
REMOTE BOOTING IN A HOSTILE WORLD

To Whom am I

Mark Lomas
University of Cambridge
Computer Laboratory

Bruce Christianson
university of Hertfbrdshire,
Haweld

m
Today’s networked computer

systems are very vulnerable to

attack. The collision-rich hash

function described here

permits a secure boot across a

public network with no

security features.

Computer

n the spring of 1989, students at the University of Cambridge suc-
cessfully penetrated the Computer Laboratory system. The attack on I computers used as public area terminals was intricate and involved

physically dismantling and replacing components with new firmware
that recorded user passwords for later replay.’ The laboratory respond-
ed by modifymg the anti-theft devices to ensure that future hardware
tampering would be evident to a careful user.

Today’s networked computer systems are even more vulnerable to
attack: Terminal software, like that used by the X Window System, is fre-
quently passed across a network, and a trojan horse can easily be insert-
ed while it is in transit. Many other software products, including operating
systems, load parts of themselves from a server across a network. Although
users may be confident that their workstation is physically secure, some
part of the network to which they are attached almost certainly is not
secure.

Most proposals that recommend cryptographic means to protect
remotely loaded software also eliminate the advantages of remote load-
ing-for example, ease of reconfiguration, upgrade distribution, and
maintenance. For this reason, they have largely been abandoned before
finding their way into commercial products.

This article shows that, contrary to intuition, it is no more difficult to
protect a workstation that loads its software across an insecure network
than to protect a stand-alone workstation. Flexibility is not sacrificed with
our solution, nor are users required to trust the integrity of anypart of the
system that they cannot physically see or control.

Tm PROBLEM
Figure 1 depicts the problem. We have a large number of workstations

scattered among insecure sites such as homes, offices, and perhaps even
public areas. The workstations will be used by different, and possibly
mutually suspicious, individuals. Each workstation runs an operating sys-
tem kernel, which may include access to a security policy service. Each
kernel is trusted by particular users for certain purposes-for example,
share trading, market forecasting, or software development. Users want
to be certain that the correct kernel is running on any workstation that
they use. But there need be no global kernel trusted by all users for all pur-
poses, or by all users for any single purpose. Further, a single user may
require a number of different kernels trusted for different purposes.

We assume that the kernel cannot be placed in ROM because of size
constraints, or because the user must be able to swap kernels without
replacing the ROM. Therefore, the workstation must download the kernel
from elsewhere-for instance, from a boot service accessed across a net-
work. How can we ensure the integrity of the downloaded code?

0018-9162/95/$4.00 0 1995 IEEE

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on June 18, 2009 at 04:10 from IEEE Xplore. Restrictions apply.

The most obvious approach to the problem involves
securing the entire network, including all the boot
servers. This would, however, require the network
addresses of all possible boot servers to be hard-wired
immutably into ROM when the hardware is assembled.
We will show that this approach is unnecessary, as well
as impractical.

An alternative to securing the network is an end-to-end
approach2 that ensures that the code, however loaded, is
correct prior to passing control to it. This approach has the
added benefit that the user does not need to trust the boot
code (including network drivers) responsible for down-
loading the kernel, which can therefore be placed in RAM
and changed (maintained) at will. This approach also ren-
ders it unnecessary for us to trust the boot server, as we
can detect when a server misbehaves.

DEFINITIONS AND ASSUMPTIONS
We are considering the problem of securely booting a

relatively stateless workstation in a potentially hostile envi-
ronment. By secure booting, we mean that the user initi-
ating the boot requires a high degree of justified
confidence that the code loaded into the workstation as a
result of the boot is code that the initiating user trusts to
act correctly. In other words, the user is prepared to bear
the risk of the right code acting wrongly, but not to bear the
risk of the wrong code being loaded. By relatively state-
less, we mean that the workstation, while unattended,
cannot preserve with any degree of reliability the integri-
ty of mutable data (that is, data that can potentially be
changed without replacing the hardware).

By a potentially hostile environment we mean that the
network to which the workstation is attached, and all
the services accessed across the network, are subject to
interference by chance or by deliberate attack. In addi-
tion, we do not rely on the integrity of any boot code
loaded locally into the workstation, such as network
device drivers.

Our definitions imply that we cannot rely on the work-
station to preserve the integrity of a secret, such as a
password or cryptographic key, since either may be com-
promised and therefore need to be changed. We also
assume that the initiating user, being human, cannot reli-
ably recognize or remember a well-chosen key (one with
high entropy), whether completely private, shared-secret,
or public. On the positive side, we do assume that the user
can remember and not reveal a poorly chosen password
(one with low entropy).

