
Process Groups and Group
Communications:

Classifications and
Requirements

Luping Liang, Samuel T. Chanson, and Gerald W. Neufeld

I Jniversity of British Columbia

G roup communication is an operat-
ing-system-level abstraction that
offers convenience and clarity to

the programmer. Currently, only a few To design a general,

essarily one-to-one.) Each group is viewed
as a single logical entity, without exposing
its internal structure and interactions to
users.

operating systems support this abstraction. coherent, and integrated Generally, objects are grouped for (1)
However, a lack of understanding of group abstracting the common characteristics of
communication requirements with respect group communication group members and the services they pro-
to different classes of applications may be vide, (2) encapsulating the internal state
equally responsible for the abstraction’s system, we must and hiding interactions among group
not being widely used.

This article examines different distrib- understand basic members from the clients so as to provide
a uniform interface to the external world,

uted applications and outlines their re-
quirements for group communication sup-
port. On the basis of internal structures and
external behavior, we classify groups into
different categories and discuss their prop-
erties.

In distributed computer networks,
multicast (one-to-many communication)
is a message transmission mechanism that
delivers a message from a single source to
a set of destinations. Special cases of
multicast are unicast (one-to-one commu-
nication) and broadcast (one-to-all com-
munication). As Figure 1 shows, a single
multicast transmission delivers a message
to a set of destinations in parallel, allowing
the receivers to process the message con-
currently.

application and (3) using groups as building blocks to
construct larger system objects. Passing

requirements. This messages to a group is generally called

classification of group intergroup communication.
Group communication offers improved

applications can be an efficiency and convenience because

important tool. (1) it delivers a single message to mul-
tiple receivers by taking advantage of a
network’s multicast capability, thereby
reducing sender and network overhead;

abstraction. A group is a composite of
objects sharing common application se-
mantics, as well as the same group identi-
fier and/or multicast address. (Multicast
exists at the medium-access sublayer with
multicast hardware. The mapping between
group identifiers and multicast addresses
is implementation dependent and not nec-

(2) it provides a high-level communica-
tion abstraction to simplify user programs
in interacting with a group of receivers;
and

(3) it hides from applications the inter-
nal coordinations of a group (for example,
membership changes).

In contrast to multicast, an abstraction
of network communication, group com-
munication is an operating-system-level

Group communication is best supported
by network multicast. It can also be emu-

56 0018.9162/90/0200-0056$Ol.~ 0 1990 IEEE COMPUTER

Figure
tions.

1. One-to-many communica-

lated by one-to-one interprocess commu-
nication or simulated by network broad-
cast. However, in the former case, not only
is the first advantage lost, but a sender must
also keep track of every group member;
thus, groups are no longer self-contained.
With network broadcast, extra overhead is
required because all machines must exam-
ine every message regardless of its destina-
tion; furthermore, the communication is
less secure, since group messages can be
seen outside a group.

Although multicast was introduced a
few years ago,’ few applications take ad-
vantage of group communication. The
reasons for this are (1) a lack of under-
standing of group communication require-
ments with respect to different classes of
applications; (2) the fact that few systems
provide sufficient group communication
support at the operating system level to
meet those requirements; and (3) until
recently, a lack of multicast hardware
support.

This article deals with the first part of the
problem. We classify groups on the basis
of their structure and behavior and present
a uniform treatment of group transparency.
Readers interested in the second part
should refer to the literature.‘.’ Other work
in the area includes that of Mockapetris,*
who presents a general analysis of multi-
cast mechanisms at the network level
rather than at the application level. Hughes
presents a multicast taxonomy based on
the number of replies to each multicast
request9 However, there is no general
examination and classification of group
communication requirements from the
application’s point of view.

We will define the process group model
and classify it on the basis of the homoge-

February 1990

(-) Client
Intergroup

T communication

group ,:
‘.______________________________I

Figure 2. Inter-
munications.

and intragroup com-

neity of the structure among group mem-
bers. Then we will examine different dis-
tributed applications and their require-
ments for group communication support,
classifying groups according to their be-
havior. We will also discuss the relation-
ship between the two classifications.

Process group model

The concept of a process group is not
new. V’ and Isis* defined a process group
as a set of processes grouped to coopera-
tively provide a service. This definition,
although broad, does not adequately char-
acterize why or how the processes are
grouped and hence does not provide suffi-
cient information for classification.

We refine the process group definition
as follows: First, we define an object as a
set of variables and a set of operations on
those variables. We define an object group
as a set of objects sharing one or more
common characteristics (internal state),
interacting and coordinating among them-
selves to provide a uniform external inter-
face. Second, because each object is gener-
ally maintained by a manager process and
can be accessed only through a request to
its manager, we define a process group
corresponding to a given object group G as
the set of manager processes maintaining
the objects in G.

Process group members control the way
resources in the object group are accessed
and may have to coordinate among them-
selves to maintain state consistency in the
object group. Members also interface with
users of the resources they maintain. Group
messages are generally sent to process
groups.

Figure 3. Many-to-many
group) communications.

(group-to-

This model provides a better under-
standing of group communication and al-
lows classification on the basis of process
group structure. For simplicity, we will use
the term “group” to refer only to process
groups.

In distributed systems, machine bounda-
ries prevent processes on different hosts
from physically sharing memory. In the
following discussions, unless stated other-
wise, we assume that interaction with ob-
ject groups occurs through intergroup
communication at the process level. The
underlying network can be either a local
area network or an intemet. We make no
assumption regarding the implementation
of group communication.

A group is “closed” when only its
members are allowed to send requests to it;
otherwise, it is “open.” In this article we
will use the open model, as it is more
general and corresponds to the client-
server model commonly used in distrib-
uted operating systems.

In the client-server context, the process
invoking an operation is called a client and
the process receiving and processing the
invocation is called a server. A process can
play both client and server roles, depend-
ing on its communication context. This
client-server model can be extended into
group communication; that is, client group
and server group can be defined similarly.
As Figure 2 indicates, communications
between external clients and a server group
are called intergroup communications,
while internal communications among
group members are known as intragroup
communications. Intergroup communica-
tions could also occur between groups in
the form of many-to-many communica-
tions, as Figure 3 shows.

