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Abstract

As VLSI technology improvements continue to widen the gap between processor and main
memory cycle times, cache performance becomes increasingly important to overall system per-
formance. Cache memories help alleviate the cycle time disparity, but only for programs that
exhibit sufficient spatial and temporal locality. Programs with unruly access patterns spend
much of their time transferring data to and from the cache. To fully exploit the performance po-
tential of fast processors, programmers must explicitly consider cache behavior, restructuring
their codes to increase locality. As these fast processors proliferate, techniques for improving
cache performance must move beyond the supercomputer and multiprocessor communities and
into the mainstream of computing.

In this paper, we examine some of the techniques that programmers can use to improve cache
performance. We show how to use CPROF, a cache profiler, to identify cache performance
bottlenecks and gain insight into their origin. This insight helps programmers understand which
of the well-known program transformations are likely to improve cache performance. Using
CPROF and a "cookbook" of simple transformations, we show how to tune the cache perfor-
mance of six of the SPEC92 benchmarks. By restructuring the source code, we greatly improve
cache behavior and achieve execution time speedups ranging from 1.06 to 1.81 on a DECstation
5000/125.

Introduction

Cache memories help bridge the cycle-time gap between fast microprocessors and relatively slow main
memories. By holding recently referenced regions of memory, caches can reduce the number of cycles the proces-
sor must stall waiting for data. As the disparity between processor and main memory cycle times increases—by

40% per year or more[9]— cache performance becomes ever more critical.

Unfortunately, caches only work well for programs that exhibit sufficient locality. Other programs have
reference patterns that caches cannot exploit, and spend much of their execution time transferring data between

main memory and cache. For example, the SPEC92 [10] benchmark tomcatv spends 53% of its time waiting for



memory on a DECstation 5000/125.

Fortunately, for many programs small changes in the source code can radically alter their memory reference
pattern, greatly improving cache performance. Consider the well-known example of traversing a two-dimensional
FORTRAN array. Since FORTRAN lays out two-dimensional arrays in column-major order, consecutive elements
of a column are stored in consecutive memory locations. Traversing columns in the inner-loop (by incrementing the
row index) produces a sequential reference pattern, and hence spatial locality that most caches can exploit. If

instead, the inner loop traverses rows, each inner-loop iteration references a different region of memory.

DO 20 K = 1,100 DO 20 K = 1,100
DO 20 I = 1,5000 DO 20 J = 1,100
DO 20 J = 1,100 DO 20 I = 1,5000
20 XA(I,J) = 2 * XA(I,J) 20 XA(I,J) = 2 * XA(I,J)
Row-Major Traversal Column-Major Traversal

For arrays that are much larger than the cache, the column-traversing version will have much better cache behavior
than the row-traversing version. On a DECstation 5000/125 the column-traversing version runs 1.69 times faster

than the row-traversing version on an array of single-precision floating-point numbers.

We call this type of analysis a mental simulation of the cache behavior. By mentally applying the program
reference pattern to the underlying cache organization, we can predict the program’s cache performance. This men-
tal simulation is similar to asymptotic analysis of algorithms (e.g., worst-case behavior), that programmers com-
monly use to study the number of operations executed as a function of input size. When analyzing cache behavior,
programmers perform a similar analysis, but must also have a basic understanding of cache operation (see the fol-

lowing section).

Although asymptotic analysis is effective for certain algorithms, analyzing large complex programs is very
difficult. Instead, programmers often rely on an execution-time profile to isolate problematic code sections, and
then apply asymptotic analysis only on those sections. Unfortunately, traditional execution-time profiling tools, e.g.,
gprof [3], are generally insufficient to identify cache performance problems. For the example above, an execution-
time profile would identify the procedure or source lines as a bottleneck, but the programmer could easily conclude
that the floating-point operations were responsible. Instead, programmers would benefit from a profile that focuses

specifically on a program’s cache behavior, identifying problematic code sections and data structures. Cache




profiles can also help provide insight into the cause of cache misses, which can help a programmer determine

appropriate program transformations to improve performance.

The purpose of this article is to introduce a broad audience to the techniques of cache performance profiling
and tuning. All though these techniques have been used sporadically in the supercomputer and multiprocessor com-
munities, they also have broad applicability to programs running on fast uniprocessor workstations. We show that
cache profiling—using the CPROF cache profiling system—is an effective means of improving program perfor-
mance by focusing a programmer’s attention on problematic code sections and providing insight into the type of

program transformation to apply.

In the next section, we review how to reason about cache behavior and show how knowing the cause of a
cache miss helps provide insight into how to eliminate it. We then present a “‘cookbook’’ of simple program
transformation techniques for improving program cache behavior, including array merging, padding and aligning
structures, structure and array packing, loop interchange, loop fusion, and blocking. We then briefly describe the
CPROF cache profiling system and its X-windows based user interface. Then we present a case study where we
used CPROF to tune the cache performance of six programs from the SPEC92 benchmark suite: compress,
dnasa7, egntott, spice, tomcatv, and x1lisp. We show how CPROF identified the source lines and
data structures that exhibit poor cache behavior, and how CPROF helped provide the insight necessary to select the
appropriate program transformation. Execution time speedups for these programs range from 1.06 to 1.56 on a

DECstation 5000/125.

Understanding Cache Behavior: A brief review

To reason about a program’s cache behavior, programmers must first recall the basic operation of cache
memories. Caches sit between the (fast) processor and (slow) main memory, holding regions of recently referenced
main memory. References satisfied by the cache——called hits—proceed at processor speed; those unsatisfied—
called misses—incur a cache miss penalty to fetch the corresponding data from main memory. Most current proces-
sors must wait, or stall, until the data arrive. Caches work because most programs exhibit significant locality. Tem-
poral locality exists when a program references the same memory location multiple times in a short period. Caches
exploit temporal locality by retaining recently referenced data. Spatial locality occurs when the program accesses

memory locations close to those it has recently accessed. Caches exploit spatial locality by fetching multiple con-



tiguous words—a cache block—whenever a miss occurs.

