need to be constructed.

In concluding this section, we mention a few lower bounds for simple systems

with just a few degrees of freedom. O'Rourke [OR] has considered the problem of

a line segment ("rod") moving in a 2-D polygonal space with n corners, and has

shown that in the worst case there exist two placements of the rod that are reachable

from one another, but any motion between these placements requires at least a

number of elementary submotions that is proportional to n^ (namely the rod has to

be pushed forwards and backwards at least that many times to reach its destination).

This has been extended by Ke and O'Rourke [KO] to obtain a similar lower bound

for a rod moving in 3-space amidst polyhedral obstacles with n vertices, where the

minimum number of submotions needed to realize a motion of the rod between two

placements can be in the worst case as high as proportional to n'^ . We will return to

these bounds later on.

(c) The "projection method".

The negative worst-case results mentioned above suggest that when the number

k of degrees of freedom is large, the problem becomes intractable. (This does not

mean, of course, that there is no hope of attacking such general problems. As is the

case with many other intractable problems, there might still be algorithms that work

very well in the average case, or approximating algorithms that can guarantee, e.g.

that they will find a path efficiently provided the 'clearance' between obstacles is not

too small, etc. However, we will not address these issues in this survey.) However,

when k is small, the general algorithms of Canny and of Schwartz and Sharir show

that the problem can be solved efficiently (in time polynomial in the number n of

constraints). Still even in such special cases, the efficiency of these general tech-

niques is very far from being satisfactory. Consequently, a lot of recent research



- 15 -

has focussed on obtaining improved efficient algorithms for a variety of special sys-

tems, having a low number of degrees of freedom.

These algorithms can be broadly classified according to several general

approaches that they exemplify. The first such approach, known as the projection

method, uses ideas similar to those appearing in the Collins decomposition pro-

cedure described above. One fixes some of the problem's degrees of freedom (for

the sake of exposition, suppose just one parameter y is fixed, and let x be the

remaining parameters); then one solves the resulting restricted ^ — 1-dimensional

motion planning problem. This subproblem solution must be such as to yield a

discrete combinatorial representation of the restricted free configuration space

(essentially, a cross-section of the entire space FP) that does not depend continu-

ously on the final parameter y, and changes only at a finite collection of 'critical'

values of y. These critical values are then calculated; they partition the entire space

FP into connected cells, and by calculating relationships of adjacency between these

cells one can describe the connectivity of FP by a discrete connectivity graph CG, in

much the same way as in the general algorithm of [SS2].

This relatively straightforward technique was applied in a series of papers by

Schwartz and Sharir on the "piano movers" problem, to yield polynomial-time

motion planning algorithms for various specific systems, including a rigid polygonal

object moving in 2-D polygonal space [SSI], two or three independent discs moving

in coordinated fashion in 2-D polygonal space [SS3], certain types of multi-arm link-

ages moving in 2-D polygonal space [SA], and a rod moving in 3-D polyhedral space

[SS4]. These initial solutions were coarse and not very efficient; subsequent refine-

ments have improved theii efficiency substantially.

A typical example that has been studied extensively is the case of a line seg-

ment B (a "rod") moving in two-dimensional polygonal space whose boundary con-

sists of n segments ("walls"). Here the configuration space FP is three-

dimensional, and it can be decomposed into cells efficiently using a modified projec-

tion technique developed by Leven and Sharir [LSI].

In this approach one starts by restricting the motion of B to a single degree of

freedom of translation along its length. For this trivial subproblem the restricted FP
simply consists of an interval which can be represented by a discrete label [mj, vi'2]

consisting of the two walls against which B stops when moving backwards or for-

wards from its given placement.

Next one admits a second degree of freedom by allowing arbitrary translational

motion of B. Assuming that B points in the direction of the positive y-axis, the

second degree of freedom is parameterized by the jr-coordinate of B. As x varies,

the label [m-j, ^2] of the placements of B remains unchanged until one reaches

either an endpoint of wj or of vi-2, or a wall corner Ij'ing between >\i and m'2, or a

placement in which B simultaneously touches both wj and m';. Hence, given a
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placement Z of B with label [m], K2], we can define a 2-D "non-critical" region R

consisting of all placements of B which are reachable from Z by a translational

motion during which the label [wi, ^2] does not change. R itself can be uniquely

represented by another discrete label of the form X(/?) = [\vi, w'2. LEFT, RIGHT],

where LEFT, RIGHT describe the type of criticality (an endpoint of m'j or of W2, a

new corner between m'i and ^2, or a "dead-end" at which B gets stuck) defining

respectively the left and right boundaries of ^.

Finally one introduces the last rotational degree of freedom 6. Again one can

show that the label X(/?) of the non-critical region R containing a placement Z of B

remains constant as 6 varies, unless 6 crosses a critical orientation at which the left

or right boundary of R either (i) comes to contain two wall corners; or (ii) contains

an endpoint of wj or of >V2 and the distance from that endpoint to the other wall (in

the direction of 6 or e-t-ir) is equal to the length of B, or (iii) contains another

corner and the distance between wj and h'2 along this boundary is equal to the

length of B. See Figure 4 for an illustration of these critical conditions.

One can therefore define a 3-D non-critical cell C of FP containing Z to consist

of all placements of B reachable from Z by a motion during which the label of the

2-D region enclosing the placement of B remains constant, and represent each such

cell by a triple [X, 61, 62], where X. is the label of the 2-D region enclosing Z and

where 61, 62 are two critical orientations at which the label X. changes discontinu-

ously. The collection of these cells yields the desired partitioning of FP.

