


ASC: An Associative- 
Computing Paradigm 
Jerry Potter, Johnnie Baker, Stephen Scott, Arvind Bansal, 

Chokchai Leangsuksun, and Chandra Asthagiri 

Kent State University 

Today’s increased 
computing speeds 

allow conventional 
sequential machines 

to effectively emulate 
associative computing 

techniques. 
Here is a parallel 

programming 
paradigm designed 
for a wide range of 
computing engines. 

A ssociative computing evolved in an era when associative memories were 
both relatively new and, because they required a comparator at each bit of 
memory, relatively expensive. In the early 1970s. Goodyear Aerospace im- 

proved upon early associative processing techniques with its Staran SIMD (single in- 
struction. multiple data) computer.’ Goodyear realized that the massively parallel 
search capability of bit-serial SIMDs could simulate associative searching, with the 
cost advantage of sharing the comparison logic (that is, the processing elements) over 
all the bits in an entire row of memory. This approach provided two additional ben- 
efits: The word widths could be very large (from 256 bits to 64 kilobits), and the data 
could be processed in situ using the same PEs. 

However, today’s lower hardware costs and increased computing speeds allow par- 
allel techniques to be effectively emulated on conventional sequential machines. Ac- 
cessing data by associative searching rather than addresses and processing data in mem- 
ory require a new programming style. One goal of our research is to develop a parallel 
programming paradigm that is suitable for many diverse applications, is efficient to 
write and execute, and can be used on a wide range of computing engines, from PCs and 
workstations to massively parallel supercomputers. 

Our associative-computing (ASC) paradigm is an extension of the general associative 
processing techniques developed by Goodyear. We use two-dimensional tables as the 
basic data structure. Our paradigm has an efficient associative-based, dynamic mem- 
ory-allocation mechanism that does not use pointers. It incorporates data parallelism 
at the base level, so that programmers do not have to specify low-level sequential tasks 
such as sorting, looping, and parallelization. 

Our paradigm supports all of the standard data-parallel and massively parallel 
computing algorithms. It combines numerical computation (such as convolution. ma- 
trix multiplication, and graphics) with nonnumerical computing (such as compila- 
tion, graph algorithms, rule-based systems, and language interpreters).* This article 
focuses on the nonnumerical aspects of ASC. 

The ASC model 
The ASC model is the basis of a high-level associative-programming paradigm 

and language. As described in the sidebar, “Properties of the ASC model,” the ex- 
tended model provides a basis for algorithm development and analysis similar to the 
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PRAM (parallel random-access mem- 
ory) models, with the additional provi- 
sions that hardware can be built to sup- 
port this model and that its primitive 
operations are sufficiently rich to allow 
efficient use of massive parallelism.’ 
These features let us develop parallel 
algorithms for large problems that can 
be abstractly analyzed and executed. 
Furthermore, algorithms based on a 
common model will have greater appli- 
cability and retain their importance 
longer than ones based on a specific 
computer that may be out of production 
within a few years. Briefly. the model 
calls for data-parallel execution of in- 
structions, constant-time associative 
searching, constant-time maximum and 
minimum operations, and synchroniza- 
tion of instruction streams using control 
parallelism. The simplest ASC model 
assumes only one instruction stream 
(IS). This model can be supported on 

existing SIMD computers and is as- 
sumed throughout unless we state oth- 
erwise. 

