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ive years ago, Bull’s Enterprise Servers Operation in Phoenix, Arizona, used 
a software process that, although understandable, was unpredictable in terms 
of product quality and delivery schedule. The process generated products 

with unsatisfactory quality levels and required significant extra effort to avoid major 
schedule slips. 

All but the smallest software projects require metrics for effective project man- 
agement. Hence, as part of a program designed to improve the quality, productivity, 
and predictability of software development projects, the Phoenix operation launched 
a series of improvements in 1989. One improvement based software project man- 
agement on additional software measures. Another introduced an inspection pro- 
gram,’ since inspection data was essential to project management improvements. 
Project sizes varied from several thousand lines of code (KLOC) to more than 300 
KLOC. 

The improvement projects enhanced quality and productivity. In essence, Bull 
now has a process that is repeatable and manageable, and that delivers higher qual- 
ity products at lower cost. In this article, I describe the metrics we selected and im- 
plemented, illustrating with examples drawn from several development projects. 

Project management levels 
There are three levels of project management capability based on software- 

metrics visibility. (These three levels shouldn’t be equated with the five levels in the 
Software Engineering Institute’s Capability Maturity Model.) Describing them will 
put the Bull examples in perspective and show how we enhanced our process through 
gathering, analyzing, and using data to manage current projects and plan future ones. 

First level. In the simplest terms, software development can be modeled as shown 
in Figure 1. Effort, in terms of people and computer resources, is put into a process 
that yields a product. All too often, unfortunately, the process can only be described 
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001%9162194/$4.00019941EEE 27 

x 



Figure 1. Sottwn pment level 1: 
no control of the development process. 
Some amount of effort goes into the 
process. and a product of indetermi- 
nant size and qualib is developed early 
or (usually) late. compared to the plan. 
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Figure 2. Defect discovery p&file for 
lower development levels. The number 
of defects in the product exceeds the 
ability of limited resources to discover 
and fix defects. Once the defect num- 
ber has been reduced sufficiently, the 
discoven- rate declines toward zero. 
Predicting when the knee will occur is 
the challenge. 

by the question mark in Figure 1. Project 
managers and development staff do not 
plan the acti\-ities or collect the metrics 
that would allow them to control their 
project. 

Second level. The process depicted in 
Figure 1 rarely works for an organization 
de\ eloping operating-system software or 
large applications. There is usually some 
form of control in the process. We col- 
lected test defect data in integration and 
system test for many years for several 
large system releases. and we developed 
profiles for defect removal that allowed 
us to predict the number of weeks re- 
maining before test-cycle completion. 
The profile was typically flat for many 
weeks (or months. for larger system re- 
leases in the lOO- to 300.KLOC range) 
until we reached a “knee” in the profile 
where the defect discovery rate dropped 
toward zero (see Figure 2). 

Several factors limit the defect discov- 
ery rate: 

l Defects have a higher probability of 
being “blocking defects,” which pre- 
bent other test execution early in the 
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Figure 3. Software 
development at 
level 2: measure- 
ment of the code 
and test phases 
begins. 

Figure 4. Software 
development level 
3: control of the 
entire develop- 
ment process. 
You measure the 
requirements and 
design process to 
provide feedfor- 

f Feedback ~ A A . . . . . . . . . . . . . . . . . . ...! 
.-W Fe&forward j __________.._____.__................................. i 

ward to the rest of the development as well as feedback to future planning activities. 

integration- and system-test cycle. 
. The defect discovery rate exceeds the 

development staff’s capacity to ana- 
lyze and fix problems, as test pro- 
gresses and more test scenarios can 
be run in parallel. 

Although this process gave us a fairly 
predictable delivery date once the knee 
was reached, we could not predict when 
the knee would occur. There were still 
too many variables (as represented by the 
first two boxes in Figure 3). There was no 
instrumentation on the requirements or 
design stages (the “?” in Figure 3). 