Leven and Sharir show that the number of critical orientations is at most

O(n^), and that, assuming B and the walls are in "general position", each critical

orientation delimits only a small constant number of cells. Thus the total number of

cells in FP is also O(n^). [LSI] presents a fairly straightforward algorithm, which

runs in time 0{n^ log n) , for constructing these cells and for establishing their adja-

cency in FP, a very substantial improvement of the O(n^) algorithm originally

presented in [SSI]. Moreover, in view of O'Rourke's lower bound mentioned above

[OR], the Leven-Sharir algorithm is nearly optimal in the worst case.

(d) The "retraction method" and related techniques

Several other important algorithmic motion planning techniques were

developed subsequent to the simple projection technique originally considered. The

so-called retraction method is very similar to (and has in fact preceded) the general

technique of Canny described above. Specifically, it proceeds by retracting the con-

figuration space FP onto a lower dimensional (usually a l-dimensional) subspace A',

which satisfies both the reachability and the connectivity properties mentioned

above, thus ensuring that two system placements in FP lie in the same connected

component of FP if and only if their retractions to A' lie in the same connected com-

ponent of A'. This reduces the dimension of the problem, and if A' is l-dimensional
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the problem again becomes one of searching a graph. (Rigorously speaking, a

retraction is a continuous map from some space £ onto a subspace F which becomes

the identity when restricted to F . The retractions that are used in this approach are

not always everywhere continuous, but their discontinuities are easy to characterize

and to 'patch-up'.)

0*Dunlaing and Yap [OY] have used this retraction technique in the simple

case of a disc moving in 2-D polygonal space. In this case, each placement of the

disc D can be fully specified by the position of its center in the plane. The retraction

used attempts to repel D away from its nearest obstacle, until its center becomes

equally nearest to at least two distinct obstacle features. The locus A^ of such points

is known as the Voronoi diagram associated with the set of given polygonal obstacles

(see also [Ya4]). It is shown in [Ya4] that the Voronoi diagram of n line segments in

the plane can be calculated in time 0{n log n). After computing the diagram, and

pruning away portions of it where the nearest obstacle is too close for D to fit in,

we obtain the desired network A', in total time 0{n log n).

After this first paper O'Dunlaing, Sharir and Yap [OSYl], [0SY2] generalized

the retraction approach to the case of a rod moving in 2-D polygonal space by defin-

ing a variant Voronoi diagram in the 3-D configuration space FP of the rod, and by

retracting onto this diagram. The diagram consists of all placements of the rod at

which it is simultaneously nearest to at least two obstacles. The Voronoi diagram

defined by a set of obstacles in general position can readily be divided into 2-D

Voronoi sheets (placements in which the rod is simultaneously nearest to two obsta-

cles), which are bounded by 1-D Voronoi edges (placements in which the rod is

nearest to three obstacles), which in turn are delimited by Voronoi vertices (place-

ments in which the rod is nearest to four obstacles; cf. Figure 5). The algorithm

described in [OSYl], [0SY2] actually constructs a 1-D subcomplex within the Voro-

noi diagram; this complex consists of the Voronoi edges and vertices plus some

additional connecting arcs. It is shown in [OSYl] that this Voronoi "skeleton"

characterizes the connectivity of FP, in the sense that each connected component of

FP contains exactly one connected component of the skeleton. A fairly involved

geometric analysis given in [0SY2] shows that the total number of Voronoi vertices

is 0(/!^log*/i), and that the entire "skeleton" can be calculated in time

0{n log n log*n), where log*n is a very slowly growing function giving the number

of repeated applications of the log function to n needed to bring it down to 1; this

was a substantial improvement of the original projection technique, but nevertheless

a result shortly afterward superceded by [LSI].

A similar retraction approach was used by Leven and Sharir [LS2] to obtain an

0{n log n) algorithm for planning the purely translationa! motion of a simple con-

vex object B amidst polygonal barriers. The idea is similar to that of [OY]. Indeed,

any placement of B is fully specified by the position of some fixed reference point O
within B. As before, we would like to push B away from the nearest obstacle until O
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becomes equally nearest to more than one obstacle. However, for the method to

work correctly here, we need to modify the notion of distance from the usual

Euclidean distance (as used in [OY]) to one which depends on B. To define this dis-

tance dB{p,q) from a point p to a point q, place B with O lying at p, and expand or

shrink B in such a way that O remains at p and B remains similar to its original

shape. The expansion (or shrinkage) factor X which makes q lie on the boundary of

B is the distance ds(p,q) (the reader is invited to check that this coincides with the

usual Euclidean distance when B is a unit disc).

With this definition of distance, one can define a generalized Voronoi diagram,

known as the B-Voronoi diagram, in much the same way as the standard diagram is

defined for the Euclidean distance. See Figure 6 for an illustration of such a

diagram. It is shown in [LS2] that, though of a more complex structure than stan-

dard Voronoi diagrams, the B-diagram retains most of the useful properties of stan-

dard Voronoi diagrams. In particular, its size is linear in the number of obstacles in

5, and, if B has sufficiently simple shape, can be calculated in time Oin ]ogn),

using a variant of the technique described in [Ya4].

Next, as in [OY], let A' be the portion of the B-diagram consisting of points

whose B-distance from the nearest obstacle(s) is greater than 1. Then any translate

of B in which the reference point O on B is placed at a point in A' is a free placement

of B. It is proved in [LSI] that A' characterizes the connectivity of the free confi-

guration space of B, in the sense defined above, so that, for purpose of planning,

motion of B can be restricted to have the reference point O move only along A'

(apart from an initial and final 'pushes' towards AO. This yields an Oin logrj)

motion planning algorithm for this case. See below for an alternative technique for

this special case of motion planning.

