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n the spring of 1989, students at the University of Cambridge suc- 
cessfully penetrated the Computer Laboratory system. The attack on I computers used as public area terminals was intricate and involved 

physically dismantling and replacing components with new firmware 
that recorded user passwords for later replay.’ The laboratory respond- 
ed by modifymg the anti-theft devices to ensure that future hardware 
tampering would be evident to a careful user. 

Today’s networked computer systems are even more vulnerable to 
attack: Terminal software, like that used by the X Window System, is fre- 
quently passed across a network, and a trojan horse can easily be insert- 
ed while it is in transit. Many other software products, including operating 
systems, load parts of themselves from a server across a network. Although 
users may be confident that their workstation is physically secure, some 
part of the network to which they are attached almost certainly is not 
secure. 

Most proposals that recommend cryptographic means to protect 
remotely loaded software also eliminate the advantages of remote load- 
ing-for example, ease of reconfiguration, upgrade distribution, and 
maintenance. For this reason, they have largely been abandoned before 
finding their way into commercial products. 

This article shows that, contrary to intuition, it is no more difficult to 
protect a workstation that loads its software across an insecure network 
than to protect a stand-alone workstation. Flexibility is not sacrificed with 
our solution, nor are users required to trust the integrity of anypart of the 
system that they cannot physically see or control. 

Tm PROBLEM 
Figure 1 depicts the problem. We have a large number of workstations 

scattered among insecure sites such as homes, offices, and perhaps even 
public areas. The workstations will be used by different, and possibly 
mutually suspicious, individuals. Each workstation runs an operating sys- 
tem kernel, which may include access to a security policy service. Each 
kernel is trusted by particular users for certain purposes-for example, 
share trading, market forecasting, or software development. Users want 
to be certain that the correct kernel is running on any workstation that 
they use. But there need be no global kernel trusted by all users for all pur- 
poses, or by all users for any single purpose. Further, a single user may 
require a number of different kernels trusted for different purposes. 

We assume that the kernel cannot be placed in ROM because of size 
constraints, or because the user must be able to swap kernels without 
replacing the ROM. Therefore, the workstation must download the kernel 
from elsewhere-for instance, from a boot service accessed across a net- 
work. How can we ensure the integrity of the downloaded code? 
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The most obvious approach to the problem involves 
securing the entire network, including all the boot 
servers. This would, however, require the network 
addresses of all possible boot servers to be hard-wired 
immutably into ROM when the hardware is assembled. 
We will show that this approach is unnecessary, as well 
as impractical. 

An alternative to securing the network is an end-to-end 
approach2 that ensures that the code, however loaded, is 
correct prior to passing control to it. This approach has the 
added benefit that the user does not need to trust the boot 
code (including network drivers) responsible for down- 
loading the kernel, which can therefore be placed in RAM 
and changed (maintained) at will. This approach also ren- 
ders it unnecessary for us to trust the boot server, as we 
can detect when a server misbehaves. 

DEFINITIONS AND ASSUMPTIONS 
We are considering the problem of securely booting a 

relatively stateless workstation in a potentially hostile envi- 
ronment. By secure booting, we mean that the user initi- 
ating the boot requires a high degree of justified 
confidence that the code loaded into the workstation as a 
result of the boot is code that the initiating user trusts to 
act correctly. In other words, the user is prepared to bear 
the risk of the right code acting wrongly, but not to bear the 
risk of the wrong code being loaded. By relatively state- 
less, we mean that the workstation, while unattended, 
cannot preserve with any degree of reliability the integri- 
ty of mutable data (that is, data that can potentially be 
changed without replacing the hardware). 

By a potentially hostile environment we mean that the 
network to which the workstation is attached, and all 
the services accessed across the network, are subject to 
interference by chance or by deliberate attack. In addi- 
tion, we do not rely on the integrity of any boot code 
loaded locally into the workstation, such as network 
device drivers. 

Our definitions imply that we cannot rely on the work- 
station to preserve the integrity of a secret, such as a 
password or cryptographic key, since either may be com- 
promised and therefore need to be changed. We also 
assume that the initiating user, being human, cannot reli- 
ably recognize or remember a well-chosen key (one with 
high entropy), whether completely private, shared-secret, 
or public. On the positive side, we do assume that the user 
can remember and not reveal a poorly chosen password 
(one with low entropy). 

We assume that the workstation is tamper-evident: The 
keyboard, CPU, RAM, and ROM hardware (and intercon- 
nects) are physically sealed at the time of manufacture so 
that a careful user would notice subsequent hardware 
alteration. Hence, the user can trust this workstation hard- 
ware to function correctly-or leastways, the way it did 
when the manufacturer tested it. 

Next, we assume that the initial ROM contents cannot 
be changed by the user or anyone else under any circum- 
stances. Thus, the workstation can maintain the integrity 
of a small amount of immutable code (including a hash 
function and a keyboard driver). 

