
Titre:
Title:

A software system evaluation framework

Auteurs:
Authors:

Germinal Boloix, & Pierre N. Robillard

Date: 1995

Type: Rapport / Report

Référence:
Citation:

Boloix, G., & Robillard, P. N. (1995). A software system evaluation framework.
(Rapport technique n° EPM-RT-95-03). https://publications.polymtl.ca/9503/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9503/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-95-03

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9503/
https://publications.polymtl.ca/9503/

2 2 MARS 1995

EPM/RT-95/03

A Software System Evaluation Framework

"L

Germinal Boloix
<! Pierre N. Robillardà
f^

Département de génie électrique
et génie informatique

École Polytechnique de Montréal
Janvier 1995

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage, sous
quelque forme que ce soit, sans avoir obtenu au préalable l'autorisation de l'auteur,

OU des auteurs

Dépôt légal, novembre 1993
Bibliothèque nationale du Québec
Bibliothèque nationale du Canada

Pour se procurer une copie de ce document, s'adresser:

Les Éditions de l'École Polytechnique
Ecole Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la
manutention. Régler en dollars canadiens par chèque ou mandat-poste au nom de l'Ecole
Polytechnique de Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente
préalable dans le cas d'établissements d'enseignement, de sociétés ou d'organismes canadiens.

A Software System Evaluation Framework

Germinal Boloix, Pierre N. Robiiïard
November 1994

Ecole Polytechnique de Montréal
Département de Génie Electrique et de Génie Informatique

O.P. 6079 succ Centre Ville
Montréal, Québec H3C 3A7

Tel. (514) 340-4031,340-4238 - Fax. (514)340-3240
boloix@rgl.polymtl.ca
pnr@rgl.polymtl.ca

Abstract

This paper proposes a software System évaluation framework which provides a clas-

sificadon scheme to identify sets of similar Systems. The framework intégrâtes previous

studies on software évaluation, productivity models, software quality factors and total

quality models; the appendix provides a summary of thèse approaches. The framework

provides a taxonomy to classify information about software Systems which intégrâtes

three perspectives: project, System and environment. The project view (i.e., developers,

enhancers) considers the characteristics of the agents, the process and the tools used dur-

ing software System production. The System view (Le., operators, administrators or man-

agers) depicts the characteristics of the software System, ils technology and its

performance. Finally, the environment view (Le., users, stakeholders) identifies users'

concems, such as the degree of compliance of the software System with its requirements,

the usability of the System and the contribution of the System to the organization. The

framework can help software engineering non-experts, those which require software sys-

tem évaluations for practical purposes.

Keywords: software engineering, software System évaluation, software quality, productiv-

ity factors, quality factors, total quality management, software metrics

1.0 Introduction

Information about software Systems represents a useful resource for assessing the

intrinsic characteristics of software, the software production process and the utility of sys-

tems in their environment. Information about software Systems is important from various

perspectives: those of producers, operators and users. The amount of available informa-

tion about software Systems and their interrelationships is impressive, and simplifying

mechanisms are required to make them useful.

Management personnel, normally non-expert users of the information, require high-

level information to understand the characteristics of software Systems for a number of

purposes, such as planning and estimation, the monitoring of project progress and the

évaluation of project results. A software system évaluation framework for hierarchically

organizing the various types of information to be gathered, which characterize a software

System, is therefore needed. Eventually, detailed information may be required for purposes

ofconfirming certain trends. If the information is well organized, according to a structured

framework, spécifie aspects of software Systems can be identifiée! to improve decision-

making activides.

Information related to software Systems includes intrinsic software attributes, the

process for producing the software and the contribution of the system to the organization.

Productivity in the development process is a familiar concern which affects the cost of

software Systems. In fact, personnel considérations are of paramount importance to the

cost of a System. The complexity of a System is another concem: the characteristics of the

System détermine how easily il is produced and maintained, which in turn impacts the total

life-cycle costs. Individual and organizational producdvity are affected by the use of com-

puter Systems, therefore the contribution of a System is fundamental to improving organi-

zational performance.