Cache Memory Terminology

Cache Hit A memory reference satisfied by the cache.

Cache Miss A memory reference not satisfied by the cache.

Miss Penalty The time required to fetch data from main memory into the cache on a
cache miss.

Capacity The total number of bytes a cache may contain.

Block Size The number of contiguous bytes fetched on each cache miss.

Associativity The number of unique places in the cache a particular block may re-

Fully-Associative

Set-Associative

side.

A cache in which a block can reside in any place in the cache
(A=C/B).

A cache in which a block can reside in exactly A places in the cache.

Direct Mapped A cache in which a block can reside in exactly one place in the cache.

Compulsory Miss A reference that misses because it is the very first reference to a cache
block.

Capacity Miss A reference that misses in a fully-associative cache with LRU replac-
ment.

Conflict Miss A reference that hits in a fully-associative cache but misses in an A-

way set-associative cache.

Caches are characterized by three major parameters: Capacity (C), Block Size (B), and Associativity (A). A
cache’s capacity (C) simply defines the total number of bytes it may contain. The block size (B) determines how
many contiguous bytes are fetched on each cache miss. A cache may contain at most C/B blocks at any one time.
Associativity (A) refers to the number of unique places in the cache a particular block may reside in. If a block can
reside in any place in the cache (A=C/B) we call it a fully-associative cache; if it can reside in exactly one place
(A=1) we call it direct-mapped; if it can reside in exactly A places, we call it A-way set-associative. (Smith’s sur-

vey [13] provides a more detailed description of cache design.)

With these three parameters, a programmer can analyze the first-order cache behavior for simple algorithms.
Consider the simple example of nested loops where the outer-loop iterates L times and the inner-loop sequentially

accesses an array of N 4-byte integers.

for (i = 0; 1 < L; ++1)
for (4 = 0; J < N; ++73)
alil += 2;

If the size of the array (4N) is smaller than the cache capacity (see Figure 1b), we expect the number of cache

misses to equal the size of the array divided by the cache block size, 4N/B (i.e., the number of cache blocks required
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Figure 1: Determining Expected Cache Behavior

Sequentially accessing an array that fits in cache (Figure 1b) should produce M cache misses, where M is the number of cache
blocks required to hold the array. Accessing an array that is much larger than the cache (Figure 1c) should result ML cache
misses, where L is the number of passes over the array.

to hold the entire array). If the size of the array is larger than the cache capacity (see Figure lc), the expected
number of cache misses is approximately equal to the number of cache blocks required to contain the array times

the number of outer loop iterations (4NL/B).

Someday compilers may automate this analysis and transform the code to reduce the miss frequency; recent
research has produced promising results for restricted problem domains [8, 12]. However, for general codes using
current commercial compilers, the programmer must manually analyze the programs and perform transformations
by hand.

To select appropriate program transformations, a programmer must first obtain insight into the cause of poor
cache behavior. One approach to understanding the cause of cache misses, is to classify each miss into one of three
disjoint types [51: compulsory, capacity, conflict.! A compulsory miss is caused by referencing a previously unrefer-
enced cache block. In the small array example above (see Figure 1b), all misses are compulsory. Eliminating a

compulsory miss requires prefetching the data, either by an explicit prefetch operation or by placing more data items

! Hill defines compulsory, capacity, and conflict misses in terms of miss ratios. When generalizing this concept to individual cache misses,
we must introduce anti-conflict misses which miss in a fully-associative cache with LRU replacement but hit in an A-way set-associative cache.
Anti-conflict misses are generally only useful for understanding the rare cases when a set-associative cache performs better than a fully-
associative cache of the same capacity.



in a single cache block. For example, if the integers in our example require only 2 bytes rather than 4, we can cut
the misses in half by changing the declaration. However, since compulsory misses usually constitute a small fraction

of all cache misses we do not discuss them further in this article.

A reference that is not a compulsory miss but misses in a fully-associative cache with LRU replacement is
classified as a capacity miss. Capacity misses are caused by referencing more cache blocks than can fit in the cache.
In the large array example above (see Figure 1c), we expect to see many capacity misses. Programmers can reduce
capacity misses by restructuring the program to re-reference blocks while they are in cache. For example, it may be
possible to modify the loop structure to perform the L outer-loop iterations on a portion of the array that fits in the
cache and then move on to the next portion of the array. This technique, discussed further in the next section, is

called blocking, and is similar to the techniques used to exploit the vector registers in some supercomputers.

A reference that hits in a fully-associative cache but misses in an A-way set-associative cache is classified as a
conflict miss. A conflict miss to block X indicates that block X has been referenced in the recent past, since it is
contained in the fully-associative cache, but at least A other cache blocks that map to the same cache set have been

accessed since the last reference to block X. Consider the execution of a doubly-nested loop on a machine with a

a) Cache b) No Confict ¢) Conflcting Mappings

Figure 2: Conflicting Cache Mappings

The presence of conflict misses indicates a mapping problem. Figure 2b shows how two arrays that fit in cache with a mapping
that will not produce any conflict misses, whereas Figure 2¢ shows two mappings that will result in conflict misses.




direct-mapped cache, where the inner loop sequentially accesses two arrays (e.g, dot-product). If the combined size
of the arrays is smaller than the cache, we might expect only compulsory misses. However, this ideal case only
occurs if the two arrays map to different cache sets (Figure 2b). If they overlap, either partially or entirely (Figure
2¢c), then we will get conflict misses as array elements compete for space in the set. Eliminating conflict misses
requires a program transformation that changes either the memory allocation of the two arrays, so that contem-
poraneous accesses do not compete for the same sets, or that changes the manner in which the arrays are accessed.
As discussed in the next section, one solution is to change the memory allocation by merging the two arrays into an

array of structures.

Our discussion thus far assumes a cache indexed using virtual addresses; many systems index their caches
with real or physical addresses, making cache behavior strongly dependent on page placement. However, many
operating systems use page coloring to minimize this effect, thus reducing the performance difference between

virtual-indexed and real-indexed caches [7].

