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G roup communication is an operat- 
ing-system-level abstraction that 
offers convenience and clarity to 

the programmer. Currently, only a few To design a general, 

essarily one-to-one.) Each group is viewed 
as a single logical entity, without exposing 
its internal structure and interactions to 
users. 

operating systems support this abstraction. coherent, and integrated Generally, objects are grouped for (1) 
However, a lack of understanding of group abstracting the common characteristics of 
communication requirements with respect group communication group members and the services they pro- 
to different classes of applications may be vide, (2) encapsulating the internal state 
equally responsible for the abstraction’s system, we must and hiding interactions among group 
not being widely used. 

This article examines different distrib- understand basic members from the clients so as to provide 
a uniform interface to the external world, 

uted applications and outlines their re- 
quirements for group communication sup- 
port. On the basis of internal structures and 
external behavior, we classify groups into 
different categories and discuss their prop- 
erties. 

In distributed computer networks, 
multicast (one-to-many communication) 
is a message transmission mechanism that 
delivers a message from a single source to 
a set of destinations. Special cases of 
multicast are unicast (one-to-one commu- 
nication) and broadcast (one-to-all com- 
munication). As Figure 1 shows, a single 
multicast transmission delivers a message 
to a set of destinations in parallel, allowing 
the receivers to process the message con- 
currently. 

application and (3) using groups as building blocks to 
construct larger system objects. Passing 

requirements. This messages to a group is generally called 

classification of group intergroup communication. 
Group communication offers improved 

applications can be an efficiency and convenience because 

important tool. (1) it delivers a single message to mul- 
tiple receivers by taking advantage of a 
network’s multicast capability, thereby 
reducing sender and network overhead; 

abstraction. A group is a composite of 
objects sharing common application se- 
mantics, as well as the same group identi- 
fier and/or multicast address. (Multicast 
exists at the medium-access sublayer with 
multicast hardware. The mapping between 
group identifiers and multicast addresses 
is implementation dependent and not nec- 

(2) it provides a high-level communica- 
tion abstraction to simplify user programs 
in interacting with a group of receivers; 
and 

(3) it hides from applications the inter- 
nal coordinations of a group (for example, 
membership changes). 

In contrast to multicast, an abstraction 
of network communication, group com- 
munication is an operating-system-level 

Group communication is best supported 
by network multicast. It can also be emu- 
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Figure 
tions. 

1. One-to-many communica- 

lated by one-to-one interprocess commu- 
nication or simulated by network broad- 
cast. However, in the former case, not only 
is the first advantage lost, but a sender must 
also keep track of every group member; 
thus, groups are no longer self-contained. 
With network broadcast, extra overhead is 
required because all machines must exam- 
ine every message regardless of its destina- 
tion; furthermore, the communication is 
less secure, since group messages can be 
seen outside a group. 

Although multicast was introduced a 
few years ago,’ few applications take ad- 
vantage of group communication. The 
reasons for this are (1) a lack of under- 
standing of group communication require- 
ments with respect to different classes of 
applications; (2) the fact that few systems 
provide sufficient group communication 
support at the operating system level to 
meet those requirements; and (3) until 
recently, a lack of multicast hardware 
support. 

This article deals with the first part of the 
problem. We classify groups on the basis 
of their structure and behavior and present 
a uniform treatment of group transparency. 
Readers interested in the second part 
should refer to the literature.‘.’ Other work 
in the area includes that of Mockapetris,* 
who presents a general analysis of multi- 
cast mechanisms at the network level 
rather than at the application level. Hughes 
presents a multicast taxonomy based on 
the number of replies to each multicast 
request9 However, there is no general 
examination and classification of group 
communication requirements from the 
application’s point of view. 

We will define the process group model 
and classify it on the basis of the homoge- 
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Figure 2. Inter- 
munications. 

and intragroup com- 

neity of the structure among group mem- 
bers. Then we will examine different dis- 
tributed applications and their require- 
ments for group communication support, 
classifying groups according to their be- 
havior. We will also discuss the relation- 
ship between the two classifications. 

Process group model 

The concept of a process group is not 
new. V’ and Isis* defined a process group 
as a set of processes grouped to coopera- 
tively provide a service. This definition, 
although broad, does not adequately char- 
acterize why or how the processes are 
grouped and hence does not provide suffi- 
cient information for classification. 

We refine the process group definition 
as follows: First, we define an object as a 
set of variables and a set of operations on 
those variables. We define an object group 
as a set of objects sharing one or more 
common characteristics (internal state), 
interacting and coordinating among them- 
selves to provide a uniform external inter- 
face. Second, because each object is gener- 
ally maintained by a manager process and 
can be accessed only through a request to 
its manager, we define a process group 
corresponding to a given object group G as 
the set of manager processes maintaining 
the objects in G. 

Process group members control the way 
resources in the object group are accessed 
and may have to coordinate among them- 
selves to maintain state consistency in the 
object group. Members also interface with 
users of the resources they maintain. Group 
messages are generally sent to process 
groups. 

Figure 3. Many-to-many 
group) communications. 

(group-to- 

This model provides a better under- 
standing of group communication and al- 
lows classification on the basis of process 
group structure. For simplicity, we will use 
the term “group” to refer only to process 
groups. 

In distributed systems, machine bounda- 
ries prevent processes on different hosts 
from physically sharing memory. In the 
following discussions, unless stated other- 
wise, we assume that interaction with ob- 
ject groups occurs through intergroup 
communication at the process level. The 
underlying network can be either a local 
area network or an intemet. We make no 
assumption regarding the implementation 
of group communication. 

A group is “closed” when only its 
members are allowed to send requests to it; 
otherwise, it is “open.” In this article we 
will use the open model, as it is more 
general and corresponds to the client- 
server model commonly used in distrib- 
uted operating systems. 