The sidebar lists the specific properties 
that the hardware must have to support 
the model. Reflecting these specifications. 
the ASC language is characterized by 
built-in associative reduction notation, as- 
sociative responder iteration, responder- 
based flow of control, responder refer- 
ence and selection mechanisms, and a 
multiple instruction stream capability that 
provides dynamic control parallelism on 
top of data parallelism. ASC supports re- 
cursion and special command constructs 
with automatic backtracking for complex 
context-sensitive searching. Fundamen- 
tal to the nonnumerical focus of ASC are 
the unique structure code features and 
dynamic memory allocation. The most 
important features of ASC are discussed 
below. (ASC language syntax is described 
in detail in Potter.‘) 

Properties of the ASC model 

We have applied the ASC paradigm to a wide range of 
applications, including image processing (for example, 
convolution’), graph algorithms (for example, the minimal 
spanning tree), rule-based inference engines (for example, 
OPS5’), Associative Prolog,’ graphics (ray tracing3), 
database management,4 compilation (first pass5 and opti- 
mization’$ and heterogeneous networks.‘! * 

Our intention is that ASC be efficiently supported in hard- 
ware by a continuum of compute engines. The first step in 
this continuum has been to install the ASC language on 
conventional sequential computers such as PCs and work- 
stations. Second, associative functions and operations can 
be sped up by using accelerator cards similar to the one 
currently being developed for ARPA9 by Adaptive Solutions 
Inc. Conventional SIMD computers provide the third level of 
associative functionality. (ASC has been installed on Staran, 
Aspro, Wavetracer, and the CM-2.) The highest, most com- 
plex, and fastest level would be a multiple instruction stream 
SIMD computer built to meet the specifications of the follow- 
ing computation model:1° 

Cell properties 

l Cells consist of a processing element (PE) and a local 
memory (see Figure A). 

l The memory of an associative computer consists of an 
array of cells. 

l There is no shared memory between cells. Each PE can 
only access the memory in its own cell. The cell’s PE 
can be interconnected with a modest network (for exam- 
ple, a grid). 

l Related data items are grouped together (associated) 
into records and typically stored one per cell. We as- 
sume that there are more cells than data. 

Associative 
programming 
techniques 

Generally, a few basic techniques de- 
termine the “feel” of a programming 
paradigm, such as pointers in C and tail 
recursion or list processing in Lisp and 
Prolog. In ASC, the associative search is 
the fundamental operation, and its influ- 
ence is felt in constant-time operations, 
tabular representation of abstract data 
structures, responder processing, and 
control parallelism. 

Constant time operation. Data paral- 
lelism is a basic model used in many lan- 
guages. ASC uses data parallelism as the 
basis for associative searching, which 
takes time proportional to the number of 
bits in a field, not the number of data 
items being searched. Thus, assuming 

Figure A. Cellular memory. 

Instruction stream (IS) properties 

9 Each IS is a processor with a bus to all cells. The IS 
processors are interconnected (for example, by a bus, 
network, or shared memory). Each IS has a copy of the 
program being executed and can broadcast an instruc- 
tion to all cells in unit time. The parallel execution of a 
command is SIMD in nature. 

l Each cell listens to only one IS. Initially, all cells listen to 
the same IS. The cells can switch to another IS in re- 
sponse to commands from the current IS. 

l The number of cells is much larger than the number of I!%. 
l An active cell executes the commands it receives from 

its IS, while an inactive cell listens to but does not exe- 
cute the commands from its IS. Each IS has the ability to 
unconditionally activate all cells listening to it. 

Associative properties 

l An IS can instruct its active cells to perform an associative 
search. Successful cells are called responders, while 
unsuccessful cells are called nonresponders. The IS can 
activate either the set of responders or the set of nonre 



that all the data fits in the computer, it 
executes in constant time,2 just as com- 
parison, addition, and other data-parallel 
arithmetic operations do. In addition to 
basic pattern searching, ASC makes ex- 
tensive use of constant time functions4 
(maximum, minimum, greatest lower 
bound, and least upper bound). The con- 
stant time functions have corresponding 
constant-time associative index functions 
(maxdex, mindex, prvdex, and nxtdex), 
which are used for associative reduction. 
For example. the query “What is the 
salary of the oldest employee’?” requires 
a maximum search on the age field, but 
the associated salary. not the age, is the 
desired item. The maxdex function in 
“salary[maxdex(age$)]” expresses the as- 
sociation between the maximum age and 
the associated salary. Computers with the 
properties specified in the sidebar can ex- 
ecute these functions in constant time. In 
addition, today’s sequential computers 

are powerful enough to emulate these op- 
erations for many problems. 