Recently Sifrony and Sharir [SIS] have devised another retraction-based algo-

rithm for the motion of a rod in 2-D polygonal space. Their approach is to construct

the 1-D network of arcs within FP consisting of all the 1-D edges on the boundary

of FP (each such edge consists of semi-free placements in which the rod simultane-

ously makes two specific contacts with the obstacles), plus several additional arcs

which connect different components of the boundary of FP that bound the same con-

nected component of FP. Again, this network characterizes the connectivity of FP,

so that a motion planning algorithm need only consider motions proceeding within

this network. The Sifrony-Sharir approach generates motions in which the rod is in

contact with the obstacles, and is thus conceptually somewhat inferior to the

Voronoi-diagram based techniques, which aim to keep the moving system between

obstacles, not letting it get too close to any single obstacle. However the network in

[SiS] is much simpler to analyze and to construct. Specifically, it is shown in [SiS]

that this network has 0(n^} vertices and edges in the worst case, and can be con-

structed in time O{n^\og n). (Actually, the network size is bounded by the number

A' of pairs of obstacles lying at distance less than or equal to the length of the
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moving rod, and the complexity of the algorithm is bounded by OiK log n). Thus if

the obstacles are not too badly cluttered together, the Sifrony-Sharir algorithm will

run quite efficiently; this makes the approach in [SiS] more attractive than the previ-

ous solutions in [0SY2], [LSI].)

(e) Other techniques

A rather early paper by Lozano-Perez and Wesley [LPW] has introduced a

general approach to a variety of motion planning problems, known as the expanded

obstacles approach. We illustrate this idea in the simple case of a convex polygon B,

with k sides, translating in a 2-D polygonal space (an alternative retraction-based

technique for this case has been mentioned above). Suppose the obstacles are

decomposed into m convex pieces (with pairwise disjoint interiors) that have an

overall of n corners. Let Bq be a standard placement of B, in which some fixed

reference point O within B lies at the origin. For each convex obstacle A,, consider

the expanded obstacle Af which is defined as the Minkowski (or vector) difference of

Ai and So; that is

A* = {x-y -.xiAi, yCBo}

where x—y denotes vector difference. If S is moved so that O lies at some point z of

Af , then by definition z =x—y for some x in A,- and y in Bo. so 2 +>•, which by defin-

ition is a point occupied by the current placement of B, is equal to x, which is a

point in A,. In other words, Af is precisely the set of all placements of the reference

point O in which B intersects A,. Thus we can shrink B to the single point O and

replace the obstacles by their expanded versions, obtaining a much easier problem

to solve. As a matter of fact, the free configuration space is simply the complement

of the union of the expanded obstacles (the expanded obstacles are in fact concrete

exemplifications of the somewhat vaguer notion of forbidden regions mentioned

earlier).

While the conceptual idea is quite simple, and can be applied to more general

instances (e.g. three-dimensional translational motion, translational motion of a

non-convex object, etc.), it raises some interesting problems. One problem is that

the expanded obstacles are not necessarily disjoint any more, so we need to analyze

the pattern in which they intersect. Fortunately, when B is convex, it was shown in

Kedem, Livne, Pach and Sharir [KLPS] that the boundaries of any pair of expanded

obstacles intersect in at most two points (assuming "general position" of the obsta-

cles). Furthermore, [KLPS] have also shown that for any collection of r closed Jor-

dan curves in the plane, having the property that any pair of them intersect at most

twice, the union of their interiors has only a linear number of intersections on its

boundary (more precisely, at most 6n-\2 such points). This implies that the com-

plexity of FP, for a translating convex polygon, is only linear, which has enabled

[KLPS] to design a simple divide-and-conquer algorithm for calculating FP, which
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runs in time 0(n \o£ n).

The single component approach

If, in the preceding discussion, the translating object B is not convex, it is easy

to give examples where FP can have a quadratic number of corners (see Figure 7).

However, as has been pointed out earlier, we do not have to compute the entire FP;

it suffices to compute just the connected component of FP that contains the initial

placement of B. The hope is that this component will have a much smaller complex-

ity than the entire FP, and that consequently it could be calculated by a more effi-

cient algorithm.

While for general motion planning problems this hope is still far from being

substantiated (see below), in the planar case (i.e. for systems having only two

degrees of freedom) the situation is quite favorable. Following a series of papers

[HS], PA'S], [Sho], [PSS], it has been shown by Guibas, Sharir and Sifrony [GSS]

that a single connected component (or face) in an arrangement of n Jordan arcs,

each pair of which intersect in at most some fixed number s of points, has small

combinatorial complexity. That is, the number of connected portions of these arcs

which appear along the boundary of such a face (as illustrated in Figure 8) is at

most 0(,\s-f2i^))< \^here Xj(ij) is the maximum length of {q,s) Davenport Schinzel

sequences. In section 5 we will describe these sequences and their significance in

many geometric problems. For now it will suffice to say that for any fixed s, \s(q)

is nearly linear in q, although, for s>3, it is (ever so slightly) superlinear in q.

In addition, [GSS] present an algorithm for calculating the face in such an

arrangement which contains a given point x, in time 0(X.,+2(") log^ri), which is

thus close to linear in n. Applying this algorithm to the collection of constraint

curves and to the initial placement of the moving system (with two degrees of free-

dom) in question, we obtain a solution to the motion planning problem which has

the same time complexity. This constitutes a significant improvement over any algo-

rithm that attempts to calculate the entire space FP. The algorithm is also relatively

simple to implement, and thus provides a general-purpose routine for solving effi-

ciently practically any motion planning problem with two degrees of freedom. This

class of systems is fairly rich; for example, it includes a translating rigid 3-D object

on some 2-D surface, a two-link arm moving in the plane with one endpoint fixed, a

spatial arm rotating around a fixed universal joint, etc.