57

Sending messages from a single process
to a group is called one-to-many communi-
cation, and from a group to a single process
is called many-to-one communication.
Usually, many-to-many communications
can be decomposed into one-to-many and
many-to-one communications.“ Also, as
Figure 4 shows, a process can maintain
multiple objects that may belong to differ-
ent object groups. Therefore, a process can
belong to multiple groups, and process
groups can overlap.

Structural
classification

Viewed as a collection of object manag-
ers, a group can be classified on the basis of
the homogeneity of the internal state of the
objects maintained and operations sup-
ported by each group member. An object
manager can be characterized by

l Application-level objects - the set of
objects maintained by the process. Their
value determines the application-level
internal state of this process.

l Application-level operations-the set
of operations that can be executed on the
above objects. Other processes can modify
the value of these objects only by invoking
these operations through this manager.

Operations on the objects are what define
the services a process provides. Because
services of a process are accessed through
inter-process communication in message-
passing systems, operation executions and
process state transitions are stimulated by
the events of message arrival.

A selection rule of a group G is a set of
criteria for selecting objects forming G and
is determined by G’s application. For
simplicity, we assume that an object is in
the object group G if and only if the object
satisfies G’s selection rule, and that a
process p is in the manager group of G if
and only if p maintains at least one object
satisfying that rule. The services a group
provides are implemented by the group
members cooperatively and are accessed
by clients through intergroup communica-
tion. A group G can be characterized by

l Group objects - the subset of objects
maintained by each member process in
G, which satisfies G’s selection rule.

l Group operations - the set of opera-
tions on the above objects.

Depending on how each group member

58

o-
o-

c-
Clients

Figure 4. Communication pattern for
overlapping groups; Gi = process
groups, OGi = object groups.

implements and maintains objects and
operations, a group can be placed in one of
four categories:

(1) Data and operation homogeneous
(DOH): Every member in a DOH group
maintains a complete replica of the set of
group objects and implements an identical
set of operations on these objects. To guar-
antee consistent external behavior, a DOH
group maintains consistency among repli-
cas of the objects and requires every
member to execute exactly the same se-
quence of operations. DOH groups are
used mainly to increase service reliability
and availability. Examples are groups in
Isis2 and troupes in Circus.4

(2) Operation homogeneous only
(OHO): In an OH0 group, the object space
is partitioned among group members, with
each member maintaining only part of the
global group state. Object space partitions
may overlap. Also, every member supports
an identical set of operations on its portion
of the objects. However, when an opera-
tion is invoked on an object, only members
with the relevant object need to perform
the operation. OH0 groups are used mainly
to distribute the work load among group
members. Each member can maintain the
integrity of its own objects independently
of other members. The distributed name
service, discussed later, is an example of
the OH0 group.rO

(3) Data homogeneous only (DHO):
Members in a DHO group share a set of
objects by sharing the same address space
on a single machine, or in some other
distributed manner (for example, data rep-
lication). Each member supports a set of

operations on the same objects. These
operations may or may not be identical to
those of other members. Upon invocation
of a group operation, members may act
differently. For example, a coordinating
member accepts an operation invocation
from a client and accomplishes the task
through internal cooperation with other
group members. The role of coordinator
need not always be played by the same
member. Also, members in a DHO group
must synchronize themselves to serialize
concurrent updates to the objects. This
requires an underlying mechanism similar
to that for DOH group support. The usual
purposes of a DHO group are to provide
group services cooperatively via a set of
worker processes and to simplify the de-
sign, implementation, and interface of the
service by masking member cooperation
from external observation. Examples in-
clude the team in VI’ and the primary-
secondary replication scheme.6,‘2

(4) Heterogeneous (Het): As far as the
group application is concerned, the objects
and operations each member implements
and maintains could both be heterogene-
ous. There may or may not be cooperation
among group members, and their internal
states may be completely independent of
one another. Rather than encapsulate inter-
actions among members to provide a coop-
erative group service, heterogeneous
groups facilitate system control and sim-
plify interactions between the client and
server groups. Electronic mail distribution
lists, computerconferencing, news groups,
and distributed process control are appli-
cations of heterogeneous groups.

Behavior classification
and requirements

According to their external behavior,
distributed process groups can be classi-
fied into two major categories: determinis-
tic and nondeterministic. The former
groups are used mainly in replicating data
and services to enhance reliability, while
the latter are used mainly in distributing
data and work load among multiple servers
to improve information availability and
resource sharing. More complete defini-
tions of the two categories appear later.

Basically, a deterministic group requires
high reliability in group communications
to maintain strong consistency among
members. Such groups are “heavyweight”
in the sense that they require complete
group membership information and

COMPUTER

atomic, consistently ordered group inter-
actions. In contrast, nondeterministic
groups are “lightweight,” since they need
only basic datagram multidelivery trans-
port support. Inconsistencies and unreli-
able group interactions are handled in an
application-specific manner, resulting in
more flexible and efficient - but more
complex - application programming.
Whether a group is deterministic or nonde-
terministic depends solely on its applica-
tion, not on its structural characteristics.

Deterministic groups. A group is deter-
ministic if each member must receive and
act on a request. (The term deterministic is
used here to characterize the relationship
among group members and is less restric-
tive than when used by some authors to
mean only one possible execution of a
single procedure.) This requires coordina-
tion and synchronization among group
members. In most deterministic groups,
member processes are equivalent;4 upon
receiving the same request in the same
state, the same procedure is invoked, and
every member transfers to the same new
state and produces the same response and
external effects.

Let’s look at some deterministic-group
applications in terms of their basic charac-
teristics and communication requirements.