We assume that the workstation is tamper-evident: The
keyboard, CPU, RAM, and ROM hardware (and intercon-
nects) are physically sealed at the time of manufacture so
that a careful user would notice subsequent hardware
alteration. Hence, the user can trust this workstation hard-
ware to function correctly-or leastways, the way it did
when the manufacturer tested it.

Next, we assume that the initial ROM contents cannot
be changed by the user or anyone else under any circum-
stances. Thus, the workstation can maintain the integrity
of a small amount of immutable code (including a hash
function and a keyboard driver).

If there were a legitimate way to change the ROM con-
tents, this would potentially allow an attack based on mis-

use of the change method. Our assumption that the ROM 1
cannot be legitimately changed provides automatic pro- I
tection against any such attack. Our assumption also 1
makes it easier for the manufacturer to build tamper-evi- 1
dent hardware and provides convenient maintenance and 1
configuration management.

We assume that the user can force the workstation into '
a known initial state at will, that is, that there is a con- 1
ceptual red button the user can press to set the program ~

counter to a fixed ROM address. This must also disable 1
any other interrupts or untrusted hardware components
such as DMA communications and secondary storage 1
devices.

Finally, we assume that the keyboard is secure, by which 1
we mean (roughly speaking) that the keyboard doesn't
reveal what is typed on it except to the workstation CPU. 1
Thus, the workstation can preserve the secrecy of a pass- I
word entered from the keyboard by forgetting or erasing I
the password prior to transferring control to any mutable 1
code in RAM, such as boot code.

Now we show how to perform a secure boot under these 1
conditions.

Workstation

b
Figure 1. Remote-booting scenario.

SOLUTION STRATEGY
The simplest way to implement the end-to-end 1

approach is to precalculate a checksum (hash) of the cor- I
rect kernel code and to check that the loaded code has the
correct checksum. But how can we be sure at boot time
what the correct checksum is?

Collision-free hashing
If the checksum is long enough and sufficiently colli-

sion free (meaning that it is hard to find different data sets
with the same checksum) to provide a strong guarantee
of integrity, then by our assumptions neither the user nor
the workstation can be relied on to remember the correct
value of the checksum, since the checksum has high
entropy and changes periodically when the kernel is
updated by some party whom the user regards as compe-

January 1995 i

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on June 18, 2009 at 04:10 from IEEE Xplore. Restrictions apply.

tent to do so. Moreover, it is dangerous to store and down-
load the checksum with the kernel code, since the hash
function is publicly available. An attacker could therefore
modify the kernel and recalculate the appropriate hash
value. As a safeguard, we could require the party respon-
sible for maintaining a particular kernel to sign the hash
value using a public-key cryptographic system such as
RSA. The problem is that neither the user nor the work-
station can reliablyremember the appropriate public key,
since this key has high entropy and will change abruptly if

~ the keyholder believes it has been compromised.

- ~-

Key 4

&
Data stream x f u % k

i h
1:

Reduce ! mod2

h(k I x) mod Z m

f u nct I on
. h

Figure 2. A collision-rich hash function.

Passwords
Some security could be provided by using a poorly cho-

sen (low entropy) unshared secret, commonly called a
password, which we assume is known only to a single user
and used only for this purpose. The user can, with this
password, maintain the integrity of data to be downloaded
(for example, a checksum or a public key) by performing
the following steps prior to the first download.

First the user must obtain, on a secure machine, an
authentic copy of the data to be protected against modifi-
cation. Users can do this by any mechanism which they (or
their security policy) are willing to trust. Next, the pass-
word is hashed together with the data to produce a check-
sum. Finally, this checksum is appended to the data, and
both are placed in a public area.

When the data is downloaded, the checksum is recalcu-
lated, using the password entered from the keyboard, and
compared with the checksum appended to the data. If the
two checksums match, and provided that the hash func-
tion is collision free, there is a high probability that either
the data is unmodified or the password is compromised.

Unfortunately, the second of these possibilities is quite
likely ifwe use a conventional collision-free hash function.
A determined opponent can make an off-line guessing
attack by downloading the data, then repeatedly guessing
the password and calculating the checksum. Since the hash

function is collision free, a match indicates to the opponent
a high probability that the password has been correctly
guessed. Since the password is poorly chosen, an opponent
most likely has the computational resources to perform an
exhaustive and successful search. The opponent is then
able to modify the data in a way that will not readily be
detected by the protocol in operation at the workstation.