In the client-server context, the process 
invoking an operation is called a client and 
the process receiving and processing the 
invocation is called a server. A process can 
play both client and server roles, depend- 
ing on its communication context. This 
client-server model can be extended into 
group communication; that is, client group 
and server group can be defined similarly. 
As Figure 2 indicates, communications 
between external clients and a server group 
are called intergroup communications, 
while internal communications among 
group members are known as intragroup 
communications. Intergroup communica- 
tions could also occur between groups in 
the form of many-to-many communica- 
tions, as Figure 3 shows. 
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Sending messages from a single process 
to a group is called one-to-many communi- 
cation, and from a group to a single process 
is called many-to-one communication. 
Usually, many-to-many communications 
can be decomposed into one-to-many and 
many-to-one communications.“ Also, as 
Figure 4 shows, a process can maintain 
multiple objects that may belong to differ- 
ent object groups. Therefore, a process can 
belong to multiple groups, and process 
groups can overlap. 

Structural 
classification 

Viewed as a collection of object manag- 
ers, a group can be classified on the basis of 
the homogeneity of the internal state of the 
objects maintained and operations sup- 
ported by each group member. An object 
manager can be characterized by 

l Application-level objects - the set of 
objects maintained by the process. Their 
value determines the application-level 
internal state of this process. 

l Application-level operations-the set 
of operations that can be executed on the 
above objects. Other processes can modify 
the value of these objects only by invoking 
these operations through this manager. 

Operations on the objects are what define 
the services a process provides. Because 
services of a process are accessed through 
inter-process communication in message- 
passing systems, operation executions and 
process state transitions are stimulated by 
the events of message arrival. 

A selection rule of a group G is a set of 
criteria for selecting objects forming G and 
is determined by G’s application. For 
simplicity, we assume that an object is in 
the object group G if and only if the object 
satisfies G’s selection rule, and that a 
process p is in the manager group of G if 
and only if p maintains at least one object 
satisfying that rule. The services a group 
provides are implemented by the group 
members cooperatively and are accessed 
by clients through intergroup communica- 
tion. A group G can be characterized by 

l Group objects - the subset of objects 
maintained by each member process in 
G, which satisfies G’s selection rule. 

l Group operations - the set of opera- 
tions on the above objects. 

Depending on how each group member 
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overlapping groups; Gi = process 
groups, OGi = object groups. 

implements and maintains objects and 
operations, a group can be placed in one of 
four categories: 

(1) Data and operation homogeneous 
(DOH): Every member in a DOH group 
maintains a complete replica of the set of 
group objects and implements an identical 
set of operations on these objects. To guar- 
antee consistent external behavior, a DOH 
group maintains consistency among repli- 
cas of the objects and requires every 
member to execute exactly the same se- 
quence of operations. DOH groups are 
used mainly to increase service reliability 
and availability. Examples are groups in 
Isis2 and troupes in Circus.4 

(2) Operation homogeneous only 
(OHO): In an OH0 group, the object space 
is partitioned among group members, with 
each member maintaining only part of the 
global group state. Object space partitions 
may overlap. Also, every member supports 
an identical set of operations on its portion 
of the objects. However, when an opera- 
tion is invoked on an object, only members 
with the relevant object need to perform 
the operation. OH0 groups are used mainly 
to distribute the work load among group 
members. Each member can maintain the 
integrity of its own objects independently 
of other members. The distributed name 
service, discussed later, is an example of 
the OH0 group.rO 

(3) Data homogeneous only (DHO): 
Members in a DHO group share a set of 
objects by sharing the same address space 
on a single machine, or in some other 
distributed manner (for example, data rep- 
lication). Each member supports a set of 

operations on the same objects. These 
operations may or may not be identical to 
those of other members. Upon invocation 
of a group operation, members may act 
differently. For example, a coordinating 
member accepts an operation invocation 
from a client and accomplishes the task 
through internal cooperation with other 
group members. The role of coordinator 
need not always be played by the same 
member. Also, members in a DHO group 
must synchronize themselves to serialize 
concurrent updates to the objects. This 
requires an underlying mechanism similar 
to that for DOH group support. The usual 
purposes of a DHO group are to provide 
group services cooperatively via a set of 
worker processes and to simplify the de- 
sign, implementation, and interface of the 
service by masking member cooperation 
from external observation. Examples in- 
clude the team in VI’ and the primary- 
secondary replication scheme.6,‘2 

(4) Heterogeneous (Het): As far as the 
group application is concerned, the objects 
and operations each member implements 
and maintains could both be heterogene- 
ous. There may or may not be cooperation 
among group members, and their internal 
states may be completely independent of 
one another. Rather than encapsulate inter- 
actions among members to provide a coop- 
erative group service, heterogeneous 
groups facilitate system control and sim- 
plify interactions between the client and 
server groups. Electronic mail distribution 
lists, computerconferencing, news groups, 
and distributed process control are appli- 
cations of heterogeneous groups. 

Behavior classification 
and requirements 

According to their external behavior, 
distributed process groups can be classi- 
fied into two major categories: determinis- 
tic and nondeterministic. The former 
groups are used mainly in replicating data 
and services to enhance reliability, while 
the latter are used mainly in distributing 
data and work load among multiple servers 
to improve information availability and 
resource sharing. More complete defini- 
tions of the two categories appear later. 

Basically, a deterministic group requires 
high reliability in group communications 
to maintain strong consistency among 
members. Such groups are “heavyweight” 
in the sense that they require complete 
group membership information and 
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atomic, consistently ordered group inter- 
actions. In contrast, nondeterministic 
groups are “lightweight,” since they need 
only basic datagram multidelivery trans- 
port support. Inconsistencies and unreli- 
able group interactions are handled in an 
application-specific manner, resulting in 
more flexible and efficient - but more 
complex - application programming. 
Whether a group is deterministic or nonde- 
terministic depends solely on its applica- 
tion, not on its structural characteristics. 