Replicatedfile systems. In a fully repli-
cated file system, all file servers constitute
a group. Files are replicated at every file
server to enhance file availability and re-
liability. The two common methods sup-
porting replicated file systems are peer-
member and primary-secondary.’ In the
peer-member scheme, all members in a file
server group are identical, and group
communication and coordination occur
between the client and all members. In the
primary-secondary scheme, a primary
member handles the communication inter-
face between clients and the group, and
group communication and coordination
occur between the primary and all secon-
daries inside the group. A fully replicated
file server group is a deterministic DOH
group if the peer-member scheme is used;
it is a deterministic DHO group if the
primary-secondary scheme is used.

Replication transparency is an impor-
tant characteristic of these systems. File
system clients usually prefer a single file
image regardless of whether a file is imple-
mented by one or many servers. The file
abstraction as seen by a client is called a
logical file image, and operations on it are
called logical operations. The physical file

Distributed process
groups can be classified

into two major
categories: deterministic

and nondeterministic.

copies maintained by the file servers are
known as file replicas, and operations on
them are called physical operations. Relia-
bility requires that file replicas be kept
consistent at all servers, so that files are
always available to clients as long as at
least one file server is functioning. Availa-
bility requires that users be able to read the
files with minimum latency - for ex-
ample, to get a consistent copy of a file
from the closest functioning server.

Both reliability and availability imply
that file replicas must be consistent. Thus,
every logical file update must be atomic,
that is, either executed by all servers or by
none, and a client must be informed of
whether or not its update is completed.
Furthermore, because different sequences
of the same set of update operations can
result in different file states, all servers
must execute exactly the same sequence of
operations with respect to each logical file.
Two logical operations, op, and opZ, are in
conflict if they are data dependent; since
they manipulate overlapping logical data,
the execution order affects the results. Two
conflicting operations collide if executed
concurrently.

Consider two clients, C, and C,, who
issue a LockFile request independently to
acquire a lock on the logical file F. If the
two requests are not consistently ordered
at all server group members, some servers
may allocate the physical locks on their
physical replicas of F to C,, others to C,,
depending on whose request is executed
first; thus, a deadlock may occur. Clearly,
collided operations must be ordered; the
order can be arbitrary as long as it is consis-
tent at all member sites. This ordering of
collided operations is called absolute or-
dering.’

File servers can be added or deleted
dynamically. Clients expect the file server
group to coordinate internally to hide
membership changes from external obser-

vation. This type of internal coordination
includes keeping consistent name binding
between a group identifier and a set of
server process identifiers, and bringing a
new server state up to date. Satisfying this
requirement not only simplifies the group
interface to clients but also increases flexi-
bility in file system configuration. Since a
host cannot always distinguish between
network partition and host failure, file-
system-level consistency requires that
both clients and servers be notified when
either failure occurs, and that some higher
level consistency-control algorithms be
used to handle the failure.

Replicated program executions. Repli-
cated program execution is another ex-
ample of the deterministic DOH group. In
some distributed applications, a major
concern is the resiliency of computations.
Programs can be decomposed into abstract
data type modules, each having a set of
internal states and a set of procedures
manipulating the states. Modules are repli-
cated on multiple sites,4 and replicas of a
module form a group. Group members may
represent different implementations of the
same abstract data type written by differ-
ent programmers (subject to the constraint
of equivalent deterministic behavior).
Thus, module reliability can be enhanced
by both replication and multiversion pro-
gramming. Multiversion programming
tends to. reduce program design faults
(assuming fail-stop behavior), while repli-
cated module execution tends to make the
module runtime execution robust. A pro-
cedure call to a module can proceed as long
as at least one group member is function-
ing. An application programmer would
expect the syntax and semantics of a repli-
cated procedure call to remain the same as
those of a nonreplicated call, that is, repli-
cation transparent.

Consistency in replicated procedure
calls requires that the group members be
deterministic and equivalent and that every
member execute the same sequence of
calls. Application programmers are re-
sponsible for ensuring that modules are
deterministic and equivalent. The group
system, on the other hand, must guarantee
atomicity and ordering (defined in the
previous section) to each procedure call, as
well as replication transparency. For each
replicated procedure call from a client
group to a server group, each client group
member makes a one-to-many call to the
server group, and each server group mem-
ber accepts many-to-one identical proce-
dure invocations (resulting from one call

February 1990 59

per client group member) and makes a one-
to-many reply to the client group after
execution. Each client group member then
handles many-to-one replies from the
server group. These multiple calls and
receptions are best handled in the group
communication layer so that client/server
programmers need not be aware of mul-
tiple entities in the caller/callee group.

An advantage of making replicated pro-
cedure calls at the module level is that the
degree of replication can be adjusted dy-
namically according to the functions of
different modules, thus optimizing system
performance and reliability. In other
words, more copies could be made for
critical modules to enhance their reliabil-
ity, while fewer or no replications would
have to be made for less important mod-
ules. Also, dynamically changing group
membership allows system auto-recon-
figuration to become transparent to appli-
cations as group members fail and recover
at runtime. However, this dynamic group
membership makes it difficult to bind a
group name to a set of modules.

A replicated program execution often
happens within a single local area network;
therefore, network partition failure is un-
likely. When any group member fails, the
group is expected to reconfigure itself
autonomously, making partial failures
transparent to client groups.

Distributed industry process control.
Distributed process control is an example
of the deterministic Het group. Imagine a
simple distributed industry process control
environment in which the temperature in a
reaction container is to be controlled. A
sensor measures the current value of the
temperature, and a control panel displays
that value to human operators, records the
history of the sensor signals, and allows an
operator to set the control parameters. A
set of controllers manages the flow of
cooling fluid into the container by opening
or closing valves. The sensor can view the
console and the controllers as a group.
When a control parameter diverges from
the preset value, the sensor multicasts the
measured result to the group so that the
console informs the operators and the
controllers open or close the valves to
adjust the flow automatically.