Tabular data structures and structure 
codes. Tabular data structures (that is, ta- 
bles, charts, and arrays) have two advan- 
tages for ASC. First, they are ubiquitous; 
tables and arrays are a common and natu- 
ral organization for databases and many 
scientific applications, and users need only 
a minimal introduction to manipulate them 
effectively. Second, the concept of pro- 
cessing an entire column of a table simul- 
taneously is easy to comprehend. 

There are a number of common abstract 
data structures. including stacks. queues. 
trees. and graphs. that are normally im- 
plemented using address manipulation via 
pointers and indexes. In an associative 
computer, in contrast, physical address re- 
lationships between data are not present. 
Instead, structure codes, which are nu- 
meric representations of the abstract struc- 

sponders. It can also restore the previous set of active 
cells. Each of these actions requires one unit of time. 

l Each IS has the ability to select an arbitrary responder 
from the set of active cells in unit time. 

l Each IS can instruct the selected cell to broadcast data 
on the bus. All other cells listening to this IS receive the 
value placed on the bus in unit time. 

Constant time global operations 

l An IS can compute the OR or AND of a binary value in all 
active PEs in unit time. 

l An IS can identify the cells with the maximum or mini- 
mum value in each of its active PEs in constant time. 

Control parallelism 

l Cells without further work to do are called idle cells and 
are assigned to a specified IS, which (among other 
tasks) manages the idle cells. An idle cell can be dy- 
namically allocated to an IS in unit time. Any subset of 
cells can be deallocated and reassigned as idle cells in 
constant time. 

l If an IS is executing a task that requires two or more 
subtasks involving data in disjoint subsets of the active 
cells, control (MIMD) parallelism can be invoked by 
assigning a subtask to an idle IS. When all subtasks 
generated by the original IS are completed, the cells are 
returned to the originating IS. 

A new programming paradigm called Heterogeneous 
Associative Computing7 (HASC) is presently under develop- 
ment at Kent State University. From the ASC model, this 
paradigm takes the concept of cells and instruction broad- 
casting. It uses tabular data and massively parallel searches 

that, in an extension of 
cuted on the machines 

tural information, are associated with the 
data. The codes are generated automati- 
cally. and appropriately named functions 
- for example, parent(), siblingo, and 
child0 - are used to manipulate them. 
The programmer need be aware only of 
the data structure type being used (tree, 
graph, and so forth) and not the internal 
structure codes themselves. 

One of the major advantages of struc- 
ture codes is that they allow the data to be 
expressed in tabular form so that they can 
be processed in a data-parallel manner. 
This means that lists, trees, and graphs 
can be searched associatively in constant 
time instead of having to be sequentially 
searched element by element. Tabular 
organizations are stored one row per cell 
in an associative computer. Thus. any one 
field (a column of the table) can be 
searched in parallel by broadcasting the 
desired value to all cell PEs, which then 
compare it with their local values. 

exe- 
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Figure 1. Example struc- 
ture codes for vector (a) 

and for a two-dimensional 
array or matrix (b). 

row value 
1 95 m 2 17 
3 36 
4 47 

row column value 
1 1 92 

t-t-t-i 

1 2 89 
2 1 63 
2 2 52 

c (a) (b) 

4 20 
3 
1 I I 

10 FIFO VALUE = VALUE [MINDEX (TIME$)] 
100 LIFO VALUE = [MAXDEX (TIME$)]; 

Figure 2. Associative LIFO and FIFO queues using maxi- 
mum and minimum function to retrieve associated values. 

The simplest structure codes are those 
for arrays. For nonnumerical applica- 
tions. a vector can be represented by a 
row field and a value field as shown in 
Figure la. Likewise. we can represent a 
two-dimensional array or matrix by a row 
field, a column field, and a value field. In 
Figure lb, the matrix value at position (1, 
2) can be found in constant time by 
searching for row 1 and column 2 and re- 
trieving the associated value - 89. 