Techniques for Improving Cache Behavior

The analysis techniques described in the previous section can help a programmer understand the cause of
cache misses. In this section, we present a cookbook of simple program transformations that can help eliminate

some of the misses.

Program transformations can be classified by the type of cache misses they eliminate. Conflict misses can be
reduced by array merging, padding and aligning structures, structure and array packing, and loop interchange. The
first three techniques change the allocation of data structures, whereas loop interchange modifies the order that data
structures are referenced. Capacity misses can be eliminated by program transformations that reuse data before it is
displaced from the cache, such as loop fusion, blocking [8, 12], structure and array packing, and loop interchange.
In the following sections we present examples of each of these techniques, except loop interchange which was dis-

cussed in the introduction.

Merging Arrays
Some programs contemporaneously reference two (or more) arrays of the same dimension using the same

indices. By merging multiple arrays into a single compound array, the programmer increases spatial locality and



potentially reduces conflict misses. In the C programming language this is accomplished by declaring an array of
structures rather than two arrays (Example 1). Since FORTRAN77 does not have structures, the programmer can

obtain the same effect using complex indexing (Example 2).

/* old declaration of two arrays */ C old declaration
int val[SIZE]; integer X(N,N)
int key[SIZE]; integer Y(N,N)
/* new declaration of */ C new declaration
/* array of structures */ integer XY {2*N,N)
struct merge {
int val; C preprocessor macro
int key; C definitions to perform addressing
}i #define X(1,9) XY((2*1)-1,N)
struct merge merged_array|[SIZE]; #define Y(i,Jj) XY ({2*1i),N)
Example 1. Merging Arrays in C Example 2. Merging Arrays in FORTRAN 77

Padding and Aligning Structures

Referencing a data structure that spans two cache blocks may incur two misses, even if the structure itself is
smaller than the block size. Padding structures to a multiple of the block size and aligning them on a block boun-
dary can eliminate these ‘‘misalignment’’ misses, which generally show up as conflict misses. Padding is easily
accomplished in C (Example 3) by declaring extra pad fields. Alignment is a little more difficult, since the address
of the structure must be a multiple of the cache block size. Statically-declared structures generally require compiler
support. Dynamically allocated structures can be aligned by the programmer using simple pointer arithmetic
(Example 4). Note that some dynamic memory allocators (e.g., some versions of malloc()) return cache-block

aligned memory.

/* 0ld declaration of a twelve */ /* original allocation does not */
/* byte structure */ /* guarantee alignment */
struct ex_struct ar = {struct ex_struct *)
int vall,val2,val3; malloc(sizeof (struct ex_struct)*SIZE);

}i

/* new code to guarantee alignment */

/* new declaration of structure */ /* of structure. */

/* padded to l6-byte block size */ ar = (struct ex_struct *)

struct ex_struct { malloc(sizeof (struct ex_struct)*(SIZE+1));
int vall,val2,val3;
char pad{4}l; ar = {{int) ar + 1%)/16)*16

}i

Example 3. Padding Structures in C Example 4. Aligning Structures in C




Packing

Packing is the opposite of padding; by packing an array into the smallest space possible the programmer
increases spatial locality, which can reduce both conflict and capacity misses. In the example below (Example 5)
the programmer observes that the elements of array value are never greater than 255, and hence could fit in type
unsigned char, which requires 8-bits, instead of unsigned int, which typically requires 32-bits. For a machine with
16-byte cache blocks, the code in Example 6 permits 16 elements per block, rather than 4, reducing the maximum

number of cache misses by a factor of 4.

/* old declaration of an array */ /* new declaration of an array */
/* of unsigned integers. */ /* of unsigned characters. */
unsigned int values[10000]; /* valid iff 0 <= value <= 255 */

unsigned char values([10000];

/* loop sequencing through values */
for (i=0; 1<10000; i++) /* loop sequencing through values */
values[i] = 1 % 256; for (i=0; 1<10000; i++)
values([i] = 1 % 256;

Example 5. Unpacked Array in C Example 6. Packed Array Structures in C

Loop Fusion

Numeric programs often consist of several operations on the same data, resulting in multiple loops over the
same arrays. By combining these loops together, a programmer increases the program’s temporal locality and fre-
quently reduces the number of capacity misses. The example below combines two doubly-nested loops so that all

operations are performed on an entire row before moving on to the next.

for (i=0; 1 < N; i++) for (i=0; i < N; i++)
for (j=0; J < N; J++) for (j=0; j < N ;j++)
a(i,j) = 1/b(i,3)*cli,i); {
af(i,j) = 1/b(i,3)*c(i, 3);
d(i,j) = ali,j)+c(i,i);
for (i=0; 1 < N; i++) ) J J J
for (j=0; j < N; Jj++)
d(i,3) = a(i,jr+c(i,i);
Example 7: Separate Loops Example 8: Fused Loops



Blocking

Blocking is a general technique for restructuring a program to reuse chunks of data that fit in the cache, and
hence reduce capacity misses. The SPEC matrix multiply (part of dnasa7, a FORTRAN77 program) implements
a column-blocked algorithm (Example 10) that achieves a 2.04 speedup over a naive implementation (Example 9)
on a DECstation 5000/125. The algorithm tries to keep 4 columns of the A matrix in cache for the duration of the
outermost loop, ideally getting N-1 hits for each miss. If the matrix is so large that 4 columns do not fit in the cache,

we could use a two-dimensional (row and column) blocked algorithm instead.