This group is obviously heterogeneous
because each member, though driven by
the same sequence of signal stimuli, main-
tains completely different objects and per-
forms different operations. These compo-
nents are grouped simply for convenience
of communication; they are identified by a

E-mail distribution list and computer
conferencing. Electronic mail distribution
lists and computer conferencing are two
other examples of the deterministic Het
group. People registered in the same distri-
bution list or conference constitute a
group. Grouping is for convenience of
communication; for each message, a
sender prepares a single copy and performs
one send operation. Generally, a sender
does not know who participates in the dis-
tribution list, because registrations are
handled by an independent authority. The
sender simply sends the message to the
list’s address, which has the same syntactic
format as other single-user addresses and
which logically includes all participants.
The same is true for computer confer-
encing, except that conferences are nor-
mally closed groups in which only partici-
pants can send messages to the conference.
In contrast, a distribution list is open to
anyone with access to the list address.

Assuming registration and network
connections are set up properly, messages
to a conference are expected to be deliv-
ered atomically. If any participant receives
a group message, other members in the
group should also receive that message
within a bounded period. However, for
each message delivered, the sender may
receive replies from recipients, either in
the form of private one-to-one correspon-
dence or as follow-up discussions to all
conference participants. In a follow-up
message m, the speaker makes a point on
the basis of all the messages related to m
that he or she has received; these messages

single receiver ID in each group message.
If the underlying network supports multi-
cast, only one copy is transmitted for each
sensor signal, saving network bandwidth
and speeding the signal processing.

Although member states have no appli-
cation-level consistency requirement,
group communications have reliability
requirements. Unless the sensor fails, its
signals must be delivered reliably to all
active members in the same order as gener-
ated. Also, each signal from the sensor
must be delivered by a predefined deadline
or the signal will become obsolete. The
sensor expects no reply from the group.
Any individual member failure must be
detected quickly, and operators must be
notified to repair the failed component.
However, before recovery of the failed
component, the remaining group members
are expected to continue fulfilling their
duties even though the complete group
service may not be available.

are called the context associated with m.
For other participants to understand m
properly, they must be able to reference its
context.’ A recipient should not see a
message without having also received its
context. This dependent relationship is
sometimes called a causal relationship’
and defines a partial ordering among mes-
sages submitted to a conference.

In both distribution lists and confer-
encing, absolute ordering is not required.
Concurrent messages usually can be deliv-
ered in arbitrary order because they are not
context related and because the partici-
pants’ states are not message dependent.
When necessary, the conference chair de-
termines the order of concurrent messages.
Sending and receiving messages can be
concurrent and asynchronous for each
participant. Because incoming messages
may affect the content of outgoing ones,
receiving may be given higher priority than
transmission.

In conferencing, a follow-up message
may become a competitive orphan (ex-
plained later) because of the asynchronous
nature of the communication pattern. In
this situation several people may respond
identically to the same message before
seeing each other’s responses. Fast deliv-
ery makes this problem less likely but does
not eliminate it entirely.

Membership changes should not affect
group communications. A new member
normally becomes up to date by reading
the conference bulletin board or the discus-
sion archive. The failure of a member is
normally treated as departure from the
group.

Distributed databases. A deterministic
Het group can be used within a distributed
database. A distributed database model has
a transaction manager (TM) and a data
manager (DM) on each site. Each TM
accepts user requests and translates them
into commands for DMs. Each DM main-
tains part of the database stored at its site
and may concurrently execute transactions
from multiple TMs. A transaction group
consists of all DMs participating in the
same transaction. This group is heteroge-
neous because each DM maintains a differ-
ent part of the database and each may
respond differently (accept or reject the
precommit from the TM) according to its
local status. Messages from the coordinat-
ing TM are delivered atomically to the
transaction group.

For concurrency control and failure
recovery, a two-phase commit protocol
(2PC) is normally used at the end of each

60 COMPUTER

transaction. When the coordinating TM
and all cohorts (DMs) that know the deci-
sion (commit or abort) fail, the standard
2PC will be blocked until some processes
recover. A simple nonblocking 2PC can be
designed on the basis of ordered atomic
group communication.’

In the absence of a coordinating TM
failure, the protocol proceeds as the nor-
mal 2PC. When the coordinating TM fails,
a communication-layer-generated failure
notification is broadcast to the group, and
upon receiving this notice each DM aborts
the transaction. This protocol requires not
only an atomic but also an ordered group
communication mechanism to guarantee
(1) that every DM in a transaction group
will receive exactly the same sequence of
instructions from the coordinating TM,
and (2) that if the coordinating TM fails
after broadcasting commit, its failure noti-
fication is delivered either before or after
its commit message consistently and at-
omically to all DMs, allowing them to
either commit or abort the transaction
consistently. Although the membership of
a transaction group is governed by the
coordinating TM, and a DM failure is de-
tected by the TM during the execution of
2PC, the communication layer still needs
this information to achieve atomicity. In-
consistent replies from DMs are handled
by the coordinating TM itself rather than
by the group mechanism.

Summary of requirements. The above
analysis of deterministic group applica-
tions makes clear that group transparency
is a desirable property allowing a client to
treat a group’s service as if it were pro-
vided by a single server. A single call is
made and a single result, if any, is expected
from the server group. Also, a server main-
taining group object replicas need not
know that another coserver exists, and thus
application programmers need not be
aware of group coordination.

Group transparency for deterministic
groups must satisfy the following require-
ments:

(1) Communication transparency.
Communication transparency consists of
two aspects: atomicity and ordering.2

l Atomic message delivery. An atomic
group message is either received and pro-
cessed exactly once by all members in the
recipient group, or by none at all. Atomi-
city hides a partial group communication
failure by converting it into a total failure.

l Application-level absolute ordering.

L I
In both distribution

lists and conferencing,
absckte ordering

is not required.

The delivery order of messages to group
members needs to be synchronized if the
order will affect the result. Every member
of a group must see the same sequence of
requests on dependent data and adjust its
internal state accordingly. Also, in the case
of colliding requests, the common mem-
bers of two overlapping groups must see a
consistent “combined” sequence of re-
quests to both groups.

(2) Reply-handling transparency. Be-
cause client and server interactions nor-
mally follow the request-response pattern,
reliable multicast from client to server is
not enough. Replies from a group also
must be collected and processed properly
to achieve group transparency.2,4 For each
group request, there exists a potential for
multiple responses from a server group.
These responses may or may not be identi-
cal. Reply-handling transparency guaran-
tees that a client need not be aware of the
multiple replies to its request. It sees a
single reply without having to be con-
cerned about how this reply is derived
from others (for example, by weighted
voting).