(a) (b) 

Code 
1000 
2100 
2200 
2300 
2400 
3000 
4000 

Node 
A 
B 
C 
D 
E 
F 
G 

m (d) (e) 
Frequently. we can represent directly 

useful information in the structure code. 
For example, the time of arrival is used to 
implement FIFO and LIFO queues. For 
example, in Figure 2 the FIFO value in 
the queue is retrieved using the mindex 
function to select the first (smallest or 
oldest) time entry and its associated 
value. 

Figure 4. Quadsected square encoding for (a) binary graph, (b) quadsected square, 
(c) recursively quadsected square, (d) structure codes, and (e) binary graph. 

Trees and graphs require more sophis- 
ticated structure codes. If trees are put 
into a canonical form, and the position of 
the nodes on every level are numbered 
from left to right, we can generate a code 
for every node in the tree by starting at 
the root of the tree and listing the node 
numbers along the path to the node in 
question. If the code is left justified with 
zero fill, it will support parallel search- 
ing. concatenation, insertion, and dele- 
tion Figure 3 gives an example of a tree 
and its structure codes as represented in 
an associative memory. The left and right 
siblings of node f can be found in con- 
stant time by using the sibdex function - 
sibdex(code[node$==‘f’]). 

bound and least-upper-bound search 
functions to identify codes 1210 and 1230 
as being adjacent to 1220, and their asso- 
ciated nodes - e and R - as siblings off. 
All operations are constant time. This 
kind of operation is very useful for ex- 
pression parsing.’ 

fan-out (node 1 branches to 2 and 3) and 
binary fan-in (node 2 and 3 converge on 
4) shown in Figure 4a are mapped onto 
the location code map shown in Figure 
4b. A more complex example is given in 
Figures 4c, 4d, and 4e, where the control 
flow starts in quadrant A and flows into 
the upper left-most subdivision of the 
two adjacent quadrants (B of BCDE and 
F). Each subdivision continues this re- 
cursive process until the final two quad- 
rants within a subdivision are joined 
at their right-most subdivision (C and D 
are joined at E, and E and F are joined 
at G). 

This expression can be read from the 
inside out. First, the node field is searched 
for the valuef; the response is used to se- 
lect the associated structure-code value 
(1220) which is passed to the sibdex func- 
tion. Sibdex combines the greatest-lower- 

Quadsected square codes are structure 
codes for graphs that can be applied to 
the generation of node domination, node 
influencing, and similar information use- 
ful in control flow graph analysis. A 
quadsected square is a square divided 
into four subsquares. The quadrants of a 
quadsected square can be recursively 
subdivided to any level. The quadsected 
square code calculation and manipula- 
tion functions are performed in data-par- 
allel mode for all nodes of a graph. For 
example. given the code for a node, the 
dominance relationship between the 
node and all other nodes in the graph can 
be computed in constant time indepen- 
dent of the size of the graph. 

We obtain the structure code for a re- 
cursively quadsected square (Figure 4d) 
by specifying the position of the top-level 
subdivision first (as the left-most digit), 
then the position of the next recursive 
subdivision, and so on, with zero fill used 
on the right. 

Figures 4a and 4b illustrate the dual 
relationship between binary graphs and 
quadsected squares. The graph’s binary 

Responder processing. The responders 
of an associative search are those cells 
that successfully matched the associative 
search query. Data-parallel operations 
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e f 9 
Node 

position 1 2 3 

Figure 3. Canonical tree structure and structure codes as repre- 
sented in associative memory. 



applied to the responders essentially act 
as substitutes for the index-based loops 
used in Fortran and C. However, it is 
sometimes desirable to process each re- 
sponder individually. In responder itera- 
tion, a responder is arbitrarily selected 
and processed using both sequential and 
parallel operations. When processing is 
complete, the responder is idled and an- 
other responder is selected for process- 
ing. Responder iteration is an effective 
way of using parallel searching to avoid 
sorting unordered data. 