Deterministic groups. A group is deter- 
ministic if each member must receive and 
act on a request. (The term deterministic is 
used here to characterize the relationship 
among group members and is less restric- 
tive than when used by some authors to 
mean only one possible execution of a 
single procedure.) This requires coordina- 
tion and synchronization among group 
members. In most deterministic groups, 
member processes are equivalent;4 upon 
receiving the same request in the same 
state, the same procedure is invoked, and 
every member transfers to the same new 
state and produces the same response and 
external effects. 

Let’s look at some deterministic-group 
applications in terms of their basic charac- 
teristics and communication requirements. 

Replicatedfile systems. In a fully repli- 
cated file system, all file servers constitute 
a group. Files are replicated at every file 
server to enhance file availability and re- 
liability. The two common methods sup- 
porting replicated file systems are peer- 
member and primary-secondary.’ In the 
peer-member scheme, all members in a file 
server group are identical, and group 
communication and coordination occur 
between the client and all members. In the 
primary-secondary scheme, a primary 
member handles the communication inter- 
face between clients and the group, and 
group communication and coordination 
occur between the primary and all secon- 
daries inside the group. A fully replicated 
file server group is a deterministic DOH 
group if the peer-member scheme is used; 
it is a deterministic DHO group if the 
primary-secondary scheme is used. 

Replication transparency is an impor- 
tant characteristic of these systems. File 
system clients usually prefer a single file 
image regardless of whether a file is imple- 
mented by one or many servers. The file 
abstraction as seen by a client is called a 
logical file image, and operations on it are 
called logical operations. The physical file 

Distributed process 
groups can be classified 

into two major 
categories: deterministic 

and nondeterministic. 

copies maintained by the file servers are 
known as file replicas, and operations on 
them are called physical operations. Relia- 
bility requires that file replicas be kept 
consistent at all servers, so that files are 
always available to clients as long as at 
least one file server is functioning. Availa- 
bility requires that users be able to read the 
files with minimum latency - for ex- 
ample, to get a consistent copy of a file 
from the closest functioning server. 

Both reliability and availability imply 
that file replicas must be consistent. Thus, 
every logical file update must be atomic, 
that is, either executed by all servers or by 
none, and a client must be informed of 
whether or not its update is completed. 
Furthermore, because different sequences 
of the same set of update operations can 
result in different file states, all servers 
must execute exactly the same sequence of 
operations with respect to each logical file. 
Two logical operations, op, and opZ, are in 
conflict if they are data dependent; since 
they manipulate overlapping logical data, 
the execution order affects the results. Two 
conflicting operations collide if executed 
concurrently. 

Consider two clients, C, and C,, who 
issue a LockFile request independently to 
acquire a lock on the logical file F. If the 
two requests are not consistently ordered 
at all server group members, some servers 
may allocate the physical locks on their 
physical replicas of F to C,, others to C,, 
depending on whose request is executed 
first; thus, a deadlock may occur. Clearly, 
collided operations must be ordered; the 
order can be arbitrary as long as it is consis- 
tent at all member sites. This ordering of 
collided operations is called absolute or- 
dering.’ 

File servers can be added or deleted 
dynamically. Clients expect the file server 
group to coordinate internally to hide 
membership changes from external obser- 

vation. This type of internal coordination 
includes keeping consistent name binding 
between a group identifier and a set of 
server process identifiers, and bringing a 
new server state up to date. Satisfying this 
requirement not only simplifies the group 
interface to clients but also increases flexi- 
bility in file system configuration. Since a 
host cannot always distinguish between 
network partition and host failure, file- 
system-level consistency requires that 
both clients and servers be notified when 
either failure occurs, and that some higher 
level consistency-control algorithms be 
used to handle the failure. 

Replicated program executions. Repli- 
cated program execution is another ex- 
ample of the deterministic DOH group. In 
some distributed applications, a major 
concern is the resiliency of computations. 
Programs can be decomposed into abstract 
data type modules, each having a set of 
internal states and a set of procedures 
manipulating the states. Modules are repli- 
cated on multiple sites,4 and replicas of a 
module form a group. Group members may 
represent different implementations of the 
same abstract data type written by differ- 
ent programmers (subject to the constraint 
of equivalent deterministic behavior). 
Thus, module reliability can be enhanced 
by both replication and multiversion pro- 
gramming. Multiversion programming 
tends to. reduce program design faults 
(assuming fail-stop behavior), while repli- 
cated module execution tends to make the 
module runtime execution robust. A pro- 
cedure call to a module can proceed as long 
as at least one group member is function- 
ing. An application programmer would 
expect the syntax and semantics of a repli- 
cated procedure call to remain the same as 
those of a nonreplicated call, that is, repli- 
cation transparent. 

Consistency in replicated procedure 
calls requires that the group members be 
deterministic and equivalent and that every 
member execute the same sequence of 
calls. Application programmers are re- 
sponsible for ensuring that modules are 
deterministic and equivalent. The group 
system, on the other hand, must guarantee 
atomicity and ordering (defined in the 
previous section) to each procedure call, as 
well as replication transparency. For each 
replicated procedure call from a client 
group to a server group, each client group 
member makes a one-to-many call to the 
server group, and each server group mem- 
ber accepts many-to-one identical proce- 
dure invocations (resulting from one call 
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per client group member) and makes a one- 
to-many reply to the client group after 
execution. Each client group member then 
handles many-to-one replies from the 
server group. These multiple calls and 
receptions are best handled in the group 
communication layer so that client/server 
programmers need not be aware of mul- 
tiple entities in the caller/callee group. 