For systems having three or more degrees of freedom, much less is known

about the complexity of a single component of FP. Let us consider the case of three

degrees of freedom. Using genera] algebraic and geometric arguments, as in the

beginning of this section, we can show that the total complexity of FP for such sys-

tems, which is a manifold in 3-dimensional space, is at most O(n^), and that this

complexity can be attained in the worst case for many specific systems. However,
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there exist systems with three degrees of freedom, such as a line segment (or even

an arbitrary convex object) moving in the plane amidst polygonal obstacles, for

which one can show that the entire FP has only quadratic, or near-quadratic com-

plexity. When this is not the case, the question still remains whether this bound

holds for just a single connected component of FP, so that one might be able to

solve motion planning problems for systems with three degrees of freedom in close

to quadratic time.

Unfortunately, this question is still largely unsettled. However, a recent result

of Aronov and Sharir [ArS] shows that when all the n constraint surfaces are flat tri-

angles in 3-space, the complexity of a single connected component (cell) in their

arrangement is at most Oin""^*^), for any S>0, and that calculation of the cell

which contains a given point can be accomplished by a probabilistic algorithm,

whose expected time complexity is also Oin""^*^). As a corollary, it follows that

planning a purely translational motion of a polyhedral object with k faces amidst

polyhedral obstacles having a total of n faces (a system obviously having three

degrees of freedom) can be accomplished in expected time 0{{kn)'"^'^^), for any

8>0. However, for other non-trivial systems with three degrees of freedom, not to

mention systems with more degrees of freedom, we still do not know whether a sin-

gle component of FP always has combinatorial complexity that is significantly

smaller than that of the entire FP.

The case of a mobile convex object moving in a 2-D polygonal space

Let B be a convex k-%on moving (translating and rotating) in the plane amidst

polygonal obstacles having a total of n corners and edges. This system has three

degrees of freedom, and is one of the simplest systems which arises in practical

applications (think of a navigating vehicle, a household or factory mobile server,

etc.). This particular system has been studied recently by Leven and Sharir [LS3]

and by Kedem and Sharir [KS2]. They have shown that the entire free configuration

space FP has combinatorial complexity 0{kn'Kf,{kn)), which is to say, nearly qua-

dratic in kn. (Note that the number of colhsion constraints is 0{kn), where each

constraint represents placements of B in which either a specific corner of B makes

contact with some specific obstacle edge, or a specific side of B touches a specific

obstacle corner.) Moreover, using a rather elaborate and sophisticated algorithm,

[KS2] have shown that FP can be calculated in close to quadratic time, specifically in

0{kn\(,ikn) log kn) time.

This algorithm has been implemented recently and tested successfully on com-

mercial equipment. It is beyond the scope of this survey to go into details of this

algorithm, and we merely note that it uses a mixture of the previous techniques,

which involves slicing FP onto 2-D cross sections FP^ in each of which the orienta-

tion e of B is fixed, followed by calculation of these restricted FP's using the tech-

niques of [KLPS] reviewed above. The overall representation of fP is obtained by
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extending the vertices of the 2-D cross sections FPg of FP into edges of FP, by let-

ting e vary. Critical values of 6 arise when the combinatorial structure of the cross

section changes discontinuously, and, as it turns out, the main (though not

exclusive) source of criticalities are placements of B at which it makes simultane-

ously three contacts with the obstacles (while otherwise remaining free). A previ-

ous combinatorial result of Leven and Sharir [LS3] show that the maximum number

of such free triple contacts is at most O (knKtikn)) . Using this resuU, [KS2] show

that the total complexity of the connectivity "edge graph" that represents FP is of

the same order of magnitude, and develop the aforementioned algorithm for calcu-

lating that graph.

We mention this algorithm also because it is one of the few implemented

motion planning algorithms that conform to the maxim of using exact, non-heuristic

and worst-case efficient techniques. A related recent implementation, due to

Avnaim, Boissonnat and Faberjon [ABF] solves the motion planning problem for an

arbitrary mobile polygonal robot, but has worst-case cubic time complexity (and was

thus simpler to implement).

Miscellaneous other results

We conclude this section with a somewhat arbitrary sample of a miscellany of

other recent motion planning algorithms (it has been impossible to cover all recent

developments in this area).

Yap [Ya2] and later Madilla and Yap [MY] have introduced the variant in

which the environment is fixed and has simple structure, but the moving system is

arbitrarily taken from a certain large class of systems. For example, [Ya2] considers

the problem of moving a "chair", which is an arbitrary simple polygon B with n

sides, through a "door", which is an interval opening along the y-axis, say, which is

otherwise a solid wall; [MY] consider a related problem of moving such a chair

around a right-angle corner in a corridor. Their result has recently been improved

by Agarwal and Sharir [AgS].

Another special case is that of coordinated motion planning, i.e. the case of

several independent systems that move in the same workspace and are to be con-

trolled by a common algorithm, which has to make sure that no two systems collide.

This case can of course be viewed as a special case of the general motion planning

problem, but the independence between the moving systems can be exploited to

obtain improved algorithms. This has been recently done by Sharir and Sifrony

[SSi], following previous works of [Ya], [FWY], and [RA].

Pushing the number of degrees of freedom still higher, Ke and O'Rourke have

recently studied the motion planning problem for a rod in 3-space, amidst a collec-

tion of polyhedral obstacles with a total of n faces. This problem has five degrees

of freedom. [KO] have first obtained a lower bound on the number of submotions
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needed to move the rod between any two placements, showing that in the worst case

a number of submotions proportional to n^ might be necessary. As an upper bound,

they have obtained an O{n^\og n) algorithm, which is simpler than the general tech-

nique of Canny [Ca] but is nevertheless asymptotically inferior, because Canny's

technique requires only 0{n^\ogn) time. What is further intriguing here is that the

number of vertices of FP can be shown to be only O(n^), but in spite of this fact, it

is still not known how to calculate and represent FP in a connectivity-preserving

manner within a similar time bound.