Do 110 3 =1, M, 4
DO 110 K =1, N
DO 110 J =1, M DO 110 I =1, L
DO 110 K = 1, N C(I,K) = C(I,K) + A(I,J) * B(J,K)
DO 110 I =1, L + A(I,J+1) * B(J+1,K)
C(I,K) = C(I,K) + A(I,J) * B(J,K) + A(IL,J+2) * B{(J+2,K)
110 CONTINUE + A(I,J+3) * B(J+3,K)

110 CONTINUE

Example 9. Naive Matrix Multiply Example 10. SPEC Column-Blocked Matrix Multiply

CPROF: A Cache Profiling System

The analysis and transformation techniques described above can help a programmer develop algorithms that
minimize cache misses. However, cache misses result from the complex interaction between algorithm, memory
allocation, and cache configuration; when the program is executed, the programmer’s expectations may not match
reality. We have developed a cache profiling system, CPROF, that addresses this problem by identifying where
cache misses occur in a program and classifying them as compulsory, capacity, and conflict. This tool helps provide

the insight necessary for programmers to select program transformations that improve cache behavior.

Cache and memory system profilers differ from the better-known execution-time profilers by focussing
specifically on memory system performance. Memory system profilers do not obviate execution-time profilers;
instead, they provide supplementary information necessary to quickly identify memory system bottleneck and tune

memory system performance.

There are a number of cache and memory system profilers that differ in the level of detail they present to a
programmer. High-level tools, such as MTOOL (2], identify procedures or basic blocks that incur large memory

overheads. Other cache profilers, such as PFC-Sim [1] and CPROF, identify cache misses down to the source line
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level, allowing much more detailed analysis. Of course this extra detail does not come for free; MTOOL runs much
faster than profilers requiring address tracing and full cache simulation. However full simulation also permits a
profiler to identify which data structures are responsible for cache misses and to determine the type of miss, features
provided by both MemSpy [4] and CPROF. MemSpy [4] is very similar to CPROF, the difference being the granu-
larity at which source code is annotated and the miss type classification. MemSpy annotates source code at the pro-
cedure level and provides only two miss types for uniprocessors: compulsory and replacement. Determining if a
replacement miss is a result of referencing more data than will fit into the cache—a capacity miss—or a mapping
problem—a conflict miss—is left to the user. MemSpy provides some insight into the cause of replacement misses
by identifying the data structures competing for space in the cache. CPROF is unique in that it provides fine-grain

source identification, data structure support, and classifies misses as compulsory, capacity, and conflict.

CPROF uses a flexible X-windows interface (see Figure 3) to present the cache profile in a way that helps the
programmer determine the cache performance bottlenecks. The data window lists either source lines or data struc-
tures sorted in descending order of importance, allowing quick identification of poor cache behavior. Misses are
cross-referenced, so a programmer can quickly determine which of several data structures on a source line is

responsible for most cache misses.

CPROF annotates both static and dynamic data structures. Dynamically allocated structures are labeled by
concatenating the procedure names on the call stack at the point of allocation [14]. An appended counter value

allows unique identification of all dynamically allocated structures.

The text window is used to view individual source files, where each line is annotated with the corresponding
number of cache misses. The X-windows user interface allows the user to browse within the source file, moving to
the line with the next higher or next lower number of cache misses. The detail window displays the number of each

miss type for the currently selected source line or data structure.

CPROF is very effective at identifying where a program exhibits poor cache behavior and the cache miss
types help a programmer select what type of program transformation to apply. In the next section we describe more

about how to use CPROF to tune program performance.
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Figure 3: CPROF User Interface

CPROF’s user interface (Figure 3a) is divided into three sections for data presentation and one section for command but-
tons. The top section is the text window, the middle section is the data window, and the bottom section is the detail window. A
particular window’s use depends on the selected command button.

The source button opens a pull-down menu with an entry for each source file and an additional entry that allows display of
a list of source files sorted by the number of cache misses. Selecting one of the files displays the source code in the text window.
Each source line is labeled with the number of cache misses generated by that line. We highlight the line with the most cache
misses. The up-arrow and down-arrow buttons allow movement within the source file to the line with the next higher or next
lower number of misses respectively. The detail window refines the cache misses for the highlighted line into the miss type.
Selecting a miss type causes a window to open that displays the data structures referenced by this source and the corresponding
number of cache misses for the miss type selected (Figure 3b). The sort lines button displays a list of source lines in the data
window, sorted according to the number of cache misses. Each entry contains the file name, the line number, the number of
cache misses, and the percent of the total misses. A sorted list of data structures is displayed by the sort vars button. Each entry
in this list contains the variable name, the count of the number of misses and the percentage of total misses. Selecting a miss type
causes a window to open that displays the source lines that reference this data structure and the corresponding number of cache
misses for the miss type selected. The user selects which reference types (READ, WRITE, IFETCH) to display with the sef

metrics button. Finally, the counts displayed in the data window can be written to a file with the dump counts button.
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Case Study: The SPEC Benchmarks

In this section, we describe a study where we used CPROF to tune the cache performance of six programs
from the SPEC92 benchmark suite: compress, dnasa7, egntott, spice, tomcatv, and xlisp. The
purpose of this section is two-fold. First, we show that we can obtain significant speedups using cache profiling,
even for codes that have been extensively tuned using execution-time profilers. Second, we show how we used
CPROF to gain insight into the cache behavior, and determine which transformations were likely to improve perfor-

mance.

We present performance results in terms of speedup in user execution time? on three models of the DECsta-
tion 5000, the 5000/240, 5000/125, and 5000/200. Each of these machines have separate 64-kilobyte direct-mapped
instruction and data caches, 16-byte blocks, and a write buffer. The 5000/125 and 5000/200 use a 25 MHz MIPS
R3000 processor chip. The major difference between the memory systems of these two machines is the cache miss
penalty—16 processor cycles on the DECstation 5000/200 and 34 cycles on the DECstation 5000/125—which helps
illustrate the importance of cache profiling as cache miss penalty increases. The 5000/240 uses a 40 MHZ MIPS

R3000 processor chip and has a 28 cycle miss penalty.

The primary difference between these models is the cache miss penalty: 16, 28, and 34 cycles for the models
200, 240, and 125, respectively. However, there are also secondary differences with significant performance
impact. For example, the 5000/2xx have 4-deep write buffers, while the 5000/125 has only a 2-deep write buffer. In
addition, the 5000/240 performs sequential prefetch on cache misses, reducing the effective miss penalty for long
sequential accesses. While these secondary factors significantly affect execution time, we have not found it neces-

sary to model these factors in CPROF’s cache simulation.