(3) Naming transparency. This in-
volves dynamically and transparently
binding group members to a single name.
Group naming consists of two parts: map-
ping a logical service name into a group of
servers, and allowing group membership
to change dynamically. A group view is a
snapshot of the group membership at a
particular instant in time. It is maintained
by each of the concerned parties, be they
group members, system name servers, or
any client needing to make decisions on
the basis of the group view. A group view
changes as members fail and recover, or
are inserted and deleted, in parallel with
other group message activities.

Since atomic group interactions rely on
a consistent group view to verify that all
active members have confirmed reception
of each atomic message, group view

changes must be detected in a consistent
manner. It is convenient to serialize group
view changes consistently with respect to
other group message activities. Isis group
members achieve this by having a system-
generated announcement, issued on behalf
of the failed member, follow all its prefail-
ure messages. This announcement arrives
at every member in the same order with
respect to the other group messages, so that
members all see the same sequence of
group view transitions at virtually the same
time. Therefore, it is guaranteed that no
message will arrive from a failed member
once its failure has been announced.’ If a
member recovers, its state must be brought
up to date with a consistent snapshot of the
group’s internal state, and all concerned
parties should perceive the new member’s
existence before receiving a message from
it.

(4) Failure transparency. Depending
on a group’s purpose, either clients and
server group members are notified of the
failure to take application-level recovery
actions, or a member failure is hidden from
the clients. In the latter case, the failure
may be presented as a complete group
failure, or other group members may take
over the role of the failed member. The
technique chosen depends on the group’s
function. When a deterministic group is
used to enhance data reliability, as in rep-
licated file systems or databases, strong
consistency is required among the group
object replicas. Therefore, the group con-
sistency control strategy may exaggerate a
partial failure as total; if any member fails
or the network is partitioned during a group
operation execution, the operation cannot
succeed until the failure is recovered or the
group is properly reconfigured. However,
when a group is used to enhance service
reliability, as in a replicated procedure.
call, maintaining service to clients is im-
portant. During recovery of the failed
member, remaining active group members
should continue fulfilling their duties to
keep damage to a minimum.

(5) Real-time requirement. We can
measure multicast message delay in terms
of distribution time - the time taken for
all operational members in a group to re-
ceive a multicast - or in terms of comple-
tion time - the time taken for the sender to
learn that all destinations have received its
message reliably.* In deterministic group
applications, consistency is more impor-
tant than efficiency. When trade-offs be-
tween the two are required, system support
often gives priority to consistency. In real-
time systems, on the other hand, messages

February 1990 61

usually must be delivered within a client-
specified deadline: otherwise, amessage is
deemed obsolete and a timing fault is trig-
gered.

In one-to-one interprocess communica-
tions, a server can simply ignore a timing-
fault message or respond to the client with
an operation failure. In multicast, some
servers may receive the message on time
while others see a timing fault, even though
atomicity and ordering are guaranteed.
When this occurs, servers in the recipient
group must coordinate to act consistently
on each timing-fault message to guarantee
consistency. Multicast distribution time
should be bounded so that group actions
can be scheduled to occur atomically and
simultaneously in virtual time at all group
membersi

Nondeterministic groups. Determinis-
tic groups require strong data and behavior
consistency, and synchronization among
all members. Nondeterministic groups
assume that their applications do not need
such strong built-in consistency, and they
relax it in various application-specific
manners. Nondeterministic group mem-
bers generally are not equivalent.4 Each
member may respond differently to a group
request, or not respond at all, depending on
the individual member’s state and func-
tion. Normally, either member states of a
nondeterministic group are unaffected by
processing user requests, or they are not
necessarily consistent. Either requests to
such a group do not require all group
members to act, or missing requests can be
detected and recovery completed within
the application.

Because of the relaxed consistency,
maintenance overhead for the group is
generally lower than for a deterministic
group. Whether a group should be imple-
mented as deterministic or not depends on
the application requirements.

Next we will describe some nondeter-
ministic group applications in terms of
their basic characteristics and communica-
tion requirements.

Distributed clock service. The time-of-
day service in the V system exemplifies a
nondeterministic DOH group,” in which
all group members implement the same set
of functions and play the same role in the
service. Although all members are sup-
posed to maintain identical objects, the
state of these objects may differ when a
partial group communication failure re-
sults in some members not receiving a
group request.

Failure of any
name server does

not stop activity at
other servers.

In the distributed time-of-day service,
every station periodically receives a clock
tick from a central clock. Between clock
ticks, each machine’s clock replica simply
caches the latest time stamp from the cen-
tral clock and extrapolates forward using
its local clock. Clock drifting can be cor-
rected by the next clock tick. Time requests
are handled using the locally extrapolated
time values. Should any clock update
message be missed, the next clock update
corrects it. Although the time value stored
in the local clock may not be absolutely
correct, it is accurate enough for most non-
time-critical applications.

Similarly, many applications that repli-
cate data do not require absolute consis-
tency. The required level of consistency is
obtained by using application semantic
knowledge and assuming that the client
can detect, recover from, or tolerate incon-
sistencies. This reduces communication
complexity and promotes efficiency. The
nondeterminism in these applications
stems from the fact that group members
may maintain an inconsistent or inaccurate
global group state. Applications of this
type need only an efficient and “best ef-
fort” multicast mechanism.

Distributed name service. In a distrib-
uted name service, a set of name servers
operate at several machines in the network.
In some designs the global name space is
partitioned, and a different name server
maintains each partition.‘” This type of
distributed name server forms a nondeter-
ministic OH0 group, because every mem-
ber performs the same set of operations. As
an example, each object in the operating
system Clouds” is assigned a logical sys-
tem name. A mapping function w maps a
system name onto a multicast address A =
w (S). Each station maintains a multicast
address table for the objects stored at the
node. To locate an object 0, a user pro-
vides its system name S. The client host

first calculates O’s multicast address A =
w (S) and uses A as an index to search its
local object directory. If the object is not
found, a multicast remote procedure call is
invoked on the address A. Nodes with A in
their multicast address table accept the
remote procedure call, search the local
object directory for the object with the
system name S, and reply if they find it. In
this way, all nodes share the overhead of
maintaining, locating, and migrating ob-
jects.