If there were a legitimate way to change the ROM con- 
tents, this would potentially allow an attack based on mis- 

use of the change method. Our assumption that the ROM 1 
cannot be legitimately changed provides automatic pro- I 
tection against any such attack. Our assumption also 1 
makes it easier for the manufacturer to build tamper-evi- 1 
dent hardware and provides convenient maintenance and 1 
configuration management. 

We assume that the user can force the workstation into ' 
a known initial state at will, that is, that there is a con- 1 
ceptual red button the user can press to set the program ~ 

counter to a fixed ROM address. This must also disable 1 
any other interrupts or untrusted hardware components 
such as DMA communications and secondary storage 1 
devices. 

Finally, we assume that the keyboard is secure, by which 1 
we mean (roughly speaking) that the keyboard doesn't 
reveal what is typed on it except to the workstation CPU. 1 
Thus, the workstation can preserve the secrecy of a pass- I 
word entered from the keyboard by forgetting or erasing I 
the password prior to transferring control to any mutable 1 
code in RAM, such as boot code. 

Now we show how to perform a secure boot under these 1 
conditions. 

Workstation 

b 
Figure 1. Remote-booting scenario. 

SOLUTION STRATEGY 
The simplest way to implement the end-to-end 1 

approach is to precalculate a checksum (hash) of the cor- I 
rect kernel code and to check that the loaded code has the 
correct checksum. But how can we be sure at boot time 
what the correct checksum is? 

Collision-free hashing 
If the checksum is long enough and sufficiently colli- 

sion free (meaning that it is hard to find different data sets 
with the same checksum) to provide a strong guarantee 
of integrity, then by our assumptions neither the user nor 
the workstation can be relied on to remember the correct 
value of the checksum, since the checksum has high 
entropy and changes periodically when the kernel is 
updated by some party whom the user regards as compe- 
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tent to do so. Moreover, it is dangerous to store and down- 
load the checksum with the kernel code, since the hash 
function is publicly available. An attacker could therefore 
modify the kernel and recalculate the appropriate hash 
value. As a safeguard, we could require the party respon- 
sible for maintaining a particular kernel to sign the hash 
value using a public-key cryptographic system such as 
RSA. The problem is that neither the user nor the work- 
station can reliablyremember the appropriate public key, 
since this key has high entropy and will change abruptly if 

~ the keyholder believes it has been compromised. 

- ~- 
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Figure 2. A collision-rich hash function. 

Passwords 
Some security could be provided by using a poorly cho- 

sen (low entropy) unshared secret, commonly called a 
password, which we assume is known only to a single user 
and used only for this purpose. The user can, with this 
password, maintain the integrity of data to be downloaded 
(for example, a checksum or a public key) by performing 
the following steps prior to the first download. 

First the user must obtain, on a secure machine, an 
authentic copy of the data to be protected against modifi- 
cation. Users can do this by any mechanism which they (or 
their security policy) are willing to trust. Next, the pass- 
word is hashed together with the data to produce a check- 
sum. Finally, this checksum is appended to the data, and 
both are placed in a public area. 

When the data is downloaded, the checksum is recalcu- 
lated, using the password entered from the keyboard, and 
compared with the checksum appended to the data. If the 
two checksums match, and provided that the hash func- 
tion is collision free, there is a high probability that either 
the data is unmodified or the password is compromised. 

Unfortunately, the second of these possibilities is quite 
likely ifwe use a conventional collision-free hash function. 
A determined opponent can make an off-line guessing 
attack by downloading the data, then repeatedly guessing 
the password and calculating the checksum. Since the hash 

function is collision free, a match indicates to the opponent 
a high probability that the password has been correctly 
guessed. Since the password is poorly chosen, an opponent 
most likely has the computational resources to perform an 
exhaustive and successful search. The opponent is then 
able to modify the data in a way that will not readily be 
detected by the protocol in operation at the workstation. 

However, we can defeat this attack by using a different 
type of hash function, deliberately chosen to provide 
numerous collisions while still providing a strong guar- 
antee of integrity for the data. The idea is to ensure that an 
exhaustive off-line search by the opponent will produce 
not one, but many candidate passwords. Any one of these 
will produce the correct checksum for the correct data, 
but only one will produce the checksum expected by the 
user for the bogus data as modified by the opponent. 

As we see later, the effect of this strategy is to ensure 
that any guessing attack by the opponent is effectively 
forced on line, in the sense that the attack now requires 
the user's interactive participation. This allows the user to 
offer a defense, which an off-line attack does not. Similar 
approaches are applied to related problems in Gong et aL3 
and in Anderson and lo ma^.^ 

Collision-rich hashing 
Before discussing a secure boot protocol, we offer a way 

to construct an appropriate collision-rich hash function 
from a conventional collision-free hash function (Figure 2). 