However, we can defeat this attack by using a different
type of hash function, deliberately chosen to provide
numerous collisions while still providing a strong guar-
antee of integrity for the data. The idea is to ensure that an
exhaustive off-line search by the opponent will produce
not one, but many candidate passwords. Any one of these
will produce the correct checksum for the correct data,
but only one will produce the checksum expected by the
user for the bogus data as modified by the opponent.

As we see later, the effect of this strategy is to ensure
that any guessing attack by the opponent is effectively
forced on line, in the sense that the attack now requires
the user's interactive participation. This allows the user to
offer a defense, which an off-line attack does not. Similar
approaches are applied to related problems in Gong et aL3
and in Anderson and lo ma^.^

Collision-rich hashing
Before discussing a secure boot protocol, we offer a way

to construct an appropriate collision-rich hash function
from a conventional collision-free hash function (Figure 2).

Suppose that h is a collision-free hash function. Then,
the hash function q defined byq(k,x) = h((h(k I x) mod
2"') I x), where I denotes concatenation, will have the
properties that we require, provided m is suitably chosen
and h has suitable mixing properties. (For further details,
see Berson, Gong, and lo ma^.^) It is the reduction modu-
lo 2" that generates the deliberate collisions. The outer
reapplication of h will restore the strong guarantee of
integrity. We consider the choice of an appropriate value
form at the end of this section.

Now suppose thatxis the data whose integrity the user
wishes to protect, k is the user's password, and the check-
sum q(k, x) is appended tox. The attacker wishes to mod-
ify the data in some way and construct a checksum for the
modified data that will pass the user's validation check.
But now there is not enough information to allow the
attacker to determine the password uniquely. The attack-
er must guess the password (which is at least a better bet
than guessing the checksum directly). If the attacker
guesses wrongly, the user will become aware of the attack.
Of course, the user may wrongly attribute the checksum
mismatch to a network error or to a dirty sector on the boot
server disk. But if the datax is followed by both q1 = (h(k
I x) mod 2"') and q2 = h(q, I x) = q (k , x), the user can
almost certainly tell the difference between chance and
deliberate attack: If q, # (h(k I x) mod 2") but q2 = h(q, I
x), then an attacker is almost certainly at work.

To prevent the attacker from obtaining the user's pass-
word by repeated guessing, the user should change his or
her password immediately upon detecting an attack of this
kind. Consequently, as with most defenses against an on-
line penetration attack, there is now the risk of a denial-of-
service attack. In this, the attacker deliberately corrupts
the value of q, and recalculates q2 to prevent the user from

Computer

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on June 18, 2009 at 04:10 from IEEE Xplore. Restrictions apply.

using anyworkstations, possibly in the hope that the user
will eventually respond by ignoring the integrity failure
and proceeding regardless. And this is precisely what the
user should give the appearance of doing to ensure that
the attacker gains no information about the correctness
of the guessed password. The user is now aware that an
attack is being made, and thus knows not to continue to
rely on that password to protect the data’s integrity.

As well as changing the password upon detecting an
attack, the user must also change it whenever the pro-
tected data changes; otherwise, the attacker will have two
independent pieces of information about the password.
This will reduce the number of possibilities fork revealed
by exhaustive search to a dangerously small value-typ-
ically, one. Because of this, the user’s burden is lessened
if the data protected directly by the password changes
infrequently. Rather than use the password directly to
protect the integrity of mutable data, it is better to hash
the data with a collision-free hash function, and sign the
hash with a high-entropy private key. The password then
protects the integrity of the corresponding public key
(and of any cryptographic code necessary to verify the
signature). Together, the public key and cryptographic
code can verify the mutable data. To ensure that the muta-
ble data is fresh, a date stamp should be appended prior
to hashing.

Password choices
A number of available tools will generate, from a uni-

form distribution, a syllable sequence that looks and
sounds like an English word but isn’t. For example, the
Concept Laboratories’ password generator,6 if asked to
generate a 12-letter password, will give one with an effec-
tive entropy of slightly over 28 bits. (A password has an
effective entropy of m bits if the password was equally like-
ly to have had any one of 2”’ different values. Allowing the
user to choose the password results in a lower entropy,
since some choices are more likely than others. In either
case, the effective entropy is considerably less than the bit-
length of the password.)

