
I Using Metrics to Manage
Software Projects
Edward E Weller

Bull HN Information Systems*

In 1989, Bull’s Arizona
facility launched a

project management
program that required

additional software
metrics and

inspections. Today, the
company enjoys
improvements in

quality, productivity,
and cost.

September 1994

ive years ago, Bull’s Enterprise Servers Operation in Phoenix, Arizona, used
a software process that, although understandable, was unpredictable in terms
of product quality and delivery schedule. The process generated products

with unsatisfactory quality levels and required significant extra effort to avoid major
schedule slips.

All but the smallest software projects require metrics for effective project man-
agement. Hence, as part of a program designed to improve the quality, productivity,
and predictability of software development projects, the Phoenix operation launched
a series of improvements in 1989. One improvement based software project man-
agement on additional software measures. Another introduced an inspection pro-
gram,’ since inspection data was essential to project management improvements.
Project sizes varied from several thousand lines of code (KLOC) to more than 300
KLOC.

The improvement projects enhanced quality and productivity. In essence, Bull
now has a process that is repeatable and manageable, and that delivers higher qual-
ity products at lower cost. In this article, I describe the metrics we selected and im-
plemented, illustrating with examples drawn from several development projects.

Project management levels
There are three levels of project management capability based on software-

metrics visibility. (These three levels shouldn’t be equated with the five levels in the
Software Engineering Institute’s Capability Maturity Model.) Describing them will
put the Bull examples in perspective and show how we enhanced our process through
gathering, analyzing, and using data to manage current projects and plan future ones.

First level. In the simplest terms, software development can be modeled as shown
in Figure 1. Effort, in terms of people and computer resources, is put into a process
that yields a product. All too often, unfortunately, the process can only be described

* Since writing this article, the author has joined Motorola.

001%9162194/$4.00019941EEE 27

x

Figure 1. Sottwn pment level 1:
no control of the development process.
Some amount of effort goes into the
process. and a product of indetermi-
nant size and qualib is developed early
or (usually) late. compared to the plan.

I I

Figure 2. Defect discovery p&file for
lower development levels. The number
of defects in the product exceeds the
ability of limited resources to discover
and fix defects. Once the defect num-
ber has been reduced sufficiently, the
discoven- rate declines toward zero.
Predicting when the knee will occur is
the challenge.

by the question mark in Figure 1. Project
managers and development staff do not
plan the acti\-ities or collect the metrics
that would allow them to control their
project.

Second level. The process depicted in
Figure 1 rarely works for an organization
de\ eloping operating-system software or
large applications. There is usually some
form of control in the process. We col-
lected test defect data in integration and
system test for many years for several
large system releases. and we developed
profiles for defect removal that allowed
us to predict the number of weeks re-
maining before test-cycle completion.
The profile was typically flat for many
weeks (or months. for larger system re-
leases in the lOO- to 300.KLOC range)
until we reached a “knee” in the profile
where the defect discovery rate dropped
toward zero (see Figure 2).

Several factors limit the defect discov-
ery rate:

l Defects have a higher probability of
being “blocking defects,” which pre-
bent other test execution early in the

‘8

Figure 3. Software
development at
level 2: measure-
ment of the code
and test phases
begins.

Figure 4. Software
development level
3: control of the
entire develop-
ment process.
You measure the
requirements and
design process to
provide feedfor-

f Feedback ~ A A!
.-W Fe&forward j __________.._____.__................................. i

ward to the rest of the development as well as feedback to future planning activities.

integration- and system-test cycle.
. The defect discovery rate exceeds the

development staff’s capacity to ana-
lyze and fix problems, as test pro-
gresses and more test scenarios can
be run in parallel.

Although this process gave us a fairly
predictable delivery date once the knee
was reached, we could not predict when
the knee would occur. There were still
too many variables (as represented by the
first two boxes in Figure 3). There was no
instrumentation on the requirements or
design stages (the “?” in Figure 3).