Suppose that h is a collision-free hash function. Then, 
the hash function q defined byq(k,x) = h((h(k I x) mod 
2"') I x), where I denotes concatenation, will have the 
properties that we require, provided m is suitably chosen 
and h has suitable mixing properties. (For further details, 
see Berson, Gong, and lo ma^.^) It is the reduction modu- 
lo 2" that generates the deliberate collisions. The outer 
reapplication of h will restore the strong guarantee of 
integrity. We consider the choice of an appropriate value 
form at the end of this section. 

Now suppose thatxis the data whose integrity the user 
wishes to protect, k is the user's password, and the check- 
sum q(k, x) is appended tox. The attacker wishes to mod- 
ify the data in some way and construct a checksum for the 
modified data that will pass the user's validation check. 
But now there is not enough information to allow the 
attacker to determine the password uniquely. The attack- 
er must guess the password (which is at least a better bet 
than guessing the checksum directly). If the attacker 
guesses wrongly, the user will become aware of the attack. 
Of course, the user may wrongly attribute the checksum 
mismatch to a network error or to a dirty sector on the boot 
server disk. But if the datax is followed by both q1 = (h(k  
I x) mod 2"') and q2 = h(q, I x) = q ( k ,  x), the user can 
almost certainly tell the difference between chance and 
deliberate attack: If q, # (h(k I x) mod 2") but q2 = h(q, I 
x), then an attacker is almost certainly at work. 

To prevent the attacker from obtaining the user's pass- 
word by repeated guessing, the user should change his or 
her password immediately upon detecting an attack of this 
kind. Consequently, as with most defenses against an on- 
line penetration attack, there is now the risk of a denial-of- 
service attack. In this, the attacker deliberately corrupts 
the value of q, and recalculates q2 to prevent the user from 
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using anyworkstations, possibly in the hope that the user 
will eventually respond by ignoring the integrity failure 
and proceeding regardless. And this is precisely what the 
user should give the appearance of doing to ensure that 
the attacker gains no information about the correctness 
of the guessed password. The user is now aware that an 
attack is being made, and thus knows not to continue to 
rely on that password to protect the data’s integrity. 

As well as changing the password upon detecting an 
attack, the user must also change it whenever the pro- 
tected data changes; otherwise, the attacker will have two 
independent pieces of information about the password. 
This will reduce the number of possibilities fork revealed 
by exhaustive search to a dangerously small value-typ- 
ically, one. Because of this, the user’s burden is lessened 
if the data protected directly by the password changes 
infrequently. Rather than use the password directly to 
protect the integrity of mutable data, it is better to hash 
the data with a collision-free hash function, and sign the 
hash with a high-entropy private key. The password then 
protects the integrity of the corresponding public key 
(and of any cryptographic code necessary to verify the 
signature). Together, the public key and cryptographic 
code can verify the mutable data. To ensure that the muta- 
ble data is fresh, a date stamp should be appended prior 
to hashing. 

Password choices 
A number of available tools will generate, from a uni- 

form distribution, a syllable sequence that looks and 
sounds like an English word but isn’t. For example, the 
Concept Laboratories’ password generator,6 if asked to 
generate a 12-letter password, will give one with an effec- 
tive entropy of slightly over 28 bits. (A password has an 
effective entropy of m bits if the password was equally like- 
ly to have had any one of 2”’ different values. Allowing the 
user to choose the password results in a lower entropy, 
since some choices are more likely than others. In either 
case, the effective entropy is considerably less than the bit- 
length of the password.) 

Assuming that the user password k is generated in a sim- 
ilar fashion and has an effective entropy of 2m bits, then an 
exhaustive search fork by an attacker will (by our assump- 
tions on q )  reveal on the order of 2’” plausible passwords- 
values in the domain for k that satisfy q ( k ,  x) = q2. 
Consequently, the attacker has only a one in 2 ’  chance of 
correctly guessing the value of k employed by the user. 
Alternatively, the attacker could try to guess directly the cor- 
rect value of h(k I x’) mod 2”’ for the modified datax’ and 
so deduce the values of q1 and q2 that would be accepted by 
the user as a guarantee of integrity for the bogusx’. However 
this attack also has only a one in 2”‘ chance of success. 