Assuming that the user password k is generated in a sim-
ilar fashion and has an effective entropy of 2m bits, then an
exhaustive search fork by an attacker will (by our assump-
tions on q) reveal on the order of 2’” plausible passwords-
values in the domain for k that satisfy q (k , x) = q2.
Consequently, the attacker has only a one in 2 ’ chance of
correctly guessing the value of k employed by the user.
Alternatively, the attacker could try to guess directly the cor-
rect value of h(k I x’) mod 2”’ for the modified datax’ and
so deduce the values of q1 and q2 that would be accepted by
the user as a guarantee of integrity for the bogusx’. However
this attack also has only a one in 2”‘ chance of success.

A SECURE BOOT PROTOCOL
In an example of a secure boot protocol for a relatively

stateless workstation, a user approaches a workstation
and executes some untrusted local boot code. In response
to user input, the local boot code initiates the secure boot
protocol and downloads the desired kernel. The untrust-
ed local boot code may load device drivers and various
other bits of software from uctrusted sources into the
workstation before accessing the remote boot service via

the network. After execution, the local boot code may or
may not correctly load the following into the workstation:

1. the certification code (described below), including
code to perform public key cryptography;

2. the public key of the authority responsible for main-
taining the kernel;

3. the two hash values q , and q2 as defined previously,
applied to the concatenation of the data in the certifi-
cation code (1) and public key (2);

4. the code for the secure kernel;
5. a certificate (Figure 3) for the kernel, consisting of (i)

an identifier for the kernel, (ii) the value of a collision-
free hash function h applied to the kernel code (4),
and (iii) a date stamp (for freshness), signed under
the private key corresponding to the public key (2).

In keeping with our assumptions, the user now presses
the conceptual red button to pass control to the immutable
ROM code and inputs the password. The ROM code
recomputes the hash values in (3) and then forgets (eras-
es) the user’s password. If the computedvalues match, the
ROM code then passes control to the certification code (1)
in RAM, which is now
known to be acceptable to
the user. The certification
code first uses the public
key (2), which is also now
known to be acceptable to
the user, to check the valid-
ity of the certificate (5). If
this check succeeds, the
certification code next
computes the hash h of the
kernel code (4), and checks
this against the value (ii) in
the certificate (5). If the
certificate value agrees
with the calculated value,
then the certification code
will interact with the user
to check whether the cor-
rect kernel (i) has been
loaded, and whether the
date stamp (iii) is accept-
able. If all is well, then the
certification code will pass
control to the kernel.

\ Identifier
h(kerne1)

datestamp

Identifier I
h(kerne1) I
datestamp

)}private-key

Figure 3. A kernel
certificate.

Of course, the public key could be the user’s own public
key, which would allow the user complete control over the
certificate. Any system code or device drivers loaded dur-
ing the preliminary local boot and required to have integri-
ty following the secure kernel boot need not be reloaded,
but can simply be included in the kernel checksum in field
(ii) of the certificate (5). A single password can also allow
the use of variant public key cryptographic systems and
key sizes if the h-hash of more than one piece of certifica-
tion code is included in (1). Similarly, even if a user requires
the flexibility of using kernels (or parts of kernels) main-
tained by many different authorities (with different public
keys), still only one user password is required, since more
than one public key can be included in (2).

January 1995

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on June 18, 2009 at 04:10 from IEEE Xplore. Restrictions apply.

A user can even add new public keys dynamicallywith-
out changing the password (and without revealing two
independent checksums calculated with the same pass-
word) by placing the user’s own public key in (2), and then
appending to each kernel certificate in (5) a proxy that
contains:

the kernel identifier,
the public key of the appropriate authority for that

a date stamp, and
the signature-under the user’s private key corre-
sponding to the public key in (2)--of the concatenation
of the data in the first three fields of the proxy.

kernel,

This use of self-authenticating proxies is further developed
in Low and Christianson.7,8 Heterogeneity of hardware
among workstations can also be accommodated in this
way.

WITH OUR PROTOCOL, A USER CAN APPROACH A WORKSTATION
previously used by a rival, perform a local boot from a flop-
py lying beside the workstation, and then download a sys-
tem kernel and some RSA code from bulletin boards
respectively maintained by a hackers’ club and an intelli-
gence agency, across a public access network with no secu-
rity features. The user will still have highly justified
confidence that the workstation is in the same state it
would have been if the user had correctly entered the ker-
nel manually. Although some users will doubtless contin-
ue to prefer the second option, it is pleasant to have the
choice.