The problem of planning the motion of a general convex polyhedral object B in

3-space, including translation and rotation, has been studied by Canny and Donald

[CD], using the notion of "simplified Voronoi diagrams". However, in spite of the

name, calculation and manipulation of that diagram in the general case (involving all

six degrees of freedom of B) has been quite complex, although when considering

restricted problem versions, such as translation only, the diagram becomes much

easier to manipulate.

Looking ahead into the future, there are still many deep challenges down the

road. Perhaps a major milestone will be reached when an exact and yet efficient

algorithm for a manipulator arm with six degrees of freedom will be developed.

Many simpler problems, some of which mentioned above, still defy a solution.

4. Variants of the Motion Planning Problem

(a) Optimal motion planning

The only optimal motion planning problem which has been studied extensively

thus far is that in which the moving system is represented as a single point, in which

case one aims to calculate the shortest Euclidean path connecting the initial and final

system placements, given that specified obstacles must be avoided. Most existing

work on this problem assumes that the obstacles are either polygonal (in 2-space) or

polyhedral (in 3-space).

The 2-D case is considerably simpler than the 3-D case; see Figure 9. When

the free space V in 2-D is bounded by n straight edges, it is easy to calculate the

desired shortest path in time 0(n^log n). This is done by constructing a visibility-

graph VG whose edges connect all pairs of boundary corners of V which are visible

from each other through V, and then by searching for a shortest path (in the graph-

theoretic sense) through VG (see [ShS] for a sketch of this idea). This procedure

was improved to O(n^) by Asano et al. [AAGHI], by Welzl [V»'e], and by Reif and

Storer [RS], using a cleverer method for constructing VG. This quadratic time

bound has been improved in certain special cases (see [Ro], RS]). However, it is

not known whether shortest paths for a general polygonal space V can be calculated

in sub-quadratic time. Among the special cases allowing more efficient treatment the
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most important is that of calculating shortest paths inside a simple polygon P. Lee

and Preparata [LeP] gave a linear time algorithm for this case, assuming that a tri-

angulation of P is given in advance. The Lee-Preparata result was recently extended

by Guibas et al. [GHLST], who gave a linear time algorithm which calculates all

shortest paths from a fixed source point to all vertices of (a triangulated polygon) P.

Other results on 2-D shortest paths include an 0{n log n) algorithm for finding

rectilinear shortest paths which avoid n rectilinear disjoint rectangles [dRLW]; an

O(n^) algorithm for finding Euclidean shortest motion of a circular disc or a

translating convex object in a 2-D polygonal region [HG] (cf. also [Ch]); algorithms

for cases in which the obstacles consist of a small number of disjoint convex regions

[RS], [Ro]; algorithms for the 'weighted region' case (in which the plane is parti-

tioned into polygonal regions in each of w^hich the path has a different multiplicative

cost factor) [MP]; and various other special cases.

The 3-D polyhedral shortest path problem is substantially more difficult. To

calculate shortest paths in 3-space amidst polyhedral obstacles bounded by n edges,

we can begin by noting that any such path must be piecewise linear, with corners

lying on the obstacle edges, and that it must subtend equal incoming and outgoing

angles at each such corner; see Figure 10. These remarks allow shortest path calcu-

lation to be split into two subproblems: (i) find the sequence of edges through

which the desired path must pass; (ii) find the contact points of the path with these

edges. However, even when the sequence of edges crossed by the path is known,

calculation of the contact points is still non-trivial, because it involves solution of a

large system of quartic equations, expressing the conditions of equal incoming and

outgoing angles at each crossed edge, whose precise solution may require use of one

of the algebraic techniques mentioned above (e.g. [Co], [Ca2]) thus requiring time

exponential in n (see [RS] for such an exponential-time solution). Subproblem (ii)

can also be solved using numerical iterative procedures, but even if this approximat-

ing approach is taken there still remains subproblem (i), whose only known solution

to date is exhaustive enumeration of all possible edge sequences. A recent result of

Canny and Reif [CR] has finally settled the problem by showing it to be computa-

tionally intractable (more specifically, NP-hard) in three dimensions.

One of the reasons the problem is difficult in the general polyhedral case is that

consecutive edges crossed by the shortest path can be skewed to one another. There

are, however, some special cases in which this difficulty does not arise, and they

admit efficient solutions. One such case is that in which we aim to calculate shortest

paths lying along the surface of a single convex polyhedron having n edges. In this

case subproblem (ii) can easily be solved by 'unfolding' the polyhedron surface at

the edges crossed by the path, thereby transforming the path to a straight segment

connecting the unfolded source and destination points (cf. [ShS]). Extending thi?

observation, Mount [Mo2] has devised an 0(n^log n) algorithm, which proceeds by

sophisticating an algorithmic technique originally introduced by Dijkstra to fmd
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shortest path in graphs, specifically by maintaining and updating a combinatorial

structure characterizing shortest paths from a fixed initial point to each of the edges

of the polyhedron (cf. also [ShS] for an initial version of this approach).

This result has recently been extended in several ways. A similar O(n^logn)

algorithm for shortest paths along a (not necessarily convex) polyhedral surface is

given in [MMP]. [BS] consider the problem of finding the shortest path connecting

two points lying on two disjoint convex polyhedral obstacles, and report a nearly

cubic algorithm, which makes use of the Davenport-Schinzel sequences technique

(to be described below). The case of shortest paths which avoid a fixed number k of

disjoint convex polyhedral obstacles is analyzed in [Sh3], which describes an algo-

rithm that is polynomial in the total number of obstacle edges, but is exponential in

k. Finally, an approximating pseudo-polynomial scheme for the general polyhedral

case is reported in [Pa]; this involves splitting each obstacle edge by adding suffi-

ciently many new vertices and by searching for the shortest piecewise linear path

bending only at those vertices.