Group transparency is an important
property expected by both clients and serv-
ers. A client locates an object by submit-
ting a name look-up request to the name
service. It is irrelevant to the client which
server responds or whether single or mul-
tiple servers handle the request. Each
server manages its assigned portion of the
name space and responds only to requests
for objects it knows. It need not be aware
that other servers exist.

Nondeterminism in distributed object
naming results from the global group
state’s being partitioned among members;
therefore, a client does not know which
server will perform its request. A Lookup
need not be multicast to name servers at-
omically, because it is an idempotent op-
eration and does not alter the name servers’
state. Note, however, that the name-bind-
ing update in the name servers is a deter-
ministic operation, and all replicated serv
ers, if any, must execute the update opera-
tions atomically and in the same order in
which names are bound.

Grapevinei adopted another way of
supporting a distributed name service. It
exemplifies the nondeterministic DHO
group in which the name space is fully
replicated at each name server. However, a
server may play primary or secondary roles
in name updates, even though every server
supports the same set of operations. The
Grapevine update algorithm does not guar-
antee a consistent view at all name repli-
cas, because name update broadcasts are
neither atomic nor ordered. A client deals
only with its local name server without
seeing the whole name server group.
Clients can detect and correct inconsistent
and stale names in an application-specific
manner.

Both examples should make clear that
failure of any name server does not stop
activity at other servers.

Contract bidding. Contract bidding,
another example of the nondeterministic
OH0 group, is a technique for resource
sharing and load balancing among stations

62 COMPUTER

in a server pool. Clients submit job re-
quests for servers to complete. The spe-

_
. I *- ., i, _ i normally is not known to clients; and (3) a

server may not receive the request at all.
cific server station and the order of execu- Data consistency is not a problem for vari-
tion do not matter. Server group members The dominant ous reasons: The application requests may
do not maintain a global group state. All be idempotent, group consistency may not
worker stations are functionally identical communication pattern be critical to the application, or the appli-
and respond to idempotent service contract in nondeterministic cation may be able to detect and recover
bids only on the basis of their local state. from inconsistency easily. Application
Upon completing a task, servers return to group applications is programmers are given the flexibility -
the ready state for the next job assignment.

The number of available server stations
is always changing, as is their current load.
To optimize overall system throughput and
mean response time, tasks should be sched-
uled to keep all servers equally busy.
Scheduling is usually done in one of two
ways: In a client-initiated scheme, a client
posts its task requirement on the network
for server stations in the pool to bid on. An
available server responds with its current
load condition, and the client chooses the
proper server to complete the task. In a
server-initiated scheme, potential clients
form a group, and an available server posts
its request for loading to the client group.
Each client responds with its task requests,
and the server chooses the appropriate one
to execute.

In both schemes a competitive orphan
may be generated. In contrast to a failure
orphan, generated when a server continues
to execute a dead client’s request, a com-
petitive orphan is generated when server
group members are not properly coordi-
nated. (Failure orphans are a general prob-
lem in the client-server model, while
competitive orphans are a special problem
in the group communications context. We
can view a failure orphan as resulting from
a lack of coordination between the client
and the server group;,we can view a com-
petitive orphan as resulting from a lack of
coordination among group members.)

In the server-initiated scheme, a com-
petitive-orphan request could be generated
from a client that does not know whether
its job request has already been carried out.
Also, in the client-initiated scheme, multi-
casting a job request could trigger multiple
concurrent executions at different servers,
even when only a single execution is
needed. The effect of competitive orphans
must be cancelled or reduced to a mini-
mum, and the competition losers must be
notified so that they can participate in
subsequent contract-bidding activities.
Again, communication overhead between
clients and server group members should
be minimized; multicast should be effi-
cient but need not be perfectly reliable.
The failure of any server should not termi-
nate the whole system. However, the client

request-response.

whose job was being executed by the failed
server must be notified to resubmit its
request.

News propagation. News propagation
in Usenet exemplifies the nondeterminis-
tic Het group. People subscribing to the
same news group constitute a group, and
the state and operations each subscriber
performs differ. A news poster never
knows who the members in a group are.
News propagations need be neither atomic
nor ordered. Respondents to a news article
can use one-to-one personal correspon-
dence or follow-up articles to the same or
a different group. Each person then de-
cides what to do with each news article and
the follow-up comments. A subscriber can
come and go at will; no synchronization is
necessary.

Summary of requirements. Nondeter-
ministic groups are intended to improve
service performance. Through group trans-
parency, a group service strives for the
same simple syntax and semantics found in
one-to-one interprocess communication.
However, depending on the intended ap-
plications and the nature of the particular
group, this transparency may be relaxed.
Nondeterministic groups induce less over-
head and generally have the following
characteristics and requirements:

(1) Communication transparency. The
dominant communication pattern in non-
deterministic group applications is re-
quest-response. Usually, applications do
not require absolutely reliable message
delivery or message ordering. Interactions
with nondeterministic groups are inher-
ently asynchronous because (1) it is nei-
ther necessary nor realistic to expect a
client to wait until all server group mem-
bers are synchronized and ready to receive
a request; (2) server group membership

with the attendant complexity - of han-
dling partial message failures.

(2) Reply-handling transparency. Mul-
tiple replies from a nondeterministic group
may not beconsistent. They may have to be
handled by the clients in an application-
specific manner rather than by the server
group, as in deterministic groups; this
sacrifices a certain degree of reply-han-
dling transparency. Also, an application
must provide its own time-out value for
each multicast request because the com-
munication layer itself does not know how
long to wait for server group responses.
When the timer expires, the application
can decide whether to re-multicast or per-
form alternative actions. In deterministic
groups, these actions are normally per-
formed at the communication layer.