To reduce experimental error we averaged the execution time over five runs. The programs were compiled at
optimization level -O3 using the MIPS Version 2.1 C and F77 compilers. spice was the one exception, which
we compiled at optimization level -O2 per the SPEC make file. Note that, while run-times are all reported with full
optimization, we profiled most of the programs at optimization level -O1, with full symbolic debugging (-g). Cache

profiling at high optimization levels suffers from the same difficulties as debugging (i.e., incorrect line numbers),

2 System time accounts for very little of the total execution time for most of the programs. compress is the exception where system time
is relatively high because of the large amount of I[/O. In this case excluding the system time eliminates the bias introduced by the different I/O
systems.
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Restructuring Technique
Program Mergin Loo Loo Paddin . .
Arx‘%xysg Fusi(?n Interchgnge & Aligni%lg Packing | Blocking
btrix (dnasa7) ° ® ®
cholesky (dnasa7) )
compress ° ®
eqntott e
gmtry (dnasa7) ®
mxm (dnasa7) e
spice
tomcatv
vpenta (dnasa7) e ° )
xlisp ®

Table 1. Program Restructuring Techniques

This table summarizes the restructuring techniques we use to improve the cache behavior of each program studied.

since CPROF uses the same symbol table information.

Table 1 shows which applications benefited from the various restructuring techniques. The benchmark
dnasa?’ consists of seven numerical kernels; we broke out five kernels with poor cache performance and analyzed
them separately.

Table 2 and Figure 4 present execution time results for the six benchmarks. The full programs execute as
much as 90% faster when modified to improve cache behavior. Breaking out the kernels in dnasa7 shows even
more striking results, with speedups as much as 3.46 for vpenta on the DECstation 5000/240, 2.53 on the DECs-
tation 5000/125, and 2.14 on the DECstation 5000/200.

Below we discuss our experience cache profiling and modifying each program. We provide a very brief
description of the program followed by the results of the initial CPROF execution. We then discuss the

modifications we performed and the resulting speedups.

compress

compress is a UNIX utility that implements the well-known Lempel-Ziv data compression algorithm. For

each input character, compress searches a hash table for a prefix key. When the key matches, another array is
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Machine
Program 5000/125 5000/200 5000/240 Madification
Seconds | Speedup || Seconds | Speedup || Seconds | Speedup
7.70 5.98 5.56 original
7.34 1.05 5.84 1.02 5.22 1.07 merged key and value
compress arrays
4.94 1.56 4.60 1.30 2.90 1.92 reduced hash table
size
dnasa’ 1228.22 904.60 796.60 original
945.18 1.30 727.84 1.24 527.24 1.51 tuned kernels
144.06 114.50 82.52 original
btrix 109.50 1.32 89.92 1.27 55.94 1.48 loop interchange &
loop fusion
188.90 141.14 97.14 original
cholesky g6 T 1.16 12494 | 1.13 73.66 | 132 | loop interchange
177.06 141.98 128.42 original
gmiry 119.78 | 148 9582 | 148 5092 | 252 || loop interchange
248.44 184.56 91.36 naive
mxm 12206 | 2.04 10602 | 1.74 66.08 | 138 || SPEC column blocked
264.78 169.86 203.80 original
126.38 2.10 91.80 1.85 69.60 293 merged arrays & loop
vpenta interchange
104.54 2.53 79.42 2.14 58.88 3.46 +loop fusion
67.56 58.70 39.96 original
eqntott 6098 | LI1I 5540 | 1.06 3892 | 1.05 || changed short to char
2242.10 1762.34 1557.90 original
spice 1781.72 1.26 1406.04 1.25 1163.42 1.34 merged pointer &
number
221.20 161.20 137.30 original
tomcatv 167.24 1.32 134.38 1.20 91.40 1.50 merged arrays X & Y
150.88 1.47 126.36 1.28 86.08 1.60 +loop fusion
385.24 286.56 205.72 original
xlisp 361.96 1.06 277.18 1.03 190.30 1.08 padded node to 16
bytes

Table 2: Execution Time Speedup

Both the original and tuned times for dnasa7 include the SPEC version of matrix multiply (mxm).

accessed to obtain the appropriate value. The hash table is quite large (69001 entries), to reduce the probability of

collisions. When a collision does occur, a secondary probe is initiated.

CPROF indicates two source lines that reference the data structure that stores the keys are responsible for

71% of the cache misses. One source line is the initial probe into the hash table, which accounts for 21% of the
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cache misses. The other source line performs the secondary probe operation when there is a collision and accounts
for 50% of the misses. CPROF also shows that most of the misses are capacity misses. Recall that we can eliminate
capacity misses by processing data in portions that fit in the cache. Applying this insight to compress, we
reduced the hash table size from 69001 to 5003, which is small enough to fit in the data cache. This change results
in speedups of 1.92 on a DECstation 5000/240, 1.56 on a 5000/125, and 1.30 on a 5000/200. However, this
modification actually changes the program output, since the compression ratio (original file size / compressed file
size) is related to the size of the hash table. The output is still a compatible compressed file, but it does not match the
standard SPEC output. Nonetheless, there is a clear trade-off between speed and compression ratio. The un-

optimized version has a compression ratio of 2.13, whereas the optimized version has 1.77.