Finally, we mention a few initial works on optimal motion planning for non-

point systems. Papadimitriou and Silverberg [PaS] consider the case of a rod in a 2-

D polygonal space, in which one endpoint of the rod moves along a pre-specified

polygonal path and the aim is to minimize the total rotation of the rod. O'Rourke

[0R2] also considers shortest paths for a moving rod, but restricts the kinds of

motions allowed and also the shape of the obstacles.

(b) Adaptive and exploratory motion planning

If the environment of obstacles through which motion must be planned is not

known to a robot system a priori, but the system is equipped with sensory devices,

motion planning assumes a more "exploratory" character. If only tactile (or proxim-

ity) sensing is available, then a plausible strategy might be to move along a straight

line (in physical or configuration space) directly to the target position, and when an

obstacle is reached, to follow its boundary until the original straight line of motion

is reached again. This technique has been developed and refined by Lumelsky and

his collaborators [LuS], [Lul], [Lu2], and has been successful in handling systems

with two degrees of freedom, in the sense that this strategy provably reaches the

goal, if this is at all possible, with a reasonable bound on the length of the motion.

This technique has been implemented on several real and simulated systems, and

has applications to maze-searching problems.

Attempts to extend this technique to systems with three (or more) degrees of

freedom are currently under way. One such extension, with a somewhat different

flavor, has recently been obtained by Cox and Yap [CY]. They apply the retraction

technique to the free configuration space FP, and compute within it a certain 1-

dimensional skeleton A' which captures the connectivity of FP. The twist here is that
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FP is not known in advance, so the construction of N has to be done in an incremen-

tal, exploratory manner, adding more features to N as the system explores its

environment. Cox and Yap shov,- how to implement this exploration in a controlled

manner that does not require too many "probing" steps, and which enables the sys-

tem to recognize v.hen the construction of N has been completed (if the goal has not

been reached beforehand).

If vision is also available, then other possibilities need to be considered, e.g.

the system can obtain partial information about its environment by viewing it from

the present placement, and then "explore" it to gain progressively more information

until the desired motion can be fully planned. Some of these issues are considered in

Lumelsky's and others' works.

Even when the environment is fully known to the system, other interesting

issues arise if the environment is changing. For example, when some of the objects

in the robot's environment are picked up by the robot and moved to a different

placement, one wants fast techniques for incremental updating of the environment

model and the data structures used for motion planning. Moreover, whenever the

robot grasps an object to move it, robot plus grasped object become a new moving

system and may require a different motion planning algorithm, but one whose rela-

tionship to motions of the robot alone needs to be investigated. Adaptive motion

planning problems of this kind have hardly been studied as yet.

(c) Motion planning in the presence of moving obstacles

Interesting generalizations of the motion planning problem arise when some of

the obstacles in the robot's environment are assumed to be moving along known tra-

jectories. In this case the robot's goal will be to "dodge" the moving obstacles while

moving to its target placement. In this "dynamic" motion planning problem, it is

reasonable to assume some limit on the robot's velocity and/or acceleration. Two

initial studies of this problem by Reif and Sharir [RSh] and by Sutner and Maass

[SM] indicate that the problem of avoiding moving obstacles is substantially harder

than the corresponding static problem. By using time-related configuration changes

to encode Turing machine states, they show that the problem is PSPACE-hard even

for systems with a small and fixed number of degrees of freedom (more negative

related results have been obtained in [CR]. However, polynomial-time algorithms

are available in a few particularly simple special cases. Another variant of this prob-

lem has been recently considered by Wilfong P^Vi], where the obstacles do not move

by themselves, but some of them are movable by the system B (e.g. B can 'push

aside' such obstacles to clear its passage). Again, it is shown that the general prob-

lem of this kind is PSPACE-hard, but that polynomial-time algorithms are available

in certain special cases.
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(d) Miscellaneous other variants

Many other variants of the motion planning problem have been considered. For

lack of space we cannot cover in detail all of them, but we would like to mention a

few more.

One variant deals with constrained motion planning, in which the motion of the

object B is constrained not to exceed certain velocity or acceleration thresholds. For

example, what is the fastest way for an object to go from an initial placement at

some initial velocity to a final placement at some specified final velocity, assuming

there is some bound on the maximum acceleration that B can exert. Even without

any obstacles such problems are far from being trivial, and the presence of (station-

ary or moving) obstacles makes them extremely complicated to solve. Several recent

works have addressed these issues (in addition to those of [RSh] and [SM] men-

tioned above); [OD] discusses the bounded-acceleration case mentioned above, and

[FW] study a variant in which the system has to avoid stationary obstacles in the

plane, and the curvature of the motion path cannot exceed a certain threshold.

Another class of problems deals with motion planning with uncertainty. Here

the moving system has only approximate knowledge of the geometry of the obsta-

cles and/or of its current position and velocity. Usually in this cases the main "accu-

rate" form of data that the system can acquire is a sensory feedback that tells it

when it contacts an obstacle. The objective is to devise a strategy that will guarantee

that the system reach its goal, where such a strategy usually proceeds through a

sequence of free motions (till an obstacle is hit) intermixed with compliant motions

(sliding along surfaces of contacted obstacles) until it can be ascertained that the

goal has been reached. This problem is studied, among other papers, in [Ma],

where a few initial observations about the problem are made, in [Do2], where

motion strategies for some special cases are obtained, and in [CR], which show that

the general problem is computationally infeasible in the worst case.

Finally, see [CDR] for yet another variant, namely that of kinodynamic motion

planning.

(e) General task planning

Finally we consider the general problem of task planning. Here the system is

given a complex task to perform, for example, it is required to assemble some part

from several components, or to re-structure its workcell into some new layout, but

the precise sequence of substeps needed to attain the final goal is not specified and

must be figured out by the system.