(3) Naming transparency. As with de-
terministic groups, applications prefer to
use a logical name to address a group
service rather than having to know each
individual member. To achieve naming
transparency, both clients and servers pre-
fer to handle requests and replies inde-
pendently of the number of servers. How-
ever, nondeterministic group membership
can change dynamically and usually is not
known to the active group members or to
the communication layer.

(4) Failure transparency. Nondeter-
ministic group member failure has differ-
ent semantics from that of deterministic
groups. When a member fails, other active
members may transparently take over the
uncompleted task to enhance availability,
share service load, and reduce global
communication traffic.

(5) Competitive-orphan problem. In a
nondeterministic group a competitive or-
phan can be generated because of a lack of
internal coordination among group mem-
bers. Except in computer conferencing,
most deterministic groups do not experi-
ence this problem, because a group request
must be handled by every member syn-
chronously while the client waits for a
reply from every server.

Table 1 shows the differences between
deterministic and nondeterministic cate-
gories.

February 1990 63

Table 1. Differences between deterministic and nondeterministic categories.

Communication

Naming

Deterministic Nondeterministic

Normally requires atomicity and absolute Not necessarily reliable, nor ordered.
ordering. Some applications require causal ordering. Applications handle inconsistency.

Complete group view at communication layer Group view usually is not known to anyone,
is necessary. Membership changes must be even to the communication layer.
synchronized with all other group messages.

Reply handling If required, expect all members to reply. Clients must handle inconsistent replies
Group members handle inconsistent replies explicitly and applications have to provide
without the client’s being involved. the time-out parameter.

Failure handling To enhance reliability, a partial failure To enhance availability, partial failures
is turned into a total failure in most cases. are usually hidden by active group members.

Others In real-time systems, a timing fault A competitive orphan may arise due to a lack
may cause inconsistency. of proper coordination among group members.

Table 2. Sample applications based on the classifications.

Data and operation
homogeneous (DOH)

Operation homogeneous
only (OHO)

Data homogeneous
only (DHO)

Heterogeneous (Het)

Deterministic

Fully replicated file systems (peer-member
scheme) and replicated procedure call.

Partially replicated file systems.

Fully replicated file systems (primary
and secondary scheme).

Distributed process control, computer
conferencing, and E-mail distribution list.

Nondeterministic

Applications such as the distributed
time-of-day service in the V system.

Clouds’ distributed name-server group
and contract bidding.

Grapevine’s name-server group.

News propagation in a news group
of Usenet.

Discussion
Several existing systems support group

communications. The Isis2 and Circus4
systems are intended primarily for deter-
ministic replicated data objects or proce-
dure module groups. Birman and Joseph*
provide detailed design and analysis on
protocols for atomic and ordered group
communications. The V system’,” and
several other experimental systems5 sup-
port nondeterministic groups.

The two classifications of groups previ-
ously discussed are based on different cri-
teria, one on structure, the other on behav-

ior. By orthogonally projecting one over
the other, as Table 2 shows, we hope to
better understand how various group appli-
cations fit the classifications.

First, we can see that external uncertain-
ties in most nondeterministic groups stem
from the following facts: (1) objects are
distributed only to a subset of group
members, and the size and membership of
this subset may not be known in advance;
and (2) even when objects are fully distrib-
uted to all group members, applications do
not require their values to be always con-
sistent or accurate, and missing group
messages can be tolerated.

Second, Table 2 shows that most deter-
ministic group applications require mes-
sages to be sent atomically and in order,
regardless of the homogeneity of group
structure. Also notice that communication
support for a deterministic DHO group is
the same as for a deterministic DOH group.
No matter how differently each individual
DHO group member functions at the high
level, to guarantee consistency among
replicas, changes to the objects must be
propagated atomically and in order.

Let’s consider partially replicated file
systems as an example of the deterministic
OH0 group in Table 2. File system relia-

64 COMPUTER

bility requires that for each update request,
only those servers having the target file
take action and respond. It is difficult to
map a logical file onto an unknown number
of file servers maintaining the physical
replicas of the file. Thus there exists a level
of inherent nondeterminism in the group
communication. If we had a separate server
group for each replicated logical file ob-
ject, we would end up with a fully repli-
cated deterministic DHO server group for
each file. However, this may not be neces-
sary, and having many dynamically chang-
ing groups could be expensive.

It would be preferable to install software
filters at the client and the servers to elimi-
nate this structural nondeterminism. Each
server filter would discard requests for
nonlocal files. The client filter would use
some mechanism (perhaps by consulting a
name server) to determine the membership
of the implied subgroup - those having a
copy of the target file - and to guarantee
atomic message transaction with only this
subgroup. Once the implied subgroup
membership was determined, the group
transaction could proceed atomically.

An alternative would be to have every
file server reply to every request; those not
knowing the target file would simply reply
with a “null” message. The client would
work on non-null replies using knowledge
of the whole file server group membership
to eliminate the above nondeterminism.
This scheme trades extra host loading cost
for structural determinism to gain reliabil-
ity. It differs from broadcast in that (1)
only file servers pay host-loading cost for
each file access, and (2) as a system pro-
gram, file servers are generally more
trustworthy, and therefore file transactions
can be made more secure.

B efore designing a general, coher-
ent, and integrated group commu-
nication system, we must under-

stand how it will be used, that is, the basic
application requirements. We analyzed
different types of groups, along with their
potential applications, and classified group
applications into two major categories: de-
terministic and nondeterministic. Orthog-
onally, according to the structure, process
groups can also be classified as data opera-
tion homogeneous, operation homogene-

ous only, data homogeneous only, or
heterogeneous.

A basic conclusion from this analysis is
that group transparency is important and
desirable. When integrated into the under-
lying group support, it simplifies the inter-
face between server groups and their
clients by hiding from the clients, as much
as possible, the membership of server
groups and the interactions among group
members. This enables designers of clients
and servers to concentrate on the problems
to be solved - as they do in the unicast
environment - without concern for coor-
dinating multiple servers. Group transpar-
ency is manifested in group communica-
tion, group naming, multiple-reply han-
dling, group view change, and partial fail-
ure.