Our attempts to count or measure the
size of the coding effort were. in a sense,
counterproductive. The focus of the de-
velopment effort was on coding because
code completed and into test was a count-
able, measurable element. This led to a
syndrome we called WISCY for “Why
isn’t Sam coding yet?” We didn’t know
how to measure requirements analysis or
design output. other than by document
size.

We also didn’t know how to estimate
the number of defects entering into test.
Hence, there was no way to tell how
many weeks we would spend on the flat
part of the defect-removal profile. Pre-
dicting delivery dates for large product
releases with 200 to 300 KLOC of new
and changed source code was difficult. at
best.

A list of measures is available in the
second-level model (Figure 3):

l effort in person-months,
l computer resources used,

l the product size when shipped, and
l the number of defects found in the

integration and system tests.

Although these measures are “available,”
we found them difficult to use in project
planning - there was little correlation
among the data. and the data was not
available at the right time (for instance.
code size wasn’t known until the work
was completed). Project managers
needed a way to predict and measure
what they were planning.

Third level. The key element of the ini-
tiative was to be able to predict develop-
ment effort and duration. We chose two
measures to add to those we were already
using: (1) size estimates and (2) defect re-
moval for the entire development cycle.

Because the inspection program had
been in place since early 1990, we knew
we would have significant amounts of
data on defect removal. Size estimating
was more difficult because we had to
move from an effort-based estimating
system (sometimes biased by available
resources) to one based on quantitative
measures that were unfamiliar to most
of the staff. The size measures were nec-
essary to derive expected numbers of
defects, which then could be used to pre-
dict test schedules with greater accuracy.
This data also provided feedback to
the planning organization for future
projects.

To meet the needs of the model shown
in Figure 4, we needed the following mea-
sures (italics designate changes from the
prior list):

COMPUTER

The sidehar “Data collcct~on sheet”
shows a sample l’orm used to compile
data.

Data collection sheet

Project planning
Once the project team develops the

first six estimate. the project manager
lxsini; to USL‘ the data ~ as well as his-
~orical data tram our metrics database ~
for clYort and xhcdule estimating. Sev-
c~-al examples II-oni actual projects illus-
trate these point\.

Using de&t data to plan test activi-
ties. u’c use the Inspection and test defect
database\ as the primary defect-cstima-
tion SOWcc. The in\pcction data provides
defect detection r;llr\ for design and code
I~! product idcntil’ier (PID). Our test
dat;~basc can Ix \carchcd b\ the same

PID. w a defect depletion curve? for the
project can be constructed by summariz-
ing all the project‘s PIDs. (Several inter-
esting examples in Humphrey’ provided
a template for constructing a simple
spreadsheet application that we used to
plan and track defect injection and re-
moval rates.) Figure 5 shows such a curve
for one project. The size and defect den-
sity estimates were based on experience
from a prior project. The project man-
ager estimated thr unit and integration
test effort from the defect estimates and
the known cost to find and fix defects in
test. The estimates and actual amounts
are compared in the “Project trackins
and analysis” s;cction below.

This ~~a~~if~ sheet,” developed by Kathy Grif- elements tare estimated QI coileoted at each develop-
fit& Software Engkxeering Process Group projeot man- merit-cycle phase, The &is with XX in them indicate data
ager at B&k, compile6 effort, size, defect, and completion ooi at the et@ of hiigh-level design; the &Is with YY
data. Although the sheet L somewhat busy, only six data efe derive4 from the XX data..