In the information Systems area, post-implementation évaluation approaches have

been suggested to establish the worth of information Systems. Multiple-cnteria evalua-

tion approaches, which include subjective and objective évaluations, give equal consider-

ation to both user and system constraints/ The problem of conflicting user points of view

has been highlighted in thèse approaches. User, manager and developer évaluations are

considered within a goal-centered view to compare pre-established objectives to actual

results. The Goal-Question-Metric (GQM) paradigm3 provides a mechanism for formaliz-

ing the characterization, planning, construcdon, analysis, leaming and feedback tasks by

establishing a systematic approach for setting project goals and defining them in an opera-

tional and tractable way. As objectives may vary for différent projects, a common refer-

ence framework would be helpful for multi-project comparisons.

Other authors have identified productivity factors that affect software Systems pro-

duction. In général, thèse approaches emphasize product, personnel, project and computer

attributes. Software quality has been another area contnbuting to the identification of soft-

ware factors to be evaluated. Quality factors primarily evaluate the product and its interac-

don with users, neglecting the development process. Existing productivity and quality

models disregard the importance of the contnbution of a System to the organization. SEI's

Capability Maturity Model (CMM), which assesses the software process maturity levelof

organizations, has been proposed to improve current software production practices.

Another area that provides wider organizational insight, by considering the importance of

customers, is Total Quality Management (TQM). The Malcolm Baldrige National Quality

Award and the European Quality Award are examples of quality évaluation approaches

that go beyond software Systems. An overview of thèse approaches is given in the appen-

dix.

Thèse productivity and quality approaches demand huge amounts of information to

characterize software System attributes. Evaluation of a software System following thèse

approaches requires weeks or even months to produce an assessment of quality. Even after

results are available, their interprétation is difficult because there are no mechanisms for

synthesizing the information. By establishing a top-down approach to identify the impor-

tant éléments to be captured, high-level understanding is possible because the number of

éléments is limited and structured. A top-down approach also has the advantage of fllexi-

bility, permiting extensions by following a predefined pattern.

The importance of the various types of information to be gathered during software

System projects is also recognized in conceptual modeling. Mylopoulus suggested that

the important types of knowledge be gathered about a System in what has been called

'worlds'. The usage world records information about the (organizational) envu-onment;

the development world describes the process that led to the development (or maintenance)

of the information System; the system world describes the system at différent layers of

implementadon détail; and the subject world consists of the subject matter for the System.

Even though thèse knowledge worlds were not suggested specifically to evaluate software

Systems, their knowledge content can certainly overlap the software évaluation and mea-

sûrement arena.

User satisfaction and économie retums are some important considérations for evalu-

ating software Systems effectiveness. Evaluations of the System can be performed prior to

undertaking System development, while it is being developed (normally after each stage in

the software life cycle), just before or after installation, and once the System has had a

chance to setde down. However, the number of complex, tangible and intangible factors

involved requires a multiple-viewpoint approach for évaluation. ^ Organizing the multi-

tude of factors according to différent points of view, Le., producers, operators and users,

facilitâtes the sélection of important metrics to be used during software System évaluation.

However, it is important to recognize that finding concensus in the évaluation is a difficult

task. There are many viewpoints, with multiple contributions.

Our objective is to develop a software System évaluation framework providing a

basic set of attributes to characterize the important dimensions of software Systems. The

catégories defined in the framework have to be clear in order to facilitate the évaluation

process and reduce the conflicting points of view of evaluators. A top-down approach

identifies the main dimensions and factors hierarchically and has the advantage of provid-

ing a sélection mechanism that avoids overflow on the amount of information to be gath-

ered. The framework provides information about software Systems from three basic

perspectives: the production process, the intrinsic attributes of software System and the

organizational environment. The classification schéma would be appropriate for identify-

ing sets of similar projects and identifying the range of projects undertaken by an organi-

zation.