An advantage of making replicated pro- 
cedure calls at the module level is that the 
degree of replication can be adjusted dy- 
namically according to the functions of 
different modules, thus optimizing system 
performance and reliability. In other 
words, more copies could be made for 
critical modules to enhance their reliabil- 
ity, while fewer or no replications would 
have to be made for less important mod- 
ules. Also, dynamically changing group 
membership allows system auto-recon- 
figuration to become transparent to appli- 
cations as group members fail and recover 
at runtime. However, this dynamic group 
membership makes it difficult to bind a 
group name to a set of modules. 

A replicated program execution often 
happens within a single local area network; 
therefore, network partition failure is un- 
likely. When any group member fails, the 
group is expected to reconfigure itself 
autonomously, making partial failures 
transparent to client groups. 

Distributed industry process control. 
Distributed process control is an example 
of the deterministic Het group. Imagine a 
simple distributed industry process control 
environment in which the temperature in a 
reaction container is to be controlled. A 
sensor measures the current value of the 
temperature, and a control panel displays 
that value to human operators, records the 
history of the sensor signals, and allows an 
operator to set the control parameters. A 
set of controllers manages the flow of 
cooling fluid into the container by opening 
or closing valves. The sensor can view the 
console and the controllers as a group. 
When a control parameter diverges from 
the preset value, the sensor multicasts the 
measured result to the group so that the 
console informs the operators and the 
controllers open or close the valves to 
adjust the flow automatically. 

This group is obviously heterogeneous 
because each member, though driven by 
the same sequence of signal stimuli, main- 
tains completely different objects and per- 
forms different operations. These compo- 
nents are grouped simply for convenience 
of communication; they are identified by a 

E-mail distribution list and computer 
conferencing. Electronic mail distribution 
lists and computer conferencing are two 
other examples of the deterministic Het 
group. People registered in the same distri- 
bution list or conference constitute a 
group. Grouping is for convenience of 
communication; for each message, a 
sender prepares a single copy and performs 
one send operation. Generally, a sender 
does not know who participates in the dis- 
tribution list, because registrations are 
handled by an independent authority. The 
sender simply sends the message to the 
list’s address, which has the same syntactic 
format as other single-user addresses and 
which logically includes all participants. 
The same is true for computer confer- 
encing, except that conferences are nor- 
mally closed groups in which only partici- 
pants can send messages to the conference. 
In contrast, a distribution list is open to 
anyone with access to the list address. 

Assuming registration and network 
connections are set up properly, messages 
to a conference are expected to be deliv- 
ered atomically. If any participant receives 
a group message, other members in the 
group should also receive that message 
within a bounded period. However, for 
each message delivered, the sender may 
receive replies from recipients, either in 
the form of private one-to-one correspon- 
dence or as follow-up discussions to all 
conference participants. In a follow-up 
message m, the speaker makes a point on 
the basis of all the messages related to m 
that he or she has received; these messages 

single receiver ID in each group message. 
If the underlying network supports multi- 
cast, only one copy is transmitted for each 
sensor signal, saving network bandwidth 
and speeding the signal processing. 

Although member states have no appli- 
cation-level consistency requirement, 
group communications have reliability 
requirements. Unless the sensor fails, its 
signals must be delivered reliably to all 
active members in the same order as gener- 
ated. Also, each signal from the sensor 
must be delivered by a predefined deadline 
or the signal will become obsolete. The 
sensor expects no reply from the group. 
Any individual member failure must be 
detected quickly, and operators must be 
notified to repair the failed component. 
However, before recovery of the failed 
component, the remaining group members 
are expected to continue fulfilling their 
duties even though the complete group 
service may not be available. 

are called the context associated with m. 
For other participants to understand m 
properly, they must be able to reference its 
context.’ A recipient should not see a 
message without having also received its 
context. This dependent relationship is 
sometimes called a causal relationship’ 
and defines a partial ordering among mes- 
sages submitted to a conference. 

In both distribution lists and confer- 
encing, absolute ordering is not required. 
Concurrent messages usually can be deliv- 
ered in arbitrary order because they are not 
context related and because the partici- 
pants’ states are not message dependent. 
When necessary, the conference chair de- 
termines the order of concurrent messages. 
Sending and receiving messages can be 
concurrent and asynchronous for each 
participant. Because incoming messages 
may affect the content of outgoing ones, 
receiving may be given higher priority than 
transmission. 

In conferencing, a follow-up message 
may become a competitive orphan (ex- 
plained later) because of the asynchronous 
nature of the communication pattern. In 
this situation several people may respond 
identically to the same message before 
seeing each other’s responses. Fast deliv- 
ery makes this problem less likely but does 
not eliminate it entirely. 

Membership changes should not affect 
group communications. A new member 
normally becomes up to date by reading 
the conference bulletin board or the discus- 
sion archive. The failure of a member is 
normally treated as departure from the 
group. 

Distributed databases. A deterministic 
Het group can be used within a distributed 
database. A distributed database model has 
a transaction manager (TM) and a data 
manager (DM) on each site. Each TM 
accepts user requests and translates them 
into commands for DMs. Each DM main- 
tains part of the database stored at its site 
and may concurrently execute transactions 
from multiple TMs. A transaction group 
consists of all DMs participating in the 
same transaction. This group is heteroge- 
neous because each DM maintains a differ- 
ent part of the database and each may 
respond differently (accept or reject the 
precommit from the TM) according to its 
local status. Messages from the coordinat- 
ing TM are delivered atomically to the 
transaction group. 

For concurrency control and failure 
recovery, a two-phase commit protocol 
(2PC) is normally used at the end of each 
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transaction. When the coordinating TM 
and all cohorts (DMs) that know the deci- 
sion (commit or abort) fail, the standard 
2PC will be blocked until some processes 
recover. A simple nonblocking 2PC can be 
designed on the basis of ordered atomic 
group communication.’ 