DATA COLLECTION SHEET

Project Name 1 c 4
I I

Build
Product or Feature Group Identifier(s)
(PIDs, IDS, etc.)
Date of Initial Estimates

N&C Original KLOC Est

N&C Revised KLOC Est

N&C KLOC Actuals

Effort - Estimate (PM)

Effort - Revised (PM)

Effort - Actual (PM)

Defects - Estimate

Defects Actual

Est Phase End Dates

GS = General Ship
HLD = High-Level Design
LLD = Low-Level Design

YY

xx

LEVl = Unit. or Level 1, Test
LEV2 = Integration. or Level 2. Test
LEV3 = System. or Level 3, Test
LEV4 = Beta. or Level 4. Test

N&C = New and Changed
PID = Product IDentifier
PM = Person Months
REQ = Requirements Analysis

Development phase

Figure 5. Esti-
mated versus
actual defect
depletion curves.

different viewpoint. might have spotted
the anomaly. Unit test data accuracy
might have been questioned as follows:

*Are some of the errors caused by
high-level design defects?

l Why weren’t any design defects
found in the integration test’?

Multiple data views. The data in Figure the later stages of the system test: this
6 helped the project manager analyze re- demonstrated why it’s important to look
sults from the integration test. The proj- at more than the total number of defects
ect team had little experience with the or the defect density, even when the num-
type of product to be developed, so a ber of defects is below expectations. A
large number of defects were predicted. closer look at the early development
The team also decided to spend more ef- stages shows that very few requirements
fort on the unit test. After the unit test, or high-level design defects were found in
the results seemed within plan, as shown the inspections. The low-level design in-
in Figure 6a. During the integration test, spections also found fewer defects than
some concern was raised that the num- expected. What the project members
ber of defects found was too high. Once missed in the data analysis during the unit
the data was normalized against the proj- and integration tests was the large num-
ect size and compared to projections for ber of design errors being detected (see
the number of defects expected by the Figure 6b). This example demonstrates
development team, the level of concern the value of independent data collection
was lowered. and analysis as soon as it is available.

However, this project had a serious re-
quirement error that was discovered in

An objective analysis. or at least an
analysis that looked at the project from a

When the data was charted with the de-
fect source added, the design-defect data
discovery rate in the unit test was obvi-
ous. The inaccuracy of the integration test
data also became apparent. A closer look
at the project revealed the source of the
defect data had not been collected.

We also questioned members of the
design inspection teams: we found that
key people were not available for the
high-level design inspection. As a result,
we changed the entry criteria for low-
level design to delay the inspection for
two to three weeks, if necessary, to let a
key system architect participate in the in-
spection. Part of the change required a
risk analysis of the potential for scrub-
bing the low-level design work started be-
fore the inspection.

Using test cost. On one large project.
the measured cost in the integration test
was much higher than expected. Even
though you know the cost of defects in
test is high. an accurate cost tally can sur-
prise you. If you haven’t gathered the data
for a project. the following example may
convince you that the effort is worthwhile.

On this large project. it took

Development phase

I (a)

40-
35-
30-
25-
20-
15-
10-

5-
O-

Phases
0 Coding
0 LLD
n HLD
n R/A

n
1

Development phase

W

Figure 6. Projected versus actual number of defects found per thousand lines of code from inspections and test (a), and addi-
tional information when the defect source is included (b).

30 COMPUTER

DUE TO LACK OF CONTRAST, GRAPHS DID NOT REPRODUCE WELL.
GRAF’HS FOLLOW SAME SEQUENCE AS LEGEND

__ __ _~_..__.~. ,

l 80 hours to find and fix the typical de-
fect,

03.5 person-months to rebuild the
product and rerun the test suite, and

l 8-10 calendar days to complete the
retest cycle.

Three months’ effort represents the fixed
cost of test for this product area.

This analysis reemphasizes the need to
spend more time and effort on inspect-
ing design and code work products. How
many additional hours should be spent
inspecting the work products (design,
code, and so forth) versus the months of
effort expended in test?

Sanity check. Size estimates and soft-
ware development attribute ratings are
used as input to the Cocomo (Construc-
tive Cost Model) estimating modeL3 (Joe
Wiechec of Bull’s Release Management
group developed a Cocomo spreadsheet
application based on Boehm3 for sched-
ule and effort sanity checks.) The accu-
racy of the effort estimate produced by
Cocomo depends on accurate size esti-
mate and software development attribute
ratings (analyst capability, programmer
capability, and so forth).