Our attempts to count or measure the 
size of the coding effort were. in a sense, 
counterproductive. The focus of the de- 
velopment effort was on coding because 
code completed and into test was a count- 
able, measurable element. This led to a 
syndrome we called WISCY for “Why 
isn’t Sam coding yet?” We didn’t know 
how to measure requirements analysis or 
design output. other than by document 
size. 

We also didn’t know how to estimate 
the number of defects entering into test. 
Hence, there was no way to tell how 
many weeks we would spend on the flat 
part of the defect-removal profile. Pre- 
dicting delivery dates for large product 
releases with 200 to 300 KLOC of new 
and changed source code was difficult. at 
best. 

A list of measures is available in the 
second-level model (Figure 3): 

l effort in person-months, 
l computer resources used, 

l the product size when shipped, and 
l the number of defects found in the 

integration and system tests. 

Although these measures are “available,” 
we found them difficult to use in project 
planning - there was little correlation 
among the data. and the data was not 
available at the right time (for instance. 
code size wasn’t known until the work 
was completed). Project managers 
needed a way to predict and measure 
what they were planning. 

Third level. The key element of the ini- 
tiative was to be able to predict develop- 
ment effort and duration. We chose two 
measures to add to those we were already 
using: (1) size estimates and (2) defect re- 
moval for the entire development cycle. 

Because the inspection program had 
been in place since early 1990, we knew 
we would have significant amounts of 
data on defect removal. Size estimating 
was more difficult because we had to 
move from an effort-based estimating 
system (sometimes biased by available 
resources) to one based on quantitative 
measures that were unfamiliar to most 
of the staff. The size measures were nec- 
essary to derive expected numbers of 
defects, which then could be used to pre- 
dict test schedules with greater accuracy. 
This data also provided feedback to 
the planning organization for future 
projects. 

To meet the needs of the model shown 
in Figure 4, we needed the following mea- 
sures (italics designate changes from the 
prior list): 
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The sidehar “Data collcct~on sheet” 
shows a sample l’orm used to compile 
data. 

Data collection sheet 

Project planning 
Once the project team develops the 

first six estimate. the project manager 
lxsini; to USL‘ the data ~ as well as his- 
~orical data tram our metrics database ~ 
for clYort and xhcdule estimating. Sev- 
c~-al examples II-oni actual projects illus- 
trate these point\. 

Using de&t data to plan test activi- 
ties. u’c use the Inspection and test defect 
database\ as the primary defect-cstima- 
tion SOWcc. The in\pcction data provides 
defect detection r;llr\ for design and code 
I~! product idcntil’ier (PID). Our test 
dat;~basc can Ix \carchcd b\ the same 

PID. w a defect depletion curve? for the 
project can be constructed by summariz- 
ing all the project‘s PIDs. (Several inter- 
esting examples in Humphrey’ provided 
a template for constructing a simple 
spreadsheet application that we used to 
plan and track defect injection and re- 
moval rates.) Figure 5 shows such a curve 
for one project. The size and defect den- 
sity estimates were based on experience 
from a prior project. The project man- 
ager estimated thr unit and integration 
test effort from the defect estimates and 
the known cost to find and fix defects in 
test. The estimates and actual amounts 
are compared in the “Project trackins 
and analysis” s;cction below. 

This ~~a~~if~ sheet,” developed by Kathy Grif- elements tare estimated QI coileoted at each develop- 
fit& Software Engkxeering Process Group projeot man- merit-cycle phase, The &is with XX in them indicate data 
ager at B&k, compile6 effort, size, defect, and completion ooi at the et@ of hiigh-level design; the &Is with YY 
data. Although the sheet L somewhat busy, only six data efe derive4 from the XX data.. 