Even though the framework has been proposed to evaluate software Systems, soft-

ware is embedded in an environment (i.e., the organizational environment or a larger auto-

mated System). In many cases, it is difficult to establish the frontier between the software

Systems and the surrounding System, and to evaluate the software System exclusively. The

project and System dimensions, as depicted in the framework, are directly related to evalu-

ating software Systems, whereas the environment dimension may involve evaluadng the

software System and its components which interact with the surrounding System to deter-

mine the contribution to the organization or larger automated System.

Metrics data can be classified consistently for comparison purposes using the per-

specdves of the frameworlc Homogeneous project data, derived firom Ae framework, can

be used for the analysis and évaluation of project results or for estimation purposes. Each

project (Le., development, correction, modification, enhançement) should register metrics

information using the framework. Spécifie characteristics of each project are recorded to

account for différent circumstances during the life cycle of a System; a System which fol-

lowed a rigorous development methodology may face more relaxed enhancement activi-

des, or vice versa. A software system's internai characteristics help to explain its

complexity. Finally, organizational environment considérations provide the system's con-

tribution from an organizational perspective.

The article is organized as follows. Section 2 describes the software System evalua-

tion framework and its levels of categorization. Section 3 analyzes examples of project

classifications. Section 4 gives some conclusions and ideas for further research. Finally,

the appendix présents current approaches related to our framework.

2.0 Evaluation Framework

This section présents, in a top-down manner, the dimensions of the framework, its

décomposition into factors and the categorization of thèse factors for classification pur-

poses. The terms 'software' and 'System' are used interchangeably throughout the text,

even though when 'software' is used, il corresponds specifically to the target software sys-

tem; when the term 'System' is used alone, it is because a wider perspective is required

through human or automated interfacing and the contribution of the software System to the

organization.

Evaluation is the process ofjudging the merits of a phenomenon (e.g., a System, a

person, a thing, an idea) against some explicit or implicit yardstick. A summational evalu-

ation is performed after the System has been completed, and provides information about

the effectiveness of the System. Formative évaluation produces information that is fed

back during the development of a System to help improve it; it serves the needs of produc-

ers. The framework identifies the main dimensions of software and supports both types of

évaluation. Software évaluation stages follow the software life cycle: before the software

is operational (i.e., development or enhancement), during the opération ofthe System (Le.,

NGURE l. Catégories in the framework

Dimension Factor Category

follows PROCESS J_
B

J_
l A

AGENT

TOOL

l l
B l A

l l
B l A

subject_to

PRODUCT

TECHNOLOGY
operates_in

l l

PERFORMANCE

B

J_

l

_[

A

B l A

l l
B l A

COMPLIANCE J_
B

_[

l A

USABILHT

receives

l l

CONTRIBUTION
B

±

l

l

A

B l A

installation and opération), and after the System has reached steady opération (i.e., post-

évaluation stage).

2.1 Model dimensions

The framework is organized along three dimensions corresponding to the software's

producers, operators and users. The information about software Systems captured in the

framework is that of the software product, its production process and its end-impact on the

organization. The viewpoints represented in the framework depict the project, the System

and the environment.

The three dimensions in the framework are interconnected. A software svstem may

be subjectjo several projects during its lifetime: initial development and enhanced ver-

sions. A System operatesjn an organizational environment: users interface with the sys-

tem and services are provided by the System.

Figure l présents an entity-rclationship diagram which further décomposes the

framework into factors. A pToyctfollows a process, it involves some agents and uses some

tools. The System is composed_ofp!oducts, it behaves at some performance level and it is

implemented in a particular technology. The environment seeks compliance with System

requirements, it évaluâtes the usability of the System from the user's perspective and it

reçoives a contribution or benefit from the opération of the System.