We compare the assumed defect rates
and cost to remove these defects with the
Cocomo output as a sanity check for the
estimating process. Since project man-
agers often assign attribute ratings opti-
mistically, the defect data based on proj-
ect and product history provides a
crosscheck with the cost for unit and in-
tegration test derived from the Cocomo
estimate. Reasonable agreement be-
tween Cocomo test-effort estimates and
estimates derived from defect density and
cost to find and fix per-defect figures con-
firm that attribute ratings have been rea-
sonably revised. This sanity check works
only for the attribute ratings, since both
the Cocomo effort estimates and test cost
estimates depend on the size estimate.

Project tracking
The keys to good project tracking are

defining measurable and countable enti-
ties and having a repeatable process for
gathering and counting. During the de-
sign phase, the metrics available to the
project manager are

l effort spent in person-months,
l design-document pages, and
l defects found via work product re-

September 1994 31

Table 1. Defect density inferences.

Defect Density Observation Inferences

Lower than expected Size estimate is high (good).
Inspection defect detection is low (bad).
Work product quality is high (good).
Insufficient level of detail in work product (bad).

Higher than expected Size estimate is low (bad).
Work product quality is poor (bad).
Inspection defect detection is high (good).
Too much detail in work product (good or bad).

view, inspection, or use in subsequent
development stages.

Interpreting effort variance. When
effort expenditures are below plan, the
project will typically be behind schedule
because the work simply isn’t getting
done. An alternative explanation might
be that the design has been completed,
but without the detail level necessary to
progress to the next development phase.
This merely sets the stage for disaster
later.

We use inspection defect data from de-
sign inspection to guard against such dam-
aging situations. If the density falls below
a lower limit of 0.1 to 0.2 defects per page
versus an expected 0.5 to 1.0 defects per
page, the possibility increases that the
document is incomplete. When defect de-
tection rates are below 0.5 defects per
page, the preparation and inspection rates
are examined to verify that sufficient time
was spent in document inspection. We
also calculate the inspection defect den-
sity using the number of major defects
and the estimated KLOC for the project.
If the defect density is lower than ex-
pected, either the KLOC estimate is high
or the detail level in the work product is
insufficient (see Table 1).

When trying to determine which of the
eight possible outcomes reflect the proj-
ect status, project managers must draw
on their experience and their team and
product knowledge. I believe the project
manager’s ability to evaluate the team’s
inspection effectiveness will be better
than the team’s ability to estimate the
code size. In particular, a 2-to-1 increase
in detection effectiveness is far less likely
than a 2-to-1 error in size estimating.

When effort expenditures are above
the plan and work product deliverables

are on or behind schedule, the size esti-
mate was clearly lower than it should
have been. This also implies later stages
will require more effort than was
planned.

In both cases, we found that the pro-
cess instrumentation provided by inspec-
tions was very useful in validating suc-
cessful design completion. The familiar
“90 percent done” statements have dis-
appeared. Inspections are a visible, mea-
surable gate that must be passed.

Project tracking and analysis. Inspec-
tion defect data adds several dimensions
to the project manager’s ability to evalu-
ate project progress. Glass4 and Graham5
claim that defects will always be a part of
the initial development effort. (Glass says
design defects are the result of the cogni-
tive/creative design process, and Graham
says errors are “inevitable, not sinful, and
unintentional.“) Humphrey presents data
indicating that injection rates of 100 to
200 defects per KLOC of delivered code
are not unusual.6 Although we have seen
a 7-to-1 difference in defect injection
rates between projects, the variance is
much less for similar projects.