DATA COLLECTION SHEET 

Project Name 1 c 4 
I I 

Build 
Product or Feature Group Identifier(s) 
(PIDs, IDS, etc.) 
Date of Initial Estimates 

N&C Original KLOC Est 

N&C Revised KLOC Est 

N&C KLOC Actuals 

Effort - Estimate (PM) 

Effort - Revised (PM) 

Effort - Actual (PM) 

# Defects - Estimate 

# Defects Actual 

Est Phase End Dates 

GS = General Ship 
HLD = High-Level Design 
LLD = Low-Level Design 

YY 

xx 

LEVl = Unit. or Level 1, Test 
LEV2 = Integration. or Level 2. Test 
LEV3 = System. or Level 3, Test 
LEV4 = Beta. or Level 4. Test 

N&C = New and Changed 
PID = Product IDentifier 
PM = Person Months 
REQ = Requirements Analysis 
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Figure 5. Esti- 
mated versus 
actual defect 
depletion curves. 

different viewpoint. might have spotted 
the anomaly. Unit test data accuracy 
might have been questioned as follows: 

*Are some of the errors caused by 
high-level design defects? 

l Why weren’t any design defects 
found in the integration test’? 

Multiple data views. The data in Figure the later stages of the system test: this 
6 helped the project manager analyze re- demonstrated why it’s important to look 
sults from the integration test. The proj- at more than the total number of defects 
ect team had little experience with the or the defect density, even when the num- 
type of product to be developed, so a ber of defects is below expectations. A 
large number of defects were predicted. closer look at the early development 
The team also decided to spend more ef- stages shows that very few requirements 
fort on the unit test. After the unit test, or high-level design defects were found in 
the results seemed within plan, as shown the inspections. The low-level design in- 
in Figure 6a. During the integration test, spections also found fewer defects than 
some concern was raised that the num- expected. What the project members 
ber of defects found was too high. Once missed in the data analysis during the unit 
the data was normalized against the proj- and integration tests was the large num- 
ect size and compared to projections for ber of design errors being detected (see 
the number of defects expected by the Figure 6b). This example demonstrates 
development team, the level of concern the value of independent data collection 
was lowered. and analysis as soon as it is available. 

However, this project had a serious re- 
quirement error that was discovered in 

An objective analysis. or at least an 
analysis that looked at the project from a 

When the data was charted with the de- 
fect source added, the design-defect data 
discovery rate in the unit test was obvi- 
ous. The inaccuracy of the integration test 
data also became apparent. A closer look 
at the project revealed the source of the 
defect data had not been collected. 

We also questioned members of the 
design inspection teams: we found that 
key people were not available for the 
high-level design inspection. As a result, 
we changed the entry criteria for low- 
level design to delay the inspection for 
two to three weeks, if necessary, to let a 
key system architect participate in the in- 
spection. Part of the change required a 
risk analysis of the potential for scrub- 
bing the low-level design work started be- 
fore the inspection. 

Using test cost. On one large project. 
the measured cost in the integration test 
was much higher than expected. Even 
though you know the cost of defects in 
test is high. an accurate cost tally can sur- 
prise you. If you haven’t gathered the data 
for a project. the following example may 
convince you that the effort is worthwhile. 

On this large project. it took 
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Figure 6. Projected versus actual number of defects found per thousand lines of code from inspections and test (a), and addi- 
tional information when the defect source is included (b). 
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l 80 hours to find and fix the typical de- 
fect, 

03.5 person-months to rebuild the 
product and rerun the test suite, and 

l 8-10 calendar days to complete the 
retest cycle. 

Three months’ effort represents the fixed 
cost of test for this product area. 

This analysis reemphasizes the need to 
spend more time and effort on inspect- 
ing design and code work products. How 
many additional hours should be spent 
inspecting the work products (design, 
code, and so forth) versus the months of 
effort expended in test? 

Sanity check. Size estimates and soft- 
ware development attribute ratings are 
used as input to the Cocomo (Construc- 
tive Cost Model) estimating modeL3 (Joe 
Wiechec of Bull’s Release Management 
group developed a Cocomo spreadsheet 
application based on Boehm3 for sched- 
ule and effort sanity checks.) The accu- 
racy of the effort estimate produced by 
Cocomo depends on accurate size esti- 
mate and software development attribute 
ratings (analyst capability, programmer 
capability, and so forth). 