In the absence of a coordinating TM 
failure, the protocol proceeds as the nor- 
mal 2PC. When the coordinating TM fails, 
a communication-layer-generated failure 
notification is broadcast to the group, and 
upon receiving this notice each DM aborts 
the transaction. This protocol requires not 
only an atomic but also an ordered group 
communication mechanism to guarantee 
(1) that every DM in a transaction group 
will receive exactly the same sequence of 
instructions from the coordinating TM, 
and (2) that if the coordinating TM fails 
after broadcasting commit, its failure noti- 
fication is delivered either before or after 
its commit message consistently and at- 
omically to all DMs, allowing them to 
either commit or abort the transaction 
consistently. Although the membership of 
a transaction group is governed by the 
coordinating TM, and a DM failure is de- 
tected by the TM during the execution of 
2PC, the communication layer still needs 
this information to achieve atomicity. In- 
consistent replies from DMs are handled 
by the coordinating TM itself rather than 
by the group mechanism. 

Summary of requirements. The above 
analysis of deterministic group applica- 
tions makes clear that group transparency 
is a desirable property allowing a client to 
treat a group’s service as if it were pro- 
vided by a single server. A single call is 
made and a single result, if any, is expected 
from the server group. Also, a server main- 
taining group object replicas need not 
know that another coserver exists, and thus 
application programmers need not be 
aware of group coordination. 

Group transparency for deterministic 
groups must satisfy the following require- 
ments: 

(1) Communication transparency. 
Communication transparency consists of 
two aspects: atomicity and ordering.2 

l Atomic message delivery. An atomic 
group message is either received and pro- 
cessed exactly once by all members in the 
recipient group, or by none at all. Atomi- 
city hides a partial group communication 
failure by converting it into a total failure. 

l Application-level absolute ordering. 

L I 
In both distribution 

lists and conferencing, 
absckte ordering 

is not required. 

The delivery order of messages to group 
members needs to be synchronized if the 
order will affect the result. Every member 
of a group must see the same sequence of 
requests on dependent data and adjust its 
internal state accordingly. Also, in the case 
of colliding requests, the common mem- 
bers of two overlapping groups must see a 
consistent “combined” sequence of re- 
quests to both groups. 

(2) Reply-handling transparency. Be- 
cause client and server interactions nor- 
mally follow the request-response pattern, 
reliable multicast from client to server is 
not enough. Replies from a group also 
must be collected and processed properly 
to achieve group transparency.2,4 For each 
group request, there exists a potential for 
multiple responses from a server group. 
These responses may or may not be identi- 
cal. Reply-handling transparency guaran- 
tees that a client need not be aware of the 
multiple replies to its request. It sees a 
single reply without having to be con- 
cerned about how this reply is derived 
from others (for example, by weighted 
voting). 

(3) Naming transparency. This in- 
volves dynamically and transparently 
binding group members to a single name. 
Group naming consists of two parts: map- 
ping a logical service name into a group of 
servers, and allowing group membership 
to change dynamically. A group view is a 
snapshot of the group membership at a 
particular instant in time. It is maintained 
by each of the concerned parties, be they 
group members, system name servers, or 
any client needing to make decisions on 
the basis of the group view. A group view 
changes as members fail and recover, or 
are inserted and deleted, in parallel with 
other group message activities. 

Since atomic group interactions rely on 
a consistent group view to verify that all 
active members have confirmed reception 
of each atomic message, group view 

changes must be detected in a consistent 
manner. It is convenient to serialize group 
view changes consistently with respect to 
other group message activities. Isis group 
members achieve this by having a system- 
generated announcement, issued on behalf 
of the failed member, follow all its prefail- 
ure messages. This announcement arrives 
at every member in the same order with 
respect to the other group messages, so that 
members all see the same sequence of 
group view transitions at virtually the same 
time. Therefore, it is guaranteed that no 
message will arrive from a failed member 
once its failure has been announced.’ If a 
member recovers, its state must be brought 
up to date with a consistent snapshot of the 
group’s internal state, and all concerned 
parties should perceive the new member’s 
existence before receiving a message from 
it. 

(4) Failure transparency. Depending 
on a group’s purpose, either clients and 
server group members are notified of the 
failure to take application-level recovery 
actions, or a member failure is hidden from 
the clients. In the latter case, the failure 
may be presented as a complete group 
failure, or other group members may take 
over the role of the failed member. The 
technique chosen depends on the group’s 
function. When a deterministic group is 
used to enhance data reliability, as in rep- 
licated file systems or databases, strong 
consistency is required among the group 
object replicas. Therefore, the group con- 
sistency control strategy may exaggerate a 
partial failure as total; if any member fails 
or the network is partitioned during a group 
operation execution, the operation cannot 
succeed until the failure is recovered or the 
group is properly reconfigured. However, 
when a group is used to enhance service 
reliability, as in a replicated procedure. 
call, maintaining service to clients is im- 
portant. During recovery of the failed 
member, remaining active group members 
should continue fulfilling their duties to 
keep damage to a minimum. 

(5) Real-time requirement. We can 
measure multicast message delay in terms 
of distribution time - the time taken for 
all operational members in a group to re- 
ceive a multicast - or in terms of comple- 
tion time - the time taken for the sender to 
learn that all destinations have received its 
message reliably.* In deterministic group 
applications, consistency is more impor- 
tant than efficiency. When trade-offs be- 
tween the two are required, system support 
often gives priority to consistency. In real- 
time systems, on the other hand, messages 
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usually must be delivered within a client- 
specified deadline: otherwise, amessage is 
deemed obsolete and a timing fault is trig- 
gered. 