Each factor is categorized in the framework. Catégories are useful for classifying

information about software from a maturity perspective. To keep catégories simple, only

three ratings have been identified: basic (B), intermediate (I) and advanced (A). A basic

category indicates the lowest maturity rating for a particular factor, an intermediate cate-

gory may indicate a nominal rating or a standard in the industry, whereas an advanced cat-

egory identifies a higher maturity rating which demonstrates excellence.

Validating framework completeness

To validate the completeness of the framework, we have chosen current productivity

and quality models found in the literature. A complète summary of thèse approaches is

présentée! in the appendix. The objective is to verify that the framework consolidâtes the

différent attributes found in the literature. The following summary présents current

approaches versus the framework. The figures in Table l represent the number of

attnbutes suggested by current approaches. For example, let us take the first column, WF-

Table l: Current approaches versus Framework

Process

Agent

Tool

Product

Performance

Technology

Compliance

Usability

Contribution

TOTAL

w
F
77

9

5
2

9

2

l

l

29

BZ
78

6

2

5

4

3

l

21

B
81

2

5
2

2

3

l

15

M
81

6

4

2

19

2

6

l

40

s
E
l

88

11

2

3

l

l

18

CDS
86

7

l
4

6

4

l

l

24

RB
89

3

l

4

K
M
e
91

6

24

2

32

BEL
76

12

6

l

4

23

Me
79

19

8

2

4

33

IS
0
91
26

10

5

3

3

21

77. This is the Walston and Félix approach (see Appendix), which suggests 9 attributes

related to the process factor, 5 related to the agent factor, and so on; the total number of

attributes suggested by thèse authors was 29. The abbreviated names of columns corre-

spond to the approaches analyzed and presented in the appendix.

The completeness of the framework has been validated against currcnt approaches.

Productivity models center their analysis on the project and system dimensions, whereas

quality models emphasize the System and some usability factors from the environment.

There is a lack of attributes for evaluating the contribution of the System to the organiza-

tion and the lack of System post-evaluation appraisals. Contribution has indirectly been

addressed in information System évaluation approaches and Total Quality Management

aproaches which emphasize the contribution of Systems to customers.

2.2 Framework description

The objective of the software System évaluation framework is to provide an assess-

ment of the level of quality and sophisdcation of software from différent points of view,

those of producers, operators and users. Each major point of view may involve several

rôles (e.g., for producers: project managers, developers, maintainers and user representa-

tives participating during the development of new versions of a System; for operators:

technicians, administrators and managers; for users: those interacdng directly with the

System and stakeholders interested in the benefits provided by the System). We utilize the

GQM paradigm3 to define évaluation objectives for each élément of the framework and

establish questions for each factor category. The following paragraphs describe the char-

acteristics of the factors for each dimension and the corresponding factor catégories.

PROJECT

Projects follow spécifie organizational paradigms which define how working groups

set priorities and deal with human issues. Thèse include the aspect of how to manage

extrême positions such as continuity and change, tradition and innovation, individual and

group, and unity and diversity.5 Well-defined project organizations with rigid lines of

command and pre-established decision-making authority funcdon differently from less

formai organizations.

A software project may be oriented towards différent types of activities (Le., devel-

opment or maintenance). Maintenance includes major changes implemented after the ini-

dal development, sometimes referred to as enhancements. Each change may be performed

through différent projects having différent characteristics. Project information is relevant

during the initial development of the system, and also later in its life cycle.

The project dimension seeks to characterize project efficiency considérations (i.e.,

ability to develop a System without waste of time, energy, etc.) from the point of

view ofproducers.

Process

The process which led to the development of the System, together with the design

décisions and their jusdfication, constitutes the backbone for improved quality and pro-

ductivity. The life cycle model: (e.g., waterfall, prototyping, incremental) and its level of

détail are aspects that détermine project management style. Planning and control activiries

are better performed when précise process models are established. The more constrained

the processes, the stdcter the control has to be. SEI's assessment procédure indicates the

level of maturity of the software organization and identifies the possible quality of the

software being produced.