We hope this classification framework
and analysis will enhance the understand-
ing of process groups, group communi-
cations, and some applications, thus aid-
ing designers working with these
mechanisms.m

Acknowledgments
We are grateful for suggestions from the

anonymous referees, which led to a more con-
cise presentation. This work was made possible
by grants from the Natural Sciences and Engi-
neering Research Council of Canada.

References
D.R. Cheriton and W. Zwaenepoel, “Dis-
tributed Process Groups in the V Kernel,”
ACM Trans. Computer Systems, Vol. 3, No.
2, May 1985, pp. 77-107.

K.P. Birman and T.A. Joseph, “Reliable
Communication in the Presence of
Failures,” ACM Trans. Computer Systems,
Vol. 5, No. 1, Feb. 1987, pp. 47-76.

J.M. Chang, “Simplifying Distributed Da-
tabase Systems Design by Using a Broad-
cast Network.” Proc. ACM SIGMOD. June
1984, pp. 223-233.

E. Cooper, “Replicated Distributed
Programs,” Proc. ACM 10th Symp. Operat-
ing Systems, Dec. 1985, pp. 63-78.

L. Hughes, “A Multicast Interface for Unix
4.3,” Software Practice and Experience,
Vol. 18, No. 1, Jan. 1988, pp. 15-27.

S. Navaratnam, S.T. Chanson, and G.
Neufeld, “Reliable Group Communication
in Distributed Systems,” Proc. Eighth I&/
Conf. Distributed Computing Systems, June
1988, CS Press, Los Alamitos, Calif., Order
No. 865. pp. 439-446.

L. Peterson, N.C. Buchholz, and R.D.
Schlichting, “Preserving and Using Con-
text Information in Interprocess
Communication,” ACM Trans. Cornpurer
Sysfems, Vol. 7, No. 3, Aug. 1989, pp. 217.
246.

P.V. Mockapetris, “Analysis of Reliable
Multicast Algorithms for Local Networks,”
Proc. Eighth Data Comm. Symp., Oct.
1983, CS Press, Los Alamitos, Calif., Order
No. 494, pp. 150-157.

L. Hughes, “A Multicast Response-Han-
dling Taxonomy,” Computer Comm., Vol.
12, No. 1, Feb. 1989, pp. 39-46.

M. Ahamad et al., “Using Multicast Com-
munication to Locate Resources in a LAN-
Based Distributed System,” Proc. 13th
Conf. Local Compuier Networks, Oct.
1988, CS Press, Los Alamitos, Calif., Order
No. 891, pp. 193-202.

February 1990

1 1. D.R. Cheriton, “The V Distributed System,”
Comm. ACM, Vol. 3 1, No. 3, Mar. 1988, pp.
314-333.

12. M.D. Schroeder, A.D. Birrell, and R.M.
Needham, “Experience with Grapevine:
The Growth of a Distributed System,“ACM
Trans. Computer Systems, Vol. 2, No. 1,
Feb. 1984, pp. 3-23.

13. F. Cristian et al., “Atomic Broadcast: From
Simple Message Diffusion to Byzantine
Agreement,” Tech. Report RJ4540(48668),
IBM Almaden Research Center. Dec. 1986.

Luping Liang is a PhD candidate in computer
science at the University of British Columbia.
His research interests include distributed oper-
ating systems, computer communication net-
works, and performance modeling and analy-
sis. He received an M.Math degree in computer

science from the University of Waterloo in
1985 and a B.Eng. in computer engineering
from Tsinghua University, Beijing, in 1982,
where he also worked as a faculty member. He
is a student member of ACM and the IEEE
Computer Society.

Samuel T. Chanson is an associate professor in
the Department of Computer Science at the
University of British Columbia, where he is
also a founding member of the Distributed
Systems Research Group. He is researching
distributed operating systems, computer com-
munications, and performance analysis of dis-
tributed systems. Chanson organized and co-
chaired the first International Workshop on
Protocol Test Systems, held in Vancouver in
October 1988. He received a PhD in electrical
engineering and computer sciences from the
University of California at Berkeley in 1974.
He is a member of the IEEE Computer Society.

Gerald W. Neufeld is an assistant professor in
the Department of Computer Science at the
University of British Columbia. He is a found-
ing member of the Distributed Systems Re-
search Group and director of the Open Systems
Interconnect Lab. His interests include com-
puter communications, distributed applica-
tions, and distributed operating systems. Cur-
rently.he is working on the Raven project, an
object-oriented distributed system. Neufeld
received a BSc (with honors) and an MSc from
the University of Manitoba and a PhD in com-
puter science from the University of Waterloo in
1987.

The authors’ address is University of British
Columbia, Department of Computer Science,
2075 Wesbrook Mall, Vancouver, BC, Canada,
V6T lW5.

6 File Edit Modeling Check Font Wmdow Interface Help Others
StructSoft. Inc.. the developer of one of the top selling
PCCASE tools, now marketedasTeamwork/PCSA’”
by Cadre Technologies, Inc.. is proudly announcing
a second generation CASE tool. TurboCASE. for the
Apple Macintosh.

TurboCASE is an integrated, multi-window. multi-
methodology supporting CASE tool. It is extremely
easy to learn and use. It supports Structured Analy-
sis with or without the Real-Time extension. It will
also support Data Modeling, Structured Design and
Object Oriented Analysis and Design in the future.

TurboCASE generates ASCII information exchange
formats which can be used to link with Teamwork and
Iconix’ PowerToolTM

A demo diskette is available for $15.00.

StructSoft, Inc. 5416 156th Ave. SE, Bellevue, WA 98006. Tel: 206-644-9834 Fax: 206-644-7714
Trademarks: TurboCASE : StructSoft. Inc.; Teamwork. Teamwork/PCSA : Cadre Technologies, Inc.: PowerTool : lconix.

Reader Service Number 4