In one-to-one interprocess communica- 
tions, a server can simply ignore a timing- 
fault message or respond to the client with 
an operation failure. In multicast, some 
servers may receive the message on time 
while others see a timing fault, even though 
atomicity and ordering are guaranteed. 
When this occurs, servers in the recipient 
group must coordinate to act consistently 
on each timing-fault message to guarantee 
consistency. Multicast distribution time 
should be bounded so that group actions 
can be scheduled to occur atomically and 
simultaneously in virtual time at all group 
membersi 

Nondeterministic groups. Determinis- 
tic groups require strong data and behavior 
consistency, and synchronization among 
all members. Nondeterministic groups 
assume that their applications do not need 
such strong built-in consistency, and they 
relax it in various application-specific 
manners. Nondeterministic group mem- 
bers generally are not equivalent.4 Each 
member may respond differently to a group 
request, or not respond at all, depending on 
the individual member’s state and func- 
tion. Normally, either member states of a 
nondeterministic group are unaffected by 
processing user requests, or they are not 
necessarily consistent. Either requests to 
such a group do not require all group 
members to act, or missing requests can be 
detected and recovery completed within 
the application. 

Because of the relaxed consistency, 
maintenance overhead for the group is 
generally lower than for a deterministic 
group. Whether a group should be imple- 
mented as deterministic or not depends on 
the application requirements. 

Next we will describe some nondeter- 
ministic group applications in terms of 
their basic characteristics and communica- 
tion requirements. 

Distributed clock service. The time-of- 
day service in the V system exemplifies a 
nondeterministic DOH group,” in which 
all group members implement the same set 
of functions and play the same role in the 
service. Although all members are sup- 
posed to maintain identical objects, the 
state of these objects may differ when a 
partial group communication failure re- 
sults in some members not receiving a 
group request. 

Failure of any 
name server does 

not stop activity at 
other servers. 

In the distributed time-of-day service, 
every station periodically receives a clock 
tick from a central clock. Between clock 
ticks, each machine’s clock replica simply 
caches the latest time stamp from the cen- 
tral clock and extrapolates forward using 
its local clock. Clock drifting can be cor- 
rected by the next clock tick. Time requests 
are handled using the locally extrapolated 
time values. Should any clock update 
message be missed, the next clock update 
corrects it. Although the time value stored 
in the local clock may not be absolutely 
correct, it is accurate enough for most non- 
time-critical applications. 

Similarly, many applications that repli- 
cate data do not require absolute consis- 
tency. The required level of consistency is 
obtained by using application semantic 
knowledge and assuming that the client 
can detect, recover from, or tolerate incon- 
sistencies. This reduces communication 
complexity and promotes efficiency. The 
nondeterminism in these applications 
stems from the fact that group members 
may maintain an inconsistent or inaccurate 
global group state. Applications of this 
type need only an efficient and “best ef- 
fort” multicast mechanism. 

Distributed name service. In a distrib- 
uted name service, a set of name servers 
operate at several machines in the network. 
In some designs the global name space is 
partitioned, and a different name server 
maintains each partition.‘” This type of 
distributed name server forms a nondeter- 
ministic OH0 group, because every mem- 
ber performs the same set of operations. As 
an example, each object in the operating 
system Clouds” is assigned a logical sys- 
tem name. A mapping function w maps a 
system name onto a multicast address A = 
w (S). Each station maintains a multicast 
address table for the objects stored at the 
node. To locate an object 0, a user pro- 
vides its system name S. The client host 

first calculates O’s multicast address A = 
w (S) and uses A as an index to search its 
local object directory. If the object is not 
found, a multicast remote procedure call is 
invoked on the address A. Nodes with A in 
their multicast address table accept the 
remote procedure call, search the local 
object directory for the object with the 
system name S, and reply if they find it. In 
this way, all nodes share the overhead of 
maintaining, locating, and migrating ob- 
jects. 

Group transparency is an important 
property expected by both clients and serv- 
ers. A client locates an object by submit- 
ting a name look-up request to the name 
service. It is irrelevant to the client which 
server responds or whether single or mul- 
tiple servers handle the request. Each 
server manages its assigned portion of the 
name space and responds only to requests 
for objects it knows. It need not be aware 
that other servers exist. 

Nondeterminism in distributed object 
naming results from the global group 
state’s being partitioned among members; 
therefore, a client does not know which 
server will perform its request. A Lookup 
need not be multicast to name servers at- 
omically, because it is an idempotent op- 
eration and does not alter the name servers’ 
state. Note, however, that the name-bind- 
ing update in the name servers is a deter- 
ministic operation, and all replicated serv 
ers, if any, must execute the update opera- 
tions atomically and in the same order in 
which names are bound. 

Grapevinei adopted another way of 
supporting a distributed name service. It 
exemplifies the nondeterministic DHO 
group in which the name space is fully 
replicated at each name server. However, a 
server may play primary or secondary roles 
in name updates, even though every server 
supports the same set of operations. The 
Grapevine update algorithm does not guar- 
antee a consistent view at all name repli- 
cas, because name update broadcasts are 
neither atomic nor ordered. A client deals 
only with its local name server without 
seeing the whole name server group. 
Clients can detect and correct inconsistent 
and stale names in an application-specific 
manner. 

Both examples should make clear that 
failure of any name server does not stop 
activity at other servers. 

Contract bidding. Contract bidding, 
another example of the nondeterministic 
OH0 group, is a technique for resource 
sharing and load balancing among stations 
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in a server pool. Clients submit job re- 
quests for servers to complete. The spe- 

_ 
_. I *- ., i_, _ i normally is not known to clients; and (3) a 

server may not receive the request at all. 
cific server station and the order of execu- Data consistency is not a problem for vari- 
tion do not matter. Server group members The dominant ous reasons: The application requests may 
do not maintain a global group state. All be idempotent, group consistency may not 
worker stations are functionally identical communication pattern be critical to the application, or the appli- 
and respond to idempotent service contract in nondeterministic cation may be able to detect and recover 
bids only on the basis of their local state. from inconsistency easily. Application 
Upon completing a task, servers return to group applications is programmers are given the flexibility - 
the ready state for the next job assignment. 

The number of available server stations 
is always changing, as is their current load. 
To optimize overall system throughput and 
mean response time, tasks should be sched- 
uled to keep all servers equally busy. 
Scheduling is usually done in one of two 
ways: In a client-initiated scheme, a client 
posts its task requirement on the network 
for server stations in the pool to bid on. An 
available server responds with its current 
load condition, and the client chooses the 
proper server to complete the task. In a 
server-initiated scheme, potential clients 
form a group, and an available server posts 
its request for loading to the client group. 
Each client responds with its task requests, 
and the server chooses the appropriate one 
to execute. 

In both schemes a competitive orphan 
may be generated. In contrast to a failure 
orphan, generated when a server continues 
to execute a dead client’s request, a com- 
petitive orphan is generated when server 
group members are not properly coordi- 
nated. (Failure orphans are a general prob- 
lem in the client-server model, while 
competitive orphans are a special problem 
in the group communications context. We 
can view a failure orphan as resulting from 
a lack of coordination between the client 
and the server group;,we can view a com- 
petitive orphan as resulting from a lack of 
coordination among group members.) 

In the server-initiated scheme, a com- 
petitive-orphan request could be generated 
from a client that does not know whether 
its job request has already been carried out. 
Also, in the client-initiated scheme, multi- 
casting a job request could trigger multiple 
concurrent executions at different servers, 
even when only a single execution is 
needed. The effect of competitive orphans 
must be cancelled or reduced to a mini- 
mum, and the competition losers must be 
notified so that they can participate in 
subsequent contract-bidding activities. 
Again, communication overhead between 
clients and server group members should 
be minimized; multicast should be effi- 
cient but need not be perfectly reliable. 
The failure of any server should not termi- 
nate the whole system. However, the client 

request-response. 

whose job was being executed by the failed 
server must be notified to resubmit its 
request. 

News propagation. News propagation 
in Usenet exemplifies the nondeterminis- 
tic Het group. People subscribing to the 
same news group constitute a group, and 
the state and operations each subscriber 
performs differ. A news poster never 
knows who the members in a group are. 
News propagations need be neither atomic 
nor ordered. Respondents to a news article 
can use one-to-one personal correspon- 
dence or follow-up articles to the same or 
a different group. Each person then de- 
cides what to do with each news article and 
the follow-up comments. A subscriber can 
come and go at will; no synchronization is 
necessary. 

Summary of requirements. Nondeter- 
ministic groups are intended to improve 
service performance. Through group trans- 
parency, a group service strives for the 
same simple syntax and semantics found in 
one-to-one interprocess communication. 
However, depending on the intended ap- 
plications and the nature of the particular 
group, this transparency may be relaxed. 
Nondeterministic groups induce less over- 
head and generally have the following 
characteristics and requirements: 

(1) Communication transparency. The 
dominant communication pattern in non- 
deterministic group applications is re- 
quest-response. Usually, applications do 
not require absolutely reliable message 
delivery or message ordering. Interactions 
with nondeterministic groups are inher- 
ently asynchronous because (1) it is nei- 
ther necessary nor realistic to expect a 
client to wait until all server group mem- 
bers are synchronized and ready to receive 
a request; (2) server group membership 

with the attendant complexity - of han- 
dling partial message failures. 

(2) Reply-handling transparency. Mul- 
tiple replies from a nondeterministic group 
may not beconsistent. They may have to be 
handled by the clients in an application- 
specific manner rather than by the server 
group, as in deterministic groups; this 
sacrifices a certain degree of reply-han- 
dling transparency. Also, an application 
must provide its own time-out value for 
each multicast request because the com- 
munication layer itself does not know how 
long to wait for server group responses. 
When the timer expires, the application 
can decide whether to re-multicast or per- 
form alternative actions. In deterministic 
groups, these actions are normally per- 
formed at the communication layer. 

(3) Naming transparency. As with de- 
terministic groups, applications prefer to 
use a logical name to address a group 
service rather than having to know each 
individual member. To achieve naming 
transparency, both clients and servers pre- 
fer to handle requests and replies inde- 
pendently of the number of servers. How- 
ever, nondeterministic group membership 
can change dynamically and usually is not 
known to the active group members or to 
the communication layer. 

(4) Failure transparency. Nondeter- 
ministic group member failure has differ- 
ent semantics from that of deterministic 
groups. When a member fails, other active 
members may transparently take over the 
uncompleted task to enhance availability, 
share service load, and reduce global 
communication traffic. 

(5) Competitive-orphan problem. In a 
nondeterministic group a competitive or- 
phan can be generated because of a lack of 
internal coordination among group mem- 
bers. Except in computer conferencing, 
most deterministic groups do not experi- 
ence this problem, because a group request 
must be handled by every member syn- 
chronously while the client waits for a 
reply from every server. 

Table 1 shows the differences between 
deterministic and nondeterministic cate- 
gories. 
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Table 1. Differences between deterministic and nondeterministic categories. 

Communication 

Naming 

Deterministic Nondeterministic 

Normally requires atomicity and absolute Not necessarily reliable, nor ordered. 
ordering. Some applications require causal ordering. Applications handle inconsistency. 

Complete group view at communication layer Group view usually is not known to anyone, 
is necessary. Membership changes must be even to the communication layer. 
synchronized with all other group messages. 

Reply handling If required, expect all members to reply. Clients must handle inconsistent replies 
Group members handle inconsistent replies explicitly and applications have to provide 
without the client’s being involved. the time-out parameter. 

Failure handling To enhance reliability, a partial failure To enhance availability, partial failures 
is turned into a total failure in most cases. are usually hidden by active group members. 

Others In real-time systems, a timing fault A competitive orphan may arise due to a lack 
may cause inconsistency. of proper coordination among group members. 

Table 2. Sample applications based on the classifications. 