Techniques adopted to build the software détermine the characteristics of the tangi-

blés that will be produced. Well-documented standards détermine the type of deliverables

expected. Spécification and design models specify their level of documentation détail;

working products and deliverables have to be assessed on the required level of description

overhead. System uniqueness and degree of application difficulty détermine the level of

test, debug and rework activities that must be allowed for in the chosen method. Addi-

tional considérations involve an assessment of whether or not the chosen technique fits the

application (e.g., if data manipulation routines must support user interfaces, a technique

suggesting the development of those routines prior to establishing user interfaces would

not be appropriate).

Reuse of existing artifacts, such as spécifications or code, is another factor to con-

sider when characterizing the software production process. Those applications which are

not unique or common are candidates for reusable code. The process has to be assessed

whether it supports code reuse within the developed software and whether the process

environment supports code reuse across projects.

The process factor seeks to détermine the degree of efficiency and continuity of the

process from the point of view ofproducers, basically process management.

Process cateeories

Basic: The project is characterized as one without a stable environment for producing soft-

ware. Méthodologies are adapted for each project and there is no follow-up of organiza-

tional learning from expérience. Performance can only be predicted by individual, rather

than project, capability.

Intermediate: The project follows a standard process for producing software. The software

engineering and software management groups facilitate software process définition and

improvement efforts. Projects use the organization-wide, standard software process to cre-

10

ate thetr own defined software process which encompasses the unique characteristics of

the project. Each project uses a peer review approach to enhance software product quality.

Advanced: The project sets quantitative quality goals for software products. Productivity

and quality are measured for important software process activities. Software processes

have been instrumented with well-defined and consistent measures which establish the

quantitative foundation for evaluating project processes and software products.

Agent

The team of managers, engineers, Systems analysts, programmers and users partici-

pating during development or enhancement is a major factor in System success; it is well

known that the quality ofresources has a major impact on project quality and producdvity.

Major aspects affecting agent assessment are expérience, organization and motivation.

The expérience of personnel involved during software development or enhancement

may impact attributes of the software (e.g., quality, complexity). The important experi-

ence to retain is that of the application domain, technology and tools, software concepts

and methods, and management issues evaluated from a technical and managerial perspec-

tive.

For categorization, software development organizations following well-defined

lines of command and pre-established decision-making authority have to be differentiated

from less formai organizations. Management involves leverage of extrême positions such

as continuity and change, tradition and innovation, individual and group, and unity and

diversity.

Motivation is also an important characteristic to retain, even if difficult to measure

objectively. Lack of expert feedback on individual accomplishments and lack of under-

standing by the organization of needed individual career growth differentiates unsuccess-

ful organizations from those which provide continuai career growth opportunities. People

are assigned to positions where they can use their skills and be highly productive, and fre-

quent feedback is provided which is constructive and relevant to their individual skill lev-

els.

11

The agent factor seeks to assess the team capability of people participadng in the

project from the point ofview ofproducers, considering both managerial and techni-

cal aspects.

Aeent cateeories

Basic: The team has limited expérience in général, and no expérience in the current type of

project. People gain expérience on their own and do not have a mentor structure to tum to.

Training to gain or maintain skill levels is not available. Organizational structure does not

support sharing of expertise across projects, if the expertise exists at all.

Intermediate: The team has expérience in général, and limited expérience in the current

type of project. Few experts are available to provide advice when required. Training is

available only on an ad-hoc basis, once urgent needs are identified.

Advanced: The team has the required expérience for the project, and has already success-

fully demonstrated ils capacity to undertake similar projects. A mentor System is in place

to provide direction either within the project or across the organization. The organizational

structure supports having personnel with spécifie expérience available across projects as

needed. Training is available to support skill growth at all expérience levels.

Tool

Tools to aid in the production of software include available automated facilities that

may impact productivity. Programming languages and database management Systems may

be supported by integrated software development tools. The importance of using tools

during the early stages of software projects is widely recognized in the software commu-

nity, though definite conclusions as to their impact are lacking. A tool is useless if no one

can use it effecrively. There must be training available, either formai in-house vendor

courses or informai tutorials. Experienced personnel within the organization or from the

vendor organization should be available on demand.