We compare the assumed defect rates 
and cost to remove these defects with the 
Cocomo output as a sanity check for the 
estimating process. Since project man- 
agers often assign attribute ratings opti- 
mistically, the defect data based on proj- 
ect and product history provides a 
crosscheck with the cost for unit and in- 
tegration test derived from the Cocomo 
estimate. Reasonable agreement be- 
tween Cocomo test-effort estimates and 
estimates derived from defect density and 
cost to find and fix per-defect figures con- 
firm that attribute ratings have been rea- 
sonably revised. This sanity check works 
only for the attribute ratings, since both 
the Cocomo effort estimates and test cost 
estimates depend on the size estimate. 

Project tracking 
The keys to good project tracking are 

defining measurable and countable enti- 
ties and having a repeatable process for 
gathering and counting. During the de- 
sign phase, the metrics available to the 
project manager are 

l effort spent in person-months, 
l design-document pages, and 
l defects found via work product re- 
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Table 1. Defect density inferences. 

Defect Density Observation Inferences 

Lower than expected Size estimate is high (good). 
Inspection defect detection is low (bad). 
Work product quality is high (good). 
Insufficient level of detail in work product (bad). 

Higher than expected Size estimate is low (bad). 
Work product quality is poor (bad). 
Inspection defect detection is high (good). 
Too much detail in work product (good or bad). 

view, inspection, or use in subsequent 
development stages. 

Interpreting effort variance. When 
effort expenditures are below plan, the 
project will typically be behind schedule 
because the work simply isn’t getting 
done. An alternative explanation might 
be that the design has been completed, 
but without the detail level necessary to 
progress to the next development phase. 
This merely sets the stage for disaster 
later. 

We use inspection defect data from de- 
sign inspection to guard against such dam- 
aging situations. If the density falls below 
a lower limit of 0.1 to 0.2 defects per page 
versus an expected 0.5 to 1.0 defects per 
page, the possibility increases that the 
document is incomplete. When defect de- 
tection rates are below 0.5 defects per 
page, the preparation and inspection rates 
are examined to verify that sufficient time 
was spent in document inspection. We 
also calculate the inspection defect den- 
sity using the number of major defects 
and the estimated KLOC for the project. 
If the defect density is lower than ex- 
pected, either the KLOC estimate is high 
or the detail level in the work product is 
insufficient (see Table 1). 

When trying to determine which of the 
eight possible outcomes reflect the proj- 
ect status, project managers must draw 
on their experience and their team and 
product knowledge. I believe the project 
manager’s ability to evaluate the team’s 
inspection effectiveness will be better 
than the team’s ability to estimate the 
code size. In particular, a 2-to-1 increase 
in detection effectiveness is far less likely 
than a 2-to-1 error in size estimating. 

When effort expenditures are above 
the plan and work product deliverables 

are on or behind schedule, the size esti- 
mate was clearly lower than it should 
have been. This also implies later stages 
will require more effort than was 
planned. 

In both cases, we found that the pro- 
cess instrumentation provided by inspec- 
tions was very useful in validating suc- 
cessful design completion. The familiar 
“90 percent done” statements have dis- 
appeared. Inspections are a visible, mea- 
surable gate that must be passed. 

Project tracking and analysis. Inspec- 
tion defect data adds several dimensions 
to the project manager’s ability to evalu- 
ate project progress. Glass4 and Graham5 
claim that defects will always be a part of 
the initial development effort. (Glass says 
design defects are the result of the cogni- 
tive/creative design process, and Graham 
says errors are “inevitable, not sinful, and 
unintentional.“) Humphrey presents data 
indicating that injection rates of 100 to 
200 defects per KLOC of delivered code 
are not unusual.6 Although we have seen 
a 7-to-1 difference in defect injection 
rates between projects, the variance is 
much less for similar projects. 

For the same team doing similar work, 
the defect injection rate is nearly the 
same. The project analyzed in Figure 5 
involved a second-generation product 
developed by many of the people who 
worked on the first-generation product. 
At the end of the low-level design phase, 
Steve Magee, the project manager, no- 
ticed a significant difference in the esti- 
mated and actual defect-depletion 
counts for low-level design defects. The 
estimate was derived from the earlier 
project, which featured many similar 
characteristics. There was a significant 
increase in the actual defect data. We 



Table 2. Measures and possible inferences during requirements and design phases. 