For the same team doing similar work,
the defect injection rate is nearly the
same. The project analyzed in Figure 5
involved a second-generation product
developed by many of the people who
worked on the first-generation product.
At the end of the low-level design phase,
Steve Magee, the project manager, no-
ticed a significant difference in the esti-
mated and actual defect-depletion
counts for low-level design defects. The
estimate was derived from the earlier
project, which featured many similar
characteristics. There was a significant
increase in the actual defect data. We

Table 2. Measures and possible inferences during requirements and design phases.

Measure Value Inference

Effort Above plan Project is larger than planned, if not ahead of
schedule; or project is more complex than
planned, if on schedule.

Below plan Project is smaller than estimated, if on schedule;
or project is behind schedule; or design detail is
insufficient, if on or ahead of schedule.

Defects
Detected

Above plan Size of project is larger than planned; or quality
is suspect; or inspection detection effectiveness
is better than expected.

Below plan Inspections are not working as well as expected;
or design lacks sufficient content; or size of
project is smaller than planned; or quality is
better than expected.

Size Above plan Marketing changes or project complexity are
growing - more resource or time will be
needed to complete later stages.

Below plan Project is smaller than estimated; or
something has been forgotten.

also had some numbers from the first
project that suggested inspection effec-
tiveness (defects found by inspection di-
vided by the total number of defects in
the work product) was in the 75 percent
range for this team.

Again, we were able to use our inspec-
tion data to infer several theories that ex-
plained the differences. The defect shift
from code to low-level design could be
attributed to finding defects in the low-

level design inspections on the second
project, rather than during code inspec-
tions in the first project. A closer look at
the first project defect descriptions from
code inspections revealed that a third of
the defects were missing functionality
that could be traced to the low-level de-
sign, even though many defects had been
incorrectly tagged as coding errors.
Reevaluating the detailed defect de-
scriptions brought out an important fact:

Dewbmmt phase

13
JL U-M-I

Figure 7. Actual
defect density data
for the project de-
picted in Figure 5.

The percentage of design defects de-
tected in code inspection on the first proj-
ect was higher than we thought.

We were also concerned by the num-
ber of defects, which exceeded the total
we had estimated even after accounting
for the earlier detection. It seemed more
likely that the size estimate was low
rather than that there was a significant
increase in defect detection effective-
ness. In fact, the size estimate was about
50 percent low at the beginning of low-
level design. The project manager ad-
justed his size estimates and conse-
quently was better able to predict unit
test defects when code inspections were
in progress, and time for both unit and
integration test.

Using defect data helped the project
manager determine that design defects
were being discovered earlier and proj-
ect size was larger than expected. Hence,
more coding effort and unit and integra-
tion test time would be needed.

Figure 7 shows the actual data as this
project entered system test. Comparing
the data in Figures 5 and 7 indicates a
shift in defect detection to earlier stages
in the development cycle; hence, the proj-
ect team is working more effectively.

D efect data can be used as a key el-
ement to improve project plan-
ning. Once a size estimate is

available, historical data can be used to
estimate the number of defects expected
in a project, the development phase
where defects will be found, and the cost
to remove the defects.

Once the defect-depletion curve for
the project is developed, variances from
the predictions provide indicators that
project managers can examine for po-
tential trouble spots. Table 2 summarizes
these measures, their value (above or be-
low plan), and the possible troubles indi-
cated. These measures and those listed
in Table 1 answer many of the questions
in the design box in Figure 3.

One difficulty project managers must
overcome is the unwillingness of the de-
velopment staff to provide defect data.
Grady’ mentions the concept of public
versus private data, particularly regarding
inspection-data usage. Unless the project
team is comfortable with making this
data available to the project manager, it
is difficult to gather and analyze the data
in time for effective use.

I believe that continuing education on
the pervasiveness of defects, and recog-

COMPUTER
DUE TO LACK OF CONTRAST, GRAPHS DID NOT REPRODUCE WELL.

GRAF’HS FOLLOW SAME SEQUENCE AS LEGEND
.-- .- _.

nition that defects are a normal occur-
rence in software development, is a crit-
ical first step in using defect data more
effectively to measure development
progress and product quality. Only
through collecting and using defect data
can we better understand the nature and
cause of defects and ultimately improve
product quality. n

Acknowledgments
I thank John T. Harding and Ron Radice

for their many hours of discussion on defect
removal as a project management tool; Steve
Magee, Fred Kuhlman, and Ann Holladay for
their willingness to use the methods described
in this article on their projects; Jean-Yves
LeGoic for his excellent critique; Barbara
Ahlstrand, Robin Fulford, and George Mann
for inspecting the manuscript; and the anony-
mous referees for their helpful recommenda- ,.

5.

6.

W. Humphrey, Managing the Software
Process, 1990, Addison-Wesley, Reading,
Mass., pp. 352-355.

B.W. Boehm, Software Engineering Eco-
nomics, Prentice Hall, Englewood Cliffs,
N.J.. 1981.

R. Glass, “Persistent Software Errors: 10
Years Later,” Proc. First Int’l Software
Test, Analysis, and Rev. Conf.. Software
Quality Engineering, Jacksonville, Fla.,
1992.

D. Graham, “Test Is a Four Letter Word:
The Psychology of Defects and Detec-
tion,” Proc. First Int’l Software Testing,
Analysis, and Rev. Conf, 1992, Software
Quality Engineering, Jacksonville, Fla.

W. Humphrey, “The Personal Software
Process Paradigm,” Sixth Software Eng.
Process Grouo Nat’1 Meetinp. Software

Edward F. Weller is a
technical staff engineer
at Motorola’s Satellite
Communications Divi-
sion, where he is respon-
sible for developing
software subcontract
management processes.
Previously, he was the
software process archi-

tect for the Bull HN Information System’s
Mainframe Operating Systems Group.

Weller received a BSEE from the Univer-
sity of Michigan and an MSEE from the
Florida Institute of Technology. He was
awarded Article of the Year honors in 1993 by
IEEE Software for authoring “Lessons from
Three Years of Inspection Data.” He is a mem-
ber of the Software Engineering Institute’s
Software Measurements Steering Committee
and is co-chair of the Software Inspection and
Review Organization, a special-interest group
promoting inspection process usage. He is a se-
nior member of the IEEE and a member of the
IEEE Computer Society.

uons.

References
Eng. Inst., Carnegie Mellon Univ., Pitts-
burgh, 1994.

1. E. Weller, “Lessons from Three Years of
Inspection Data,” IEEE Software, Vol. 10,
No. 5, Sept. 1993, pp. 38-45.

I. R. Grady, Practical Software Metrics For Readers can contact Weller at Motorola
Project Management and Process Im- Government Systems and Technology, 2501 S.
provement, Prentice Hall, Englewood Price Rd., MS G1137, Chandler, AZ 85248-
Cliffs, N.J., 1992, pp. 104-107. 2899, e-mail ed-Weller-p26708@email.mot.com.

Does Your Software Have Bugs?
You need

Insight++” 2.0
A source-level automatic runtime debugger for C and Ctt

/bght++ automatically detects
on average 30% more bugs than
other debuggers, helping you to
produce higher quality software
faster.

For a limited time, get a multi-
user license for only $1495 or
call for a free trial.

Insight++ finds all bugs related to:
d memory corruption

l dynamic, static/global,
and stack/local

(/ memory leaks
(/ memory allocation

l new and delete
(/ I/O errors
(/ pointer errors

Available for Sun, SGI, DEC, I/ library function calls
HP9000, IBM RS/6000, and l mismatched arguments
others. l invalid parameters

ParaSoft Corporation
Phone: (818) 792-9941 FAX: (818) 792-0819 E-mail: insight@parasoft.com Web: http://www.parasoft.com

Reader Service Number 3

-l-T -