A framework which classifies thèse tools into toolkits that support only spécifie

tasks in the software process (a basic programming toolkit is available for software pro-

duction, Le., compilers, debuggers and testers), workbenches that support only one or a

few activities (CASE tools for software production) and environments that support (a

12

large part of) the software process" (software development environments) is a convenient

way to establish the level ofsophistication of the tools.

The tool évaluation factor requires the establishment of the level of proficiency with

the tools from the point of view of producers, regarding availability, training and

support of technical activities.

Tool cateeories

Basic: Available tools are not supported by experienced personnel or tool vendors. No for-

mal training is available, people learn on their own.

Intermediate: Tool support is limited because there is limited organizadonal expérience or

vendor support. Training is offered on a limited basis according to the urgency of the need.

Advanced: Tools are supportée! by experienced personnel within the organization or by

tool vendors. Training is widely available to newcomers and fréquent refresher sessions

are offered to experienced personnel.

SYSTEM

There are several types of software Systems widely known in the software commu-

nity. Some examples are batch or interactive computing, real-time computing, fault-toler-

ant computing, high-safety and high-security computing, high-performance networks and

multimédia technologies.

The System dimension is orientée! towards evaluating intrinsic software attributes

and the type of technology implementing the software, from the point of view of

operators, administrators and managers.

Product

During the software life cycle, différent types of documents are generated and

rcferred to. The characteristics of thèse documents, including work products, deliverables

and the final code, may be assessed on their quality. Documentation about the System m

the form of user and System manuals, and at several layers of détail, from spécifications

and conceptual design to implementation, has to be evaluated. The quality of the docu-

ments, regarding conformance to established standards, has to be determined.

13

Size and complexity are useful attributes in comparing software Systems. Thèse

attributes are normally derived from the source code, but other approaches exist to com-

pute them from the specificaùons or the design. Size and complexity can be measured

using function-oriented software metncs (e.g., function points) or implementation-ori-

ented software metncs (e.g., lines of code and software science measures). The degree of

reuse within the delivered software, as weU as in other types of documentation (e.g., spec-

ifications, design) has to be determined.

The product factor requires an overall assessment of intrinsic software System

attributes regarding software product understandability from the point of view of

operators and System administrators.

Product cateeories

Basic: Understanding the software product is a major drawback of the System. Non-

experts have to expend an excessive amount of effort to understand product functionality.

There are no trustful documents available which describe the software System and its

opération. The only source of documentation is the code itself.

Intermediate: Understanding software product functionality requires a moderate amount

of effort for non-experts. Documents and code can be browsed to identify product func-

tionality, but consistency among documents and code is not guaranteed. There are some

documents available describing the software System and ils opération, including develop-

ment and enhancement documents, but they are not kept up to date.

Advanced: Understanding software product functionality requires minimum effort for

non-experts. Supporting documentation is very well organized. Documentation describing

the software System and its opération, including rationale during the stages of develop-

ment and enhancement, are available for consultation. Careful updating is performed on

the documents to keep them consistent.

Performance

Performance analysis is the measuring and modeling of the time and space attributes

of the software System. Efficiency concems the optimal use of computer resources to pro-

vide improved response time, storage and throughput. Reliability is the probability of

operating in a satisfactory manner for a specified period of time, under specified operating

14

conditions. Software failurcs (Le., behavior of the executing program that does not meet

the customer's operadonal requirements) and faults (i.e., defects m the code that may

cause a failure) are important in establishing reliability. Performance in the framework

consists of assessing computer resources usage ft'om the perspective of operators,

although recognizing that in the end performance has an impact on the user.

The performance factor concems the assessment of dynamic software charactens-

tics, such as reliability and efficiency, from the point of view of operators and sys-

tem administrators.