We also (ried to improve the cache performance of compress without changing the compression ratio.
Although compress has a large number of capacity misses, conflict misses account for 13% of the misses to the key
array and 19% of the misses to the value array. The X-windows interface of CPROF allowed us to quickly notice

that the array index is the same for both of these arrays. Although separate arrays reduce the total space require-

1.56 2.04 2.53

@
& &R
<& +

Figure 4: Speedups on a DECstation 5000/125 Obtained via Cache Profiling
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Cache Set

keyl[0] key[1] key[2] key[3] i key[0] val[0] key[1] valf1]

key[4] key[5] keyl6] key[7] i+1 keyl2] val[2] key([3] valf3]
i+2 key[4] | val{4] key[5] val[5]
i+3 key[6] val[6] key[7] val[7]

valfo] | val[1] | vall2] | val[3] j

val[4] val[5] val[6] val[7] j+1

a.) Original Cache Mapping b.) New Cache Mapping

Figure 5: Cache Mappings for Compress

The initial allocation strategy for the key and value arrays (Figure 5a) resulted in as many as two cache misses for each successful
hash table probe. Merging the two arrays into an array of structures (Figure 5b) effectively interleaves the elements of the two

arrays and results in only one cache miss per successful probe.

ments (the key is aC integer and the value is a short; alignment restrictions in C require padding if these are
combined into an array of structures) the price is poor spatial locality. After referencing a key, compress is
likely to reference the corresponding value, which resides in the other array and hence a different cache block (see
Figure 5a).

Merging the two arrays into a single array of structures places the key and value in the same cache block (see
Figure 5b), improving spatial locality. With this modification, accesses to the value always hit in the cache, assum-

ing proper alignment, reducing the number of conflict misses and providing speedups of 1.07 on the DECstation

5000/240, 1.05 on the 5000/125 and 1.02 on the 5000/200.

eqntott

The SPEC benchmark eqntott is a CAD tool that converts boolean equations into their equivalent truth
tables. Execution-time profiling shows that egntott spends 95% of its time in the quick-sort routine [11L

CPROF further reveals that most of this time is spent moving the sort keys from memory into the cache; over 90%
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of the misses are generated in one comparison routine. The offending routine examines two arrays and generates
mostly capacity misses indicating that we need to re-reference blocks while they are in the cache. CPROF indicates
that most of these capacity misses are due to BIT structures dynamically allocated at line #44 in pterm.c. The
BIT data type is a 16-bit integer (type short in C), and inspection of the source code shows that BIT data types
only take on values in the set [0,1,2]. Changing the type definition from 16-bit integer to 8-bit integer (short to
char) reduces the number of misses in this routine by half. The speedup in execution time is 1.03 on a 5000/240,
1.11 on a 5000/125 and 1.06 on a 5000/200. The prefetch capabilities of the 5000/240 exploit the sequential

accesses of the compare routine, reducing the benefit of our modification.

In egntott, the integer values actually represent the symbolic values ZERO, ONE, and DASH. With the
use of enumerated types, a compiler could potentially allocate as few as two bits per array element, resulting in
one-eighth the number of cache misses. However, the trade-off between fewer cache misses and the time to unpack

the data, is implementation dependent.

xlisp

The SPEC benchmark x1isp is a small lisp interpreter solving the nine queens problem. To reduce compu-
tation requirements during profiling, we profiled x1isp solving the six queens problem; however, the speedup
results in Table 2 are for the standard nine queens input. Programmers should be aware that cache behavior is sensi-
tive to the input data; programs may exhibit good cache behavior with smaller input sizes, and poor behavior for
larger inputs. In this case the results obtained from the smaller input data were sufficient to achieve reasonable

speedups with the larger input.

CPROF shows that approximately 40% of the cache misses occur during the mark and sweep garbage collec-
tion, most of which are conflict misses. During this phase, the program first traverses the reachable nodes and
marks them accessible, then sweeps sequentially through the memory segment placing unmarked nodes on the free
list. Mark and sweep garbage collection has inherently poor locality and an alternate algorithm, such as that used in
[6] would provide better cache behavior. However, such an extensive modification was outside the scope of this

study.

CPROF shows that 19% of the cache misses are generated by the single source line that checks the flag (used

to mark accessibility) during the sweep. Since conflict misses dominate, we first improved the spatial locality of the
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sweep routine by separating the flags from the rest of the node structure. By placing the flags in a single array, the
sequential sweep exhibited excellent spatial locality: for every miss, the next 15 references hit—eliminating most of
the cache misses in the sweep routine. Unfortunately, the change also increased the number of misses in the mark
routine which must first fetch a node, then the corresponding flag. This modification increased spatial locality in the

sweep at the expense of spatial locality during the mark, resulting in a negligible change in performance.

Returning to CPROF, we see that the node structures allocated on line #540 of x1dmem.c incur a large
number of conflict misses. Inspection of the source reveals each node structure occupies 12 bytes, or three-fourths
of a 16-byte cache block. Consequently, only half of the nodes reside entirely within a single cache block (see Fig-
ure 6). The remaining half of the nodes reside in two contiguous cache blocks, potentially causing two cache
misses—when referenced—rather than one. By explicitly padding the original node structure to 16 bytes, the cache
block size, and ensuring alignment on cache block boundaries, we obtained a 1.08 speedup on the DECstation

5000/240, 1.06 on the 5000/125 and 1.03 on the 5000/200.

It’s important to realize that padding data structures without guaranteeing alignment can be worse than not
padding them at all. In this example, we might end up with all nodes generating two misses (if not in cache), rather

than only half. Similarly, while many memory allocators (e.g., the ULTRIX malloc () routine) return cache-

Cache Set
i v pad
/ﬁ /4 *‘H ]% | i1 /A ’ K pad
i+2 | pad
i+3 ' o : pad

a.) Original node mapping b.) New node mapping

Figure 6: Cache Mappings for Xlisp Node Structures

Each pattern corresponds to a different node structure, while pad indicates wasted storage. The initial allocation strategy (Figure
6a) resulted in two cache misses for half of the nodes not in the cache. Padding the structures to equal a cache block size and
alignment on cache block boundaries (Figure 6b) reduces this to only one cache miss per node not resident in the cache.
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block-aligned memory, x1isp pre-allocates large chunks and manages them itself, bypassing the alignment per-
formed within the allocator. Application-specific memory managers certainly have a role, but programmers should

remember the impact of padding and alignment on cache performance.