The ingenuity and motivation of those willing to attack
sites with commercially valuable information should not
be underestimated. The class of 1989 now has consider-
ably more training and experience than it did then.
Protocols such as the one described in this article change
the situation somewhat. The removal of threats to system
integrity from routine maintenance and from deliberate
attack becomes simply a performance issue rather than a
prerequisite for ensuring correct behaviour of the system.
Whereas before an integrity failure could have cata-
strophic results, now it simply means that you can’t boot
up for a short time.

Our approach makes essential use of a hash function
deliberately chosen to be rich in collisions. This contrasts
with the prevailing practice of constructing hash functions
that are as free as possible from collisions. We also make
a complete separation of secrecy (read protection) and
integrity (write protection.) We do not require of the work-
station that tamper-proof data be kept secret, nor that
secret data be protected from modification by untrusted
code. All workstations with compatible hardware can
therefore be treated as interchangeable from the hardware
management point ofview. Users are not required to trust
their system managers, or any other part of the system that
they cannot physically see or control. Computer manu-
facturers may also be pleased to learn that secure booting
does not require serial numbers or cryptographic keys to
be embedded in their machines, either during or after
manufacture. I

Acknowledgment
Part of this work was carried out while Mark Lomas

was a visiting research fellow at the University of
Hertfordshire.

References
1. D.D. Harriman, “Password Fishing on Public Terminals,”

Computer Fraud and Security Bulletin, Elsevier Science Pub-
lishers, New York, Jan. 1990, pp. 12-14.

2. J.H. Saltzer, D.P. Reed, and D. Clark, “End-to-End Arguments
in System Design,”ACM Trans. Computer Systems, Vol. 2, No.

3. L. Gong et al., “Protecting Poorly Chosen Secrets from Guess-
ing Attacks,” IEEE J. Selected Areas in Comm., Vol. 11, No. 5,
June 1993, pp. 648-656.

4. R.J. Anderson and T.M.A. Lomas, “Fortifying Key Negotia-
tion Schemes with Poorly Chosen Pasmrords,”lEE Electronics
Letters, Vol. 30, No. 13, June 1994, pp. 1,040-1,041.

5. T. Berson, L. Gong, and T.M.A. Lomas, “Secure, Keyed, and
Collisionful Hash Functions,” in Tech. Report SRI-CSL-94-
08, SRI International, Stanford, Calif., May 1994.

6 J. Gordon, Password Generation Software, Concept Labora-
tories, Lynfield House, Datchworth Green, Hertfordshire,
England, 1993.

7. M.R. Low and B. Christianson, “ATechnique for Authentica-
tion, Access Control, and Resource Management in Open Dis-
tributed Systems,”IEEElectronicsLetters, Vol. 30, No. 2, Jan.

8. M.R. Low and B. Christianson, “Self-Authenticating Proxies,”

4, NOV. 1984, pp. 277-288.

1994, pp. 124-125.

ComputerJ., Vol. 37, No. 5, Oct. 1994, pp. 422-428.

Mark Lomas is a research fellow at the University of Cam-
bridge Computer Laboratory. His research interests include
cryptography and computer security, which he ako teach-
es as part of the Cambridge computer science tripos. He
advises a variety of clients on computer and network secu-
rity, with a special interest infinancial systems. He obtained
his BSc in computer science at the Hatfield Polytechnic (now
the University of Hertfordshire, Hatfield) in 1984 and
received his PhD in computer sciencefrom the University of
Cambridge in 1992.

Bruce Christianson is principal lecturer in the School of
Information Sciences at the University OfHertfordshire, Hat-
field, United Kingdom. Prior to taking up his present post,
he was a consultant with the communications business unit
of Data Connection Ltd., specializing in electronic messag-
ing and gateway design. He has been designated University
Research Leader in the area of concurrent and distributed
systems, and is ako a member of the Numerical Optimisa-
tion Centre at Hatfield. He was awarded the BSc and MSc
degrees in mathematics by the Victoria University of Welling-
ton, New Zealand, in 1978 and 1980, and the DPhil degree
in mQthematiCS by the University of Oxford in 1984.

Readers can contactBruce Christianson at the Computer Sci-
ence Division, University of Hertfordshire, Hatfield, ALlO
9AB, UK; e-mail, B.Christianson@herts.ac.uk.

Computer

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on June 18, 2009 at 04:10 from IEEE Xplore. Restrictions apply.

mailto:B.Christianson@herts.ac.uk