Not much has been done about an exact and efficient algorithmic approach to

this general problem, and it is clear that the problem complexity significantly

increases as compared to the simpler motion planning problem (some instances of

which, as we have seen, are already bad enough in terms of complexity). Still,
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several interesting basic problems can be distilled as special cases of task planning,

and have recently been investigated. A typical example is the problem of "movable

separability of sets", as studied by Toussaint and his collaborators (see e.g. [To]).

In this problem, one reverses the assembly process by taking the final assembled

object and attempting to take it apart by moving subcollections of its parts away

from one another, and continue this process until all parts have been separated.

Several algorithms have been obtained for various special cases (see [To], [PSS],

[Na]), and many interesting open problems have emerged. We mention one of

them. Given a collection of convex polyhedra in 3-space (with pairwise disjoint

interiors), can they always be partitioned into two disjoint and nonempty subcollec-

tions, so that the polyhedra in one collection can be translated rigidly together in

some direction so as to be separated from those in the second collection (which

remain stationary and should not collide with the moving polyhedra)? Some coun-

terexamples (in [Daw], [Na]) show that this conjecture is false if we are only

allowed to move one polyhedron at a time away from the others.

Another research area related to task planning is that of grasp planning, where

a multi-finger system has to plan a grasping of a given object B, so as to minimize

slippage, or to ensure that the fingers avoid interfering with subsequent tasks to be

executed by the gripped object (e.g. if B is to be placed on a table, no finger should

touch that face of B that is to lie on the table). See [MSS], [SS6] for two examples of

recent work in this area.

5. Results in Computational Geometry Relevant to Motion Planning

The various studies of motion planning described above make extensive use of

efficient algorithms for the geometric subproblems which they involve, for which

reason motion planning has been one of the major motivating forces that have

encouraged research in computational geometry, and have led to rich cross-

fertilization between these two areas. We have mentioned in the previous section a

variety of problems in computational geometry which arise in robotic motion plan-

ning, and will mention a few more below. Generally these problems fall into several

subareas. We mention here a few, but note that many other areas are also involved,

e.g. probabilistic algorithms in geometry, and the study of arrangements of curves

or surfaces; unfortunately, for lack of space we cannot cover them all in this survey.

(a) Intersection detection

The problem here is to detect intersections and to compute shortest distances,

e.g. between moving subparts of a robot system and stationary or moving obsta-

cles. Simplifications which have been studied include that in which all objects

involved are circular discs (in the 2-D case) or spheres (in the 3-D case). In a study

of the 2-D case of this problem. Sharir [Shi] developed a generalization of Voronoi
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diagrams for a set of (possibly intersecting) circles, and used this diagram to detect

intersections and computing shortest distances between discs in time 0{n log^n) (an

alternative and more efficient approach to this appears in [IIM]). Hopcroft,

Schwartz and Sharir [HSSl] present an algorithm for detecting intersections among n

3-D spheres which also runs in time 0{n log^n). However, this algorithm does not

adapt in any obvious way to allow proximity calculation or other significant problem

variants.

Other intersection detection algorithms appearing in the computational

geometry literature involve rectihnear objects and use multi-dimensional searching

techniques for achieving high efficiency (see [Me] for a survey of these techniques).

A recent result in [AgS] gives efficient algorithms for detecting an intersection

between any of m red Jordan arcs and any of n blue arcs in the plane (where red-

red and blue-blue intersections are allowed and need not be reported). This result

(see also (c) below) has applications to collision detection and certain instances of

motion planning, as mentioned above.

(b) Generalized Voronoi diagrams

The notion of Voronoi diagram has proven to be a useful tool in the solution of

many motion planning problems. The discussion given previously has mentioned

the use of various variants of Voronoi diagram in the retraction-based algorithms

for planning the motion of a disc [OY], or of a rod [OSYl], [OSY2], or the transla-

tional motion of a convex object [LS2], and in the intersection detection algorithm

for discs mentioned above [Shi]. The papers just cited, and some related works

([Ya4], [LS4]) describe the analysis of these diagrams and the design of efficient

algorithms for their calculation.

(c) Davenport-Schinzel sequences

Davenport-Schinzel sequences are combinatorial sequences of n symbols which

do not contain certain forbidden subsequences of alternating symbols. Sequences of

this sort appear in studies of the combinatorial complexity and of efficient tech-

niques for calculating the lower envelope of a set of n continuous functions, if it is

assumed that the graphs of any two functions in the set can intersect in some fixed

number of points at most. These sequences, whose study was initiated in [DS],

[Da], have proved to be powerful tools for analysis (and design) of a variety of

geometric algorithms, many of which are useful for motion planning.

More specifically, an (n,s) Davenport Schinzel sequence is defined to be a

sequence U composed of n symbols, such that (i) no two adjacent elements of U are

equal, and (ii) there do not exist s+2 indices /i</2< " ' <'j + 2 such that

i/,j = K,, = w,j = • • = a, u,. = u,^ = w,j^ = • • • = b, with a=^b. Let X.i(r.)

denote the maximal length of an in,s) Davenport-Schinzel sequence. An early
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study by Szemeredi [Sz] of the maximum possible length of such sequences shows

that X,(n) < C^n \og*n, where C, is a constant depending on s, and log*n is the

"iterated logarithm" function defined above. Improving on this result, Hart and

Sharir [HS] proved that Xz(n) is proportional to n a(n) where a{n) is the very

slowly growing inverse of the Ackermann function. (The inverse Ackermann func-

tion arises in many applications in logic, combinatorics and computer science. It

approaches infinity as n grows, but does this extremely slowly; for example, it does

not exceed 5 for all n up to an exponential tower 2^ having 65536 two's. See

[HS] for more details concerning this function.) Following further improvements in

[Sh2], [Sh4], the currently best known bounds on Xj(n) are due to Agarwal, Sharir

and Shor [ASS], and are (where the © notation means that both sides of the equality

are within a constant factor from each other):

Xl(n) = n; X2(ri) = 2ri - 1 (easy).

X3(«) = e(.na{n)) [HS].

X4(^) = 0(«-2°('')) [ASS].

klAn) = 0(«-2°(°^'')"')). for s>2 [ASS].

X2. + i(n) = OCrj-aCn)^^"^")'"')). for 5>2 [ASS].

XijC'J) ^ cn-l'^'"^"^''^ , for s>2 and for appropriate constants depending on s

[ASS].

These results show that, in practical terms, X,(«) is an almost linear function of n

for any fixed s, and is slightly super-linear for all 55:3.

Recently, numerous applications of these sequences to motion planning have

been found. These include the following (most of which have already been men-

tioned earlier, but are re-examined here in the context of Davenport Schinzel

sequences).

(i) Let B be a convex k-gon translating and rotating in a closed 2-D polygonal

space V bounded by n edges. The polygon containment problem calls for determin-

ing whether there exists any free placement of B, i.e. a placement in which B lies

completely within V. Some variants of this problem have been studied by Chazelle

[Cha], who showed that if such a free placement of B exists, then there also exists a

stable free placement of B, namely a placement in which B lies completely within V

and makes three simultaneous contacts with the boundary of V (see Figure 11).

Using Davenport-Schinzel sequences, Leven and Sharir have shown in [LS3] that the

number of such free stable placements is at most OiknXti^'^)) > and that they can all

be calculated in time OiknX^ikn) \ogkn). Thus, within the same time bound, one

can determine whether P can be placed inside Q.

(ii) As already mentioned, Kedem and Sharir [KS2] have used this result (and

further Davenport Schinzel arguments) to produce an 0(kn\t{kn) log kn) algorithm

for planning the motion of a convex k-gon B in a 2-D polygonal space bounded by n
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edges.

(iii) We have also mentioned the result of Guibas, Sharir and Sifrony [GSS]

that the complexity of a single face in an arrangement of n Jordan arcs in the plane,

each pair of which intersect in at most s points, is 0(Xj+2(/!)), and that such a face

can be calculated in time 0(X,+2(n) log^n). This result is the presently last step in a

series of related resuhs. The first, noted in [At] but goes back as far as [Da], [DS],

is that the lower envelope (i.e. pointwise minimum) of n continuous functions, each

pair of which intersect in at most s points, has at most X,(n) "breakpoints" (i.e.

intersection points of the given functions which appear along the graph of that

envelope). Moreover, if the given functions are only partially defined, each in

some interval over which it is continuous, then the number of breakpoints in their

lower envelope is at most X, + 2("). and this bound is tight in the worst case for cer-

tain collections of (rather irregularly-shaped) such functions. For example, when

each function has a straight line segment for a graph (in which case 5 = 1), the total

complexity (i.e. number of breakpoints) of the lower envelope is at most Oina{n)).

Wiernik and Sharir r\VS] have shown that this bound can actually be attained by cer-

tain collections of segments. Later, Pollack, Sharir and Sifrony [PSS] have extended

this result to the complexity of a single face in an arrangement of segments, and the

paper [GSS] have generalized the proof for arrangements of more general arcs as

above.

(iv) The result concerning lower envelopes of segments in the plane has been

generalized in [PS], [EGS] to lower envelopes of simplices in any dimension. For

example, in three dimensions, it was shown that the lower envelope of n triangles

has combinatorial complexity 0{n'^a{n)), which again is tight in the worst case, and

that it can be calculated in time of the same order of magnitude. This result has

been applied in [EGS] to show that the boundary of the free configuration space FP
of a polyhedral object with k faces flying (without rotating) over a polyhedral ter-

rain with n faces, has combinatorial complexity O {{kn)^ ai^kn)) (this should be con-

trasted with the weaker results of Aronov and Sharir [ArS] mentioned above, where

a single cell in such an arrangement of triangles, rather than their easier-to-analyze

lower envelope, is being considered).

(v) Baltsan and Sharir [BS] have given an 0(n^X]o(/i) log ;i) (that is, nearly

cubic) algorithm for finding the shortest Euclidean path between two points in 3-

space avoiding the interior of two disjoint convex polyhedra having n faces alto-

gether.

(vi) Agarwal and Sharir [AgS] have given an algorithm for detecting an inter-

section between a simple polygon B having m sides, and any of a collection of n

arcs, each pair of which intersect in at most j points, in time

C'(Xj + 2(") lo£^" + (^j + 2(^) + ''0 log (m -l-n)). The algorithm is based on the

results of [GSS], and has applications in efficient motion planning for moving B
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around a right-angle corner in a corridor, as mentioned above.

(vii) The analysis in [0SY2] of the complexity of the generalized Voronoi

diagram, introduced in [OSYl] for motion planning for a rod in 2-space, also

involves Davenport Schinzel sequences.

Many additional applications of Davenport-Schinzel sequences to other basic

and applied geometric problems have been found recently. Among them we mention

the papers [At], [HS], [CS], [MO], [JK], [OW], [CI]; a survey on these sequences

and their applications can be found in [Sh6].
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Figure 1: Illustration of the motion planning problem.

Figure 2: Constraint curves and the space FP for a translating segment.
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Figure 3: An FP-yertcj. for 8 spider-like system.
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Figure 4: Critical orientations for a moring rod in the plane.
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Figure 5: Voronoi Tertices for a ladder.

Figure 6: The fi-Voronoi diagram.
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Figure 7: Quadratic-size FP for a translating non-conTex planar object.

Figure 8: A face in an arrangement of segments.
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Figure 9: An Instance of the 2-D Euclidean shortest path problem.

Figure 10: The equal angle condition for shortest paths in 3-D.
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Figure 11: Critical free contacts for a conrex polygon.
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