Padding data structures also wastes memory space: the x11isp node structures use only 10 bytes of informa-
tion. Explicit padding increases the allocated size from the 12 bytes required by C language semantics to 16 bytes; a
33% increase in storage. This increase could adversely affect virtual memory performance for larger programs,

although this was not a problem with this input [11].

tomcatv

tomcatv is a FORTRAN 77 mesh generation program that uses seven two-dimensional data arrays, each of
which requires approximately 0.5 M-Byte. The algorithm (see Figure 7) consists of a forward pass in which two
arrays are read and the other five written (loops 1,2,3), a backward pass (loop 4) over two arrays to calculate errors,

and finally another forward pass (loop 5) to add in these errors.

Since the arrays are much larger than the cache and the arrays are sequentially accessed we expect to see a
large number of capacity misses. However, CPROF shows that read accesses to arrays X and Y during the first loop
of the initial forward pass, are generating a large number of conflict misses. It is easily observed from the source
code that the two arrays are always referenced with the same indices. Hence, to improve spatial locality, we merged
them together, placing elements X(L,J) and Y(I,J) in the same cache block. This modification results in speedups of

1.50 on the DECstation 5000/240, 1.32 on the 5000/125 and 1.20 on the 5000/200.

Running CPROF on the modified tomcatv finds that capacity misses to the RX and RY arrays now dom-
inate. As Figure 7 shows, the forward pass is actually composed of several loops: loop 1 initially references six
arrays, including writing RX and RY, followed by loop 2 which computes the maximum values of the RX and RY
arrays, and a final pass (loop 3) over the RX and RY arrays to adjust the values. In addition to these disjoint for-
ward pass loops, there is the additional forward pass (loop 5) to add the errors to the X and Y arrays after the back-
ward pass (loop 4) over the RX and RY arrays. The RX and RY arrays are referenced in the same order in each
loop of the forward pass (loops 1, 2, 3). However, recall that each array is 0.5M-Bytes in size, which is much larger
than the 64K-Byte data cache. Hence, the elements referenced at the start of one loop are not in the cache at the

start of the next loop.
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for LL for LL

/* FORWARD WAVE */ /* FORWARD WAVE */
loop 1. for j loop 1. for j
for i for i
X,Y RX, RY, AA, DD X,Y RX, RY
loop 2. for j for i
for i X,Y RX, RY, AA, DD
RX, RY for i
loop 3. for j RX, RY
for 1 for i
AA,DD RX,RY,D AA,DD RX,RY,D
/* BACKWARD WAVE */ /* BACKWARD WAVE */
loop 4. for j loop 2. for j
for i for i
RX,RY,AA,D RX,RY,AA,D
endfor

/* FORWARD WAVE */
loop 5. for j
for i
X,Y RX, RY

endfor

Original Tomcaty Loop Fused Tomcatv

Figure 7: Tomcatv Psuedo-Code

The original tomcatv algorithm contains several loops within a forward wave. Although the same arrays are referenced in con-
secutive loops, the data accessed in the beginning of the loop is displaced by data referenced at the end of the previous loop. The
loop fused version of tomcatv performs all operations of the forward wave on one row of the arrays. This results in speedups of
1.60, 1.47, 1.28 on the DECstation 5000/240, 5000/125, and 5000/200 respectively.

The solution is to improve temporal locality by restructuring the program so that all allowable operations are
performed on an element when it is resident in the cache. Transforming the program via loop fusion (see Figure 7)
merges these loops so the program contains only one forward loop and one backward loop. We can not perform the
operations of both the forward pass and backward pass in the same loop because of data dependencies. Notice that
we folded the addition of error corrections into the forward pass. Loop fusion in addition to array merging produced
a speedup of 1.60 on the DECstation 5000/240, 1.47 on the 5000/125 and 1.28 on the 5000/200. These speedups are
not as high as we expected because of an increase in the number of conflict misses and a slight increase in the

number of instructions executed.
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spice

spice (spice2g6) is an analog circuit simulator written in FORTRAN. The primary data structure is a
sparse matrix, which is implemented by several arrays. In particular there are separate arrays for row pointers, row
numbers, column pointers, column numbers, and values. CPROF shows that two source lines accessing the row
pointer and row number arrays cause 34% of the cache misses. Another two source lines accessing the column
pointer and column number arrays contribute an additional 12% of the cache misses. Each pair of source lines is
contained in a small loop that locates an element (LJ) in the sparse matrix. CPROF shows that the majority of the
misses caused by these source lines are conflict misses, indicating a mapping problem. Again, the X-windows inter-
face of CPROF allows us to quickly observe that the row (column) pointer and row (column) number arrays are
nearly always accessed with the same index. Merging the pointer and number arrays, to improve spatial locality,

results in a speedup of 1.34 on the DECstation 5000/240, 1.26 on the 5000/125 and 1.25 on the 5000/200.

dnasa7: The NASA kernels

dnasa7 is a collection of seven floating-point intensive kernels also known as the NAS kernels: vpenta,
cholesky, btrix, fft, gmtry, mxm, and emit. Each kernel initializes its arrays, copies them to working
arrays, then calls the application routine. We discuss the kernels separately, to better describe the cache optimiza-
tions. We did not study EMIT, a vortex generation code, or FFT, a fast Fourier transform code: EMIT has a very
Jow miss ratio on a 64-Kbyte data cache (0.8%) and shuffling FFTs have inherently poor cache performance. The
speedup we obtained for the entire collection of kernels is 1.51 on the DECstation 5000/240, 1.30 on the 5000/125,

and 1.24 on the 5000/200.

vpenta

The vpenta kernel simultaneously inverts 3 pentadiagonals, a routine commonly used to solve systems of
partial differential equations. CPROF first finds that the miss ratio is a startling 36%, mostly due to conflict misses.
Using CPROF to identify the mapping problems, we discovered two nested loops responsible for over 90% of the
cache misses. One loop accesses three arrays while the other accesses 8 arrays. Recall that we can eliminate
conflict misses by changing the allocation of data structures or the order that they are accessed. Inspection of the
source code reveals that both of these techniques can be applied. We discovered the loops could be interchanged to

traverse the arrays in column order and also identified three opportunities for array merging. These modifications
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result in speedups of 2.93 on a DECstation 5000/240, 2.10 on a 5000/125 and 1.85 on the 5000/200. It is interesting
to note that the original code runs slower on the 5000/240 than on the 5000/200, despite the 60% faster processor
cycle time. This is apparently due to the higher miss penalty (the two machines use the same DRAMs, but the 240
incurs approximately 100ns additional delay due to an asynchronous interface). Loop interchange not only
increases spatial locality, but results in a sequential access pattern that the 240’s prefetch logic can exploit. The

5000/240 has a speedup of 1.3 over the 5000/200 on the modified code.