Data and operation 
homogeneous (DOH) 

Operation homogeneous 
only (OHO) 

Data homogeneous 
only (DHO) 

Heterogeneous (Het) 

Deterministic 

Fully replicated file systems (peer-member 
scheme) and replicated procedure call. 

Partially replicated file systems. 

Fully replicated file systems (primary 
and secondary scheme). 

Distributed process control, computer 
conferencing, and E-mail distribution list. 

Nondeterministic 

Applications such as the distributed 
time-of-day service in the V system. 

Clouds’ distributed name-server group 
and contract bidding. 

Grapevine’s name-server group. 

News propagation in a news group 
of Usenet. 

Discussion 
Several existing systems support group 

communications. The Isis2 and Circus4 
systems are intended primarily for deter- 
ministic replicated data objects or proce- 
dure module groups. Birman and Joseph* 
provide detailed design and analysis on 
protocols for atomic and ordered group 
communications. The V system’,” and 
several other experimental systems5 sup- 
port nondeterministic groups. 

The two classifications of groups previ- 
ously discussed are based on different cri- 
teria, one on structure, the other on behav- 

ior. By orthogonally projecting one over 
the other, as Table 2 shows, we hope to 
better understand how various group appli- 
cations fit the classifications. 

First, we can see that external uncertain- 
ties in most nondeterministic groups stem 
from the following facts: (1) objects are 
distributed only to a subset of group 
members, and the size and membership of 
this subset may not be known in advance; 
and (2) even when objects are fully distrib- 
uted to all group members, applications do 
not require their values to be always con- 
sistent or accurate, and missing group 
messages can be tolerated. 

Second, Table 2 shows that most deter- 
ministic group applications require mes- 
sages to be sent atomically and in order, 
regardless of the homogeneity of group 
structure. Also notice that communication 
support for a deterministic DHO group is 
the same as for a deterministic DOH group. 
No matter how differently each individual 
DHO group member functions at the high 
level, to guarantee consistency among 
replicas, changes to the objects must be 
propagated atomically and in order. 

Let’s consider partially replicated file 
systems as an example of the deterministic 
OH0 group in Table 2. File system relia- 
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bility requires that for each update request, 
only those servers having the target file 
take action and respond. It is difficult to 
map a logical file onto an unknown number 
of file servers maintaining the physical 
replicas of the file. Thus there exists a level 
of inherent nondeterminism in the group 
communication. If we had a separate server 
group for each replicated logical file ob- 
ject, we would end up with a fully repli- 
cated deterministic DHO server group for 
each file. However, this may not be neces- 
sary, and having many dynamically chang- 
ing groups could be expensive. 

It would be preferable to install software 
filters at the client and the servers to elimi- 
nate this structural nondeterminism. Each 
server filter would discard requests for 
nonlocal files. The client filter would use 
some mechanism (perhaps by consulting a 
name server) to determine the membership 
of the implied subgroup - those having a 
copy of the target file - and to guarantee 
atomic message transaction with only this 
subgroup. Once the implied subgroup 
membership was determined, the group 
transaction could proceed atomically. 

An alternative would be to have every 
file server reply to every request; those not 
knowing the target file would simply reply 
with a “null” message. The client would 
work on non-null replies using knowledge 
of the whole file server group membership 
to eliminate the above nondeterminism. 
This scheme trades extra host loading cost 
for structural determinism to gain reliabil- 
ity. It differs from broadcast in that (1) 
only file servers pay host-loading cost for 
each file access, and (2) as a system pro- 
gram, file servers are generally more 
trustworthy, and therefore file transactions 
can be made more secure. 

B efore designing a general, coher- 
ent, and integrated group commu- 
nication system, we must under- 

stand how it will be used, that is, the basic 
application requirements. We analyzed 
different types of groups, along with their 
potential applications, and classified group 
applications into two major categories: de- 
terministic and nondeterministic. Orthog- 
onally, according to the structure, process 
groups can also be classified as data opera- 
tion homogeneous, operation homogene- 

ous only, data homogeneous only, or 
heterogeneous. 

A basic conclusion from this analysis is 
that group transparency is important and 
desirable. When integrated into the under- 
lying group support, it simplifies the inter- 
face between server groups and their 
clients by hiding from the clients, as much 
as possible, the membership of server 
groups and the interactions among group 
members. This enables designers of clients 
and servers to concentrate on the problems 
to be solved - as they do in the unicast 
environment - without concern for coor- 
dinating multiple servers. Group transpar- 
ency is manifested in group communica- 
tion, group naming, multiple-reply han- 
dling, group view change, and partial fail- 
ure. 

We hope this classification framework 
and analysis will enhance the understand- 
ing of process groups, group communi- 
cations, and some applications, thus aid- 
ing designers working with these 
mechanisms.m 
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6 File Edit Modeling Check Font Wmdow Interface Help Others 
StructSoft. Inc.. the developer of one of the top selling 
PCCASE tools, now marketedasTeamwork/PCSA’” 
by Cadre Technologies, Inc.. is proudly announcing 
a second generation CASE tool. TurboCASE. for the 
Apple Macintosh. 

TurboCASE is an integrated, multi-window. multi- 
methodology supporting CASE tool. It is extremely 
easy to learn and use. It supports Structured Analy- 
sis with or without the Real-Time extension. It will 
also support Data Modeling, Structured Design and 
Object Oriented Analysis and Design in the future. 

TurboCASE generates ASCII information exchange 
formats which can be used to link with Teamwork and 
Iconix’ PowerToolTM 

A demo diskette is available for $15.00. 

StructSoft, Inc. 5416 156th Ave. SE, Bellevue, WA 98006. Tel: 206-644-9834 Fax: 206-644-7714 
Trademarks: TurboCASE : StructSoft. Inc.; Teamwork. Teamwork/PCSA : Cadre Technologies, Inc.: PowerTool : lconix. 
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