We use responder selection to achieve 
constant-time memory allocation. Idle 
cells are assigned to a single instruction 
stream. When an IS needs one or more 
new cells, they are arbitrarily selected 
from the idle pool and allocated to the 
requesting IS. When that IS no longer 
needs those cells, they are identified by 

Sequential 
~f.mvaml 

control 

H root a 

next-node b 

C allocated field 

(4 (b) 

Figure 5. Dynamic memory allocation for (a) C-based environment and (b) the 
associative computing model. 

associative search, released in parallel, to the active processors. (The “loop 
and returned to the idle IS. Figure 5 il- while” statement in Figure 6 is an exam- 
lustrates the difference between associa- ple of responder iteration.) 
tive-memory allocation and C-based 
data-parallel memory allocation, where Control parallelism. To this point our 
additional fields, not cells, are allocated discussion has centered on data paral- 

w....-b 2 Cc 7 4 3 - no a 2 

1 

-e m 3 6 3 m m yes b 3 

-f a3 Do g CC m 00 waiting 

ASC-MST-PRIM (root) 
initialize candidates to “waiting” 
if there are any finite values in root’s field, then 

set candidate$ to “yes” 
set parent$ to root 
set currentbest$ to the values in root’s field 
set root’s candidate field to “no” 

loop while some candidate$ contain “yes” 
for them 

restrict mask$ to mindex(current-best$) 
set next-node to a node identified in the preceding step 

set its candidate to “no” 
if the values in next-node’s field are less than 
current-best$, then 

set current-best$ to value in next-node’s field 
set parent$ to next-node 

if candidate$ is “waiting” and the value in next-node’s 
field is finite 

set candidate$ to “yes” 
set parent$ to next-node 
set currentbest$ to next-node 
set current-best$ to the values in next-node’s field 

Figure 6. An associative minimal spanning tree algorithm. 



Data 
parallel + 

match PEs 

I 

Parallel field 1 L-- Assoctative copying 

Figure 7. Associative logic programming. 

lelism. However, the ASC model ac- 
commodates both data and control 
parallelism so that the computer can ef- 
ficiently use all its cells. The control-par- 
allel component depends on the dy- 
namic manipulation of instruction 
streams in response to associative 
searches. The mechanism relies on par- 
titioning the responders into mutually 
exclusive subsets. For example, the eval- 
uation of an IF'S conditional expression 
divides the active cells into two mutu- 
ally exclusive partitions: one containing 
the cells that respond TRUE and one con- 
taining the cells that respond FALSE. 

These partitions can be processed using 
control parallelism by forking the pro- 
cess: One IS is assigned to execute the 
THEN portion of the IF statement with the 
TRUE responders, and another IS is as- 
signed to execute the ELSE portion with 
the FALSE responders. The IS’s execute 
in parallel, each in a data-parallel mode. 
The programmer needs no control- 
parallel statements, such as FORK or JOIN, 

since the control parallelism is inherent 
in the statements. Case statements are 
another example of control parallelism, 
except that there are II partitions-one 
for each of the II cases-instead of two 
partitions as in the IF-THEN-ELSE. 

A significant speedup of up to k  in the 
runtime of certain algorithms is possible 
using an associative computer with a con- 
stant number k  of instruction streams. 
Moreover, if the number of instruction 
streams is not restricted to being con- 
stant, then new algorithms with lower 
complexity times may be possible. 
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Example 
applications 