As with tomcatv, running CPROF on the modified version of vpenta shows that capacity misses now
dominate. Fusing loops to improve temporal locality by eliminating multiple passes over the same arrays results in

speedups (over the original version) of 3.46, 2.53, 2.14 on the 50007240, 5000/125 and 5000/200 respectively.

cholesky

cholesky performs cholesky decomposition and substitution. CPROF reveals a large number of capacity
misses in two nested loops. Inspection of the source code identifies an array traversed in row-major, rather than
column-major, order. Statically transposing the array (effectively performing loop interchange but with much
simpler code modification) results in speedups of 1.32 on the DECstation 5000/240, 1.16 on the 5000/125 and 1.13
on the 5000/200. Blocking can also be applied to cholesky [8], but we chose to apply a much simpler transforma-

tion.

btrix

btrix is a tri-diagonal solver. CPROF shows that most of the misses are again capacity misses that occur in
two nested loops. As always, we first checked the array reference order, and immediately noticed that one array is
traversed in row order. We also observed that statically transposing this array would allow fusion of six different
loops. Notice that we were able to apply several transformations after a single run of CPROF. On the DECstation

5000/240 we obtain a speedup of 1.48, 1.32 on the 5000/125 and +.27 on the 5000/200.

gmtry

gmtry is a kernel dominated by a Gaussian elimination routine. CPROF finds 99% of the misses, mostly
capacity, occur in the Gaussian elimination loop; inspection shows that the RMATRX is traversed in row order.

Interchanging the loops, which is trivial in this case, results in a speedup of 2.52 on the DECstation 5000/240, and

-23-



1.48 on both 5000/200 and 5000/125.

DO 8 I = 1, MATDIM

DO 8 I = 1, MATDIM RMATRX(I,I) = 1.DO / RMATRX(I,I)
RMATRX(I,I) = 1.D0 / RMATRX(I,I) DO 81 J = I+1, MATDIM
DO 8 J = I+1, MATDIM RMATRX (J,I) = RMATRX(J,I} * RMATRX(I,I)
RMATRX (J,I) = RMATRX(J,I) * RMATRX(I,I)} 81 CONTINUE
DO 8 K = I+l, MATDIM DO 8 K = I+1, MATDIM
RMATRX (J,K) = RMATRX(J,K) DO 8 J = I+l, MATDIM
- RMATRX(J,I) * RMATRX(I,K) RMATRX (J,K) = RMATRX({J,K)
8 CONTINUE - RMATRX(J,I) * RMATRX(I,K)
8 CONTINUE
Original Gaussian Elimination Interchanged Gaussian Elimination
mxm
mxm is a matrix-matrix multiply routine. The naive matrix multiply algorithm is a well-known *‘cache bus-

ter’’, because there is little data re-use between loop iterations. The SPEC mxm implementation does not use this
simple algorithm, instead using a column-blocked implementation (described in the "cookbook" earlier) that re-uses
the same four columns throughout the two inner-most loops. It is interesting to note that improving cache perfor-
mance was not the original rationale for blocking mxm; instead, the intent was to improve the opportunity for vec-
torizing compilers for supercomputers with vector registers. However, since both vector registers and caches
require locality, the transformation improves the performance for both types of machine. The standard SPEC
column-blocked algorithm achieves a speedup of 1.38 over the naive algorithm on a DECstation 5000/240, 2.04 on
the 5000/125 and 1.74 on a DECstation 5000/200. For larger matrices, a two-dimensional (row and column)
blocked algorithm would perform better, but for the standard SPEC input size the extra overhead decreases perfor-

mance.

Summary

We have demonstrated how cache profiling and program transformation can be used to obtain significant
speedups on six of the SPEC92 benchmarks. The speedups range from 1.03 to 3.46, depending on the machine’s
memory system, with greater speedups obtained in the FORTRAN programs. Since FORTRAN77 does not support
structures many of the programs exhibit poor spatial locality. Improving the spatial locality by interleaving the ele-
ments of disjoint arrays provided substantial improvements in most of the FORTRAN programs. CPROF was very

effective at identifying when to merge arrays. Loop interchange also improved the spatial locality in the FOR-
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TRAN programs; in many programs, loop interchange is a trivial transformation that can be easily identified by
inspection. The temporal locality of FORTRAN programs was improved by loop fusion, which requires program-
mers to perform all allowable operations on data while in the cache versus performing each operation in turn on all

the data.

The C programs benefited from padding and alignment of structures, merging arrays into an array of struc-
wures, and changing the declaration of a variable to pack more elements into a single cache block. Notice, that pad-

ding and packing are opposite approaches and which to use is dependent on the program being profiled.

Conclusion

As processor cycle times continue to increase faster than main memory cycle times, memory hierarchy perfor-
mance becomes increasingly important. Programmers can mentally simulate cache behavior to help select algo-
rithms with good cache performance. Unfortunately, actual cache performance does not always match the
programmer’s expectations, and many programs are too complex to fully analyze the interactions between memory
reference patterns, data allocation, and cache organization. In these cases, a tool like CPROF becomes an important
element in a programmer’s tool box. CPROF provides cache performance information at the source line and data
structure level allowing a programmer to identify hot-spots. The insight CPROF provides, by classifying cache
misses as compulsory, capacity, and conflict, helps programmers select appropriate program transformations that

improve a program’s spatial or temporal locality, and thus overall performance.
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