Measure Value Inference 

Effort Above plan Project is larger than planned, if not ahead of 
schedule; or project is more complex than 
planned, if on schedule. 

Below plan Project is smaller than estimated, if on schedule; 
or project is behind schedule; or design detail is 
insufficient, if on or ahead of schedule. 

Defects 
Detected 

Above plan Size of project is larger than planned; or quality 
is suspect; or inspection detection effectiveness 
is better than expected. 

Below plan Inspections are not working as well as expected; 
or design lacks sufficient content; or size of 
project is smaller than planned; or quality is 
better than expected. 

Size Above plan Marketing changes or project complexity are 
growing - more resource or time will be 
needed to complete later stages. 

Below plan Project is smaller than estimated; or 
something has been forgotten. 

also had some numbers from the first 
project that suggested inspection effec- 
tiveness (defects found by inspection di- 
vided by the total number of defects in 
the work product) was in the 75 percent 
range for this team. 

Again, we were able to use our inspec- 
tion data to infer several theories that ex- 
plained the differences. The defect shift 
from code to low-level design could be 
attributed to finding defects in the low- 

level design inspections on the second 
project, rather than during code inspec- 
tions in the first project. A closer look at 
the first project defect descriptions from 
code inspections revealed that a third of 
the defects were missing functionality 
that could be traced to the low-level de- 
sign, even though many defects had been 
incorrectly tagged as coding errors. 
Reevaluating the detailed defect de- 
scriptions brought out an important fact: 

Dewbmmt phase 
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Figure 7. Actual 
defect density data 
for the project de- 
picted in Figure 5. 

The percentage of design defects de- 
tected in code inspection on the first proj- 
ect was higher than we thought. 

We were also concerned by the num- 
ber of defects, which exceeded the total 
we had estimated even after accounting 
for the earlier detection. It seemed more 
likely that the size estimate was low 
rather than that there was a significant 
increase in defect detection effective- 
ness. In fact, the size estimate was about 
50 percent low at the beginning of low- 
level design. The project manager ad- 
justed his size estimates and conse- 
quently was better able to predict unit 
test defects when code inspections were 
in progress, and time for both unit and 
integration test. 

Using defect data helped the project 
manager determine that design defects 
were being discovered earlier and proj- 
ect size was larger than expected. Hence, 
more coding effort and unit and integra- 
tion test time would be needed. 

Figure 7 shows the actual data as this 
project entered system test. Comparing 
the data in Figures 5 and 7 indicates a 
shift in defect detection to earlier stages 
in the development cycle; hence, the proj- 
ect team is working more effectively. 

D efect data can be used as a key el- 
ement to improve project plan- 
ning. Once a size estimate is 

available, historical data can be used to 
estimate the number of defects expected 
in a project, the development phase 
where defects will be found, and the cost 
to remove the defects. 

Once the defect-depletion curve for 
the project is developed, variances from 
the predictions provide indicators that 
project managers can examine for po- 
tential trouble spots. Table 2 summarizes 
these measures, their value (above or be- 
low plan), and the possible troubles indi- 
cated. These measures and those listed 
in Table 1 answer many of the questions 
in the design box in Figure 3. 

One difficulty project managers must 
overcome is the unwillingness of the de- 
velopment staff to provide defect data. 
Grady’ mentions the concept of public 
versus private data, particularly regarding 
inspection-data usage. Unless the project 
team is comfortable with making this 
data available to the project manager, it 
is difficult to gather and analyze the data 
in time for effective use. 

I believe that continuing education on 
the pervasiveness of defects, and recog- 
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nition that defects are a normal occur- 
rence in software development, is a crit- 
ical first step in using defect data more 
effectively to measure development 
progress and product quality. Only 
through collecting and using defect data 
can we better understand the nature and 
cause of defects and ultimately improve 
product quality. n 
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