An ASC version of Prim’s minimal 
spanning tree (MST) algorithm” using as- 
sociative-computing techniques with only 
one IS is given in Figure 6. The values 
given there indicate the state of the algo- 
rithm after the first iteration through the 
“loop while.” All the statements in the 
algorithm execute in constant time. The 
data for each node is stored in a record. 
and the records are stored with at most 
one record per cell. The cell variables are 
identified with a “$” symbol following the 
variable name. The cost of an edge from 
node x to node y is stored in the x$ field 
of node y and the y$ field of node x. Each 
record also has the additional variables, 
candidate$, parent$, and current-best$. 
Root and next-node are scalar variables. 
If root = II, then the terminology “root’s 
field” refers to the field n$. Since one tree 
edge is selected by each pass through the 
loop and a spanning tree has II - 1 tree 
edges, the runtime of this algorithm is 
0(n). This is a cost-optimal parallel im- 
plementation of Prim’s original MST al- 
gorithm, which has a sequential running 
time of O(n2). Moreover, no additional 
overhead is incurred as the size of the 
graph increases, because the algorithm 
only requires additional cells and is thus 
easily scalable to larger data sets. Finally, 
since no networks are used and no task- 
forking or join operations are needed, we 
have minimized the communications and 
synchronization overhead costs. 

ASC has been combined with logic pro- 
gramming to achieve high-performance in- 
telligent reasoning, data-parallel scientific 
computing, and efficient information re- 
trieval from large knowledge bases: The 
strategy in the design of the associative- 
logic programming system is to maximize 
the use of bit-vector and data-parallel op- 
erations and to minimize the movement of 
scalar data. Facts, relations, and the left- 
hand sides of rules are represented as 
records (associations) of parallel fields with 
one record per cell. The right-hand sides of 
the rules are compiled into an abstract in- 
struction set. A simplified schematic of the 
model is given in Figure 7. 

Some advantages of combining asso- 
ciative and logic computing are 

(1) the speed of knowledge retrieval 
is independent of the number of 
ground facts, 

(2) knowledge retrieval is possible even 
if the information is incomplete, mak- 
ing knowledge discovery possible, 

(3) relations with a large number of ar- 
guments are handled efficiently with 
little overhead, 

(4) associative lookup is fast, allowing 
the tight integration of high-perfor- 
mance knowledge retrieval and 
data-parallel computation without 
any overhead due to data movement 
or data transformation, and 

(5) the model is efficient for both scalar 
and data-parallel computations on 
various abstract data types such as 
sequences, matrices, bags, and sets. 

These advantages suggest that this 
paradigm can be successfully applied to 
data-intensive problems such as geo- 
graphical information systems, image-un- 
derstanding systems, statistical knowl- 
edge bases, and genome sequencing. For 
example. in geographical information 
systems, spatial data structures such as 
quadtrees and octtrees are represented 
associatively with structure codes. As a 
result, different regions having the same 
values can be identified using associative 
searches in constant time. 

The integration of data-parallel scien- 
tific computing, knowledge base retrieval, 
and rule-based reasoning provides neces- 
sary tools for image-understanding sys- 
tems. Statistical queries can directly ben- 
efit from associative searches, associative 
representation of structures, data-parallel 
arithmetic computations, and data-paral- 
lel aggregate functions. Genome se- 
quencing requires integration of knowl- 
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edge retrieval, efficient insertion and 
deletion of data elements, and efficient 
manipulation of matrices for the heuristic 
matching of sequences. 

T he associative techniques of the 
1970s augmented with new tech- 
niques - such as structure codes, 

dynamic memory allocation, responder 
iteration, multiple instruction streams, as- 
sociative selection, and reduction nota- 
tion and pronouns -form the basis of a 
programming paradigm that makes use 
of today’s inexpensive computing power 
to facilitate parallel programming. The 
ASC paradigm uses a tabular-data orga- 
nization, massive parallel searching. and 
simple syntax, so that the paradigm is eas- 
ily comprehensible to computer special- 
ists and nonspecialists alike. Furthermore, 
the ASC paradigm is suitable for all levels 
of computing, from PCs and workstations 
to multiple instruction stream SIMDs and 
heterogeneous networks. n 
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