A SECURE BOOT PROTOCOL 
In an example of a secure boot protocol for a relatively 

stateless workstation, a user approaches a workstation 
and executes some untrusted local boot code. In response 
to user input, the local boot code initiates the secure boot 
protocol and downloads the desired kernel. The untrust- 
ed local boot code may load device drivers and various 
other bits of software from uctrusted sources into the 
workstation before accessing the remote boot service via 

the network. After execution, the local boot code may or 
may not correctly load the following into the workstation: 

1. the certification code (described below), including 
code to perform public key cryptography; 

2. the public key of the authority responsible for main- 
taining the kernel; 

3. the two hash values q ,  and q2 as defined previously, 
applied to the concatenation of the data in the certifi- 
cation code (1) and public key (2); 

4. the code for the secure kernel; 
5. a certificate (Figure 3) for the kernel, consisting of (i) 

an identifier for the kernel, (ii) the value of a collision- 
free hash function h applied to the kernel code (4), 
and (iii) a date stamp (for freshness), signed under 
the private key corresponding to the public key (2). 

In keeping with our assumptions, the user now presses 
the conceptual red button to pass control to the immutable 
ROM code and inputs the password. The ROM code 
recomputes the hash values in (3) and then forgets (eras- 
es) the user’s password. If the computedvalues match, the 
ROM code then passes control to the certification code (1) 
in RAM, which is now 
known to be acceptable to 
the user. The certification 
code first uses the public 
key (2), which is also now 
known to be acceptable to 
the user, to check the valid- 
ity of the certificate (5). If 
this check succeeds, the 
certification code next 
computes the hash h of the 
kernel code (4), and checks 
this against the value (ii) in 
the certificate (5). If the 
certificate value agrees 
with the calculated value, 
then the certification code 
will interact with the user 
to check whether the cor- 
rect kernel (i) has been 
loaded, and whether the 
date stamp (iii) is accept- 
able. If all is well, then the 
certification code will pass 
control to the kernel. 

\ Identifier 
h(kerne1) 

datestamp 

Identifier I 
h(kerne1) I 
datestamp 

)}private-key 

Figure 3. A kernel 
certificate. 

Of course, the public key could be the user’s own public 
key, which would allow the user complete control over the 
certificate. Any system code or device drivers loaded dur- 
ing the preliminary local boot and required to have integri- 
ty following the secure kernel boot need not be reloaded, 
but can simply be included in the kernel checksum in field 
(ii) of the certificate (5). A single password can also allow 
the use of variant public key cryptographic systems and 
key sizes if the h-hash of more than one piece of certifica- 
tion code is included in (1). Similarly, even if a user requires 
the flexibility of using kernels (or parts of kernels) main- 
tained by many different authorities (with different public 
keys), still only one user password is required, since more 
than one public key can be included in (2). 
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A user can even add new public keys dynamicallywith- 
out changing the password (and without revealing two 
independent checksums calculated with the same pass- 
word) by placing the user’s own public key in (2), and then 
appending to each kernel certificate in (5) a proxy that 
contains: 

the kernel identifier, 
the public key of the appropriate authority for that 

a date stamp, and 
the signature-under the user’s private key corre- 
sponding to the public key in (2)--of the concatenation 
of the data in the first three fields of the proxy. 

kernel, 

This use of self-authenticating proxies is further developed 
in Low and Christianson.7,8 Heterogeneity of hardware 
among workstations can also be accommodated in this 
way. 

WITH OUR PROTOCOL, A USER CAN APPROACH A WORKSTATION 
previously used by a rival, perform a local boot from a flop- 
py lying beside the workstation, and then download a sys- 
tem kernel and some RSA code from bulletin boards 
respectively maintained by a hackers’ club and an intelli- 
gence agency, across a public access network with no secu- 
rity features. The user will still have highly justified 
confidence that the workstation is in the same state it 
would have been if the user had correctly entered the ker- 
nel manually. Although some users will doubtless contin- 
ue to prefer the second option, it is pleasant to have the 
choice. 

The ingenuity and motivation of those willing to attack 
sites with commercially valuable information should not 
be underestimated. The class of 1989 now has consider- 
ably more training and experience than it did then. 
Protocols such as the one described in this article change 
the situation somewhat. The removal of threats to system 
integrity from routine maintenance and from deliberate 
attack becomes simply a performance issue rather than a 
prerequisite for ensuring correct behaviour of the system. 
Whereas before an integrity failure could have cata- 
strophic results, now it simply means that you can’t boot 
up for a short time. 

Our approach makes essential use of a hash function 
deliberately chosen to be rich in collisions. This contrasts 
with the prevailing practice of constructing hash functions 
that are as free as possible from collisions. We also make 
a complete separation of secrecy (read protection) and 
integrity (write protection.) We do not require of the work- 
station that tamper-proof data be kept secret, nor that 
secret data be protected from modification by untrusted 
code. All workstations with compatible hardware can 
therefore be treated as interchangeable from the hardware 
management point ofview. Users are not required to trust 
their system managers, or any other part of the system that 
they cannot physically see or control. Computer manu- 
facturers may also be pleased to learn that secure booting 
does not require serial numbers or cryptographic keys to 
be embedded in their machines, either during or after 
manufacture. I 
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