Performance cateeories

Basic: The use of computer resources is considered inadequate under standard operating

conditions. Constant operator intervention is required to keep System opération. The effect

of a System failure can demand large amounts of resources and it can involve a major

mconvenience.

Intermediate: The use of computer resources is considered acceptable under standard

operating conditions. S orne operator intervention is required to keep System opération.

The effect of a software failure is a situation from which operators can recover without

sévère penalty.

Advanced: The use of computer resources is considered excellent under standard operat-

ing conditions. Minimum operator intervention is required to keep System opération. The

effect of a software failure is an easily recoverable loss which does not require excessive

resources.

Technology

Operating System characteristics, as well as hardware characteristics, are related to

technology. Single-user or muld-user computers indicate the potential use distribution.

Open-system technology offers distributed computing through networking. Languages

and database management Systems also indicate the stage of évolution of the technology.

The level of sophistication of the technology has a major impact on those operating the

System.

15

The technology factor requires the establishment of the level of mastery of the tech-

nology implementing the System, from the point of view of operators and System

administrators.

Technoloev catégories

Basic: The implementadon technology has not been mastered well by operators and

administrators of the software System. There is no local expérience with the technology

and there is no good vendor support.

Intermediate: The implementation technology has only partially been mastered by opera-

tors and administrators of the software System. There is limited local expérience or vendor

support.

Advanced: The implementation technology has been thoroughly mastered by operators

and administrators of the software System. Local expérience and vendor support are con-

tinuously available.

It is convenient to precisely identify the language and DBMS implementing the sys-

tem and the operating System supporting it. For a spécifie technology, a range of languages

may be accessible to implement the System. Operating Systems and database management

Systems are usually linked to a limited range of hardware technologies.

ENVIRONMENT

The System must provide benefits to the users if it is going to be used at all. Cus-

tomer satisfaction should be the goal of any software production process. The characteris-

tics of the interfaces with the environment are means for providing information about

software System functionality and interaction with the organization. Applications can be

orientée! towards transaction processing, opération of process control Systems, scientific

computing, maintainance of the corporate database and decision-support Systems. There

are many différent organizational environments associated with software applications,

some are user-oriented (e.g., information Systems), while others are machine-oriented

(e.g., real-time Systems). In any case, stakeholders have to assess their level of satisfaction

with the software System.

16

The environment demain évaluâtes the level of sadsfaction with the software sys-

tem, as well as the perceived contribution of the System to the organization from the

point of view of users and stakeholders.

Compliance

Compliance involves the overall functional évaluation of the System from the user's

perspective. Important activities are to verify that user requirements are met by the sys-

tem, to verify that the user's secunty and safety requirements are respected, and to verify

that the System provides disaster protection.

The compliance factor assesses the conformance of the software System with its

requirements from the user's point of view. It is the user's view of conformance with

requirements rather than the developer's view of conformance with spécifications.

Comoliance cateeories

Basic: User requirements are not fulfilled by the System. Improvements to the System are

required in the short term.

Intermediate: User requirements are partially fulfilled by the System. Some areas of the

System have to be improved, even if it is not considérée! urgent by the users.

Advanced: User requirements are completely fulfilled by the System. The System is con-

sidered to be stable for the foreseeable future.

Usability

Characteristics of the usability of Systems have traditionally been subjective. The

user's appraisal of a System is based on différent types of évaluations, including the effort

required to learn and use it, and the assessment of user satisfaction. Suggestions in this

area include the importance of objective quantification of usability.7 Usability évaluâtes

the effort to recognize logical concepts and their applicability, the effort required to leam

the System, prépare input, interpret output, control the System, and the level of redundancy

requested by the System. For some types of computing which do not emphasize user inter-

faces, such as real-time computing, an operator would be playing the rôle of user. The

term 'user', in this context, dépends on the nature of the System.

17

The usability factor is directed towards assessing software System leamability from

the user's point of view.

Usabilitv cateeories

Basic: The System is not providing interfaces in user-oriented terms. Redundant informa-

tion is required from the users, making its use inefficient. Leaming the System may require

a great deal of time.

Intermediate: The System provides interfaces using terms familiar to the user, but there are

some concems (e.g., error messages are not clear and there are no shortcuts for experi-

enced users). The System requires some time to leam, but this is considered acceptable by

the users.

Advanced: The System is user-friendly, efficient to use, prevents errors by the user and

clearly signais the seriousness of any en-ors. Infrequent users have the facility to return to

using the System without having to releam it, and fréquent users find shortouts that

improve their efficiency. The System requu'es a short time to leam.

Contribution

The contribution of a system to the organization is a major indicator in evaluating a

System. There are, however, serious difficulties as to how to quantify it because, besides

économie benefits, there are intangible benefits which are difficult to measure.0 The rôle

of information technology in organizational activities and their impact on the cost struc-

tures of firms and markets have to be evaluated. However, Systems have to be assessed in

terms of a spécifie managerial context: business functions, market conditions, industry

characteristics and organizational cultures all have an impact on the assessment. The

impact on users and theirjobs and the degree to which the information is adéquate, appro-

priate, timely and current have to be determined, to ensure user satisfaction and monitor

attitudes towards the System.

The évaluation of the contribution of the System to the organization assesses the

benefits provided by the System to the organization, from the point of view of users

and stakeholders.

18

Contribution catégories

Basic: There is no major impact on the users and theirjobs, and only marginal benefits on

the user's productivity. The service provided by the System can be inappropriate and the

information inaccurate or untimely. There is no major contribution to the organization

because the business process has not been reengineered.

Intermediate: There is an impact on the users and their jobs. The service provided by the

System is appropriate, but requires improvements in accuracy or timeliness. There are

some intangible benefits to the organization regarding better service to its end-customers.

Information is processed in a cost-effective way, improving the quality and speed of deci-

sion-making processes.

Advanced: The service provided by the System is excellent, the information adéquate, cur-

rent, and timely. There is a major positive impact on the users and theirjobs. The System

provides tangible benefits to the organization. The organization is made more cost-effec-

tive by using the System. Overall organizational costs have been reduced.

3.0 Applying the framework

The framework has been applied to evaluating several Systems, and two of thèse

évaluations are presented here. One of the experiments was to evaluate CASE tools,

developed in the Software Engineering Lab at the Ecole Polytechnique de Montréal. Other

experiments to validate the framework involve évaluations of information Systems devel-

oped by a major consuldng firm.

3.1 CASE tool évaluations

Examples of categorizations are presented in the following paragraphs which corre-

spond to CASE tools developed over the last three years by the same team ofproducers.

The évaluation was carried out by the same project manager who participated during the

development of both Systems and who also gets fréquent feedback from users of the

CASE tools. A summary of the results is presented in the following tables.

19

Structure Editer

A Structure Editor which assists programmers during algorithm design and code

génération was evaluated following the framework. The tool is the result of many years of

research in software engineering. We présent the results of the évaluation for the latest

version of this tool in Table l, and an analysis of the results in the following paragraphs.

At the project dimension level, it is possible to identify, regarding the process factor

(I), the fact that the process model is standard in the industry, follows structured tech-

niques, and involves the reuse of software products; for the agent factor (I), that a small

team of people follows a semi-formal project organization; for the tool factor (I), that

commercial tools are available for development, including workbenches, and that the

expérience of the group is limited.

The System dimension portrays the software product (I) as a relatively small soft-

ware System with a low degree of complexity, which is documented at several levels,

including user and référence manuals; performance considérations (I) indicate a system

with intermediate requirements in terms of reliability and efficiency, data can be recovered

without sévère conséquences in the case of a software failure; technology (I) makes avail-

able an intermediate target language, in this case C, available in an open-system environ-

ment.

The environment dimension indicates satisfacdon from the user's perspective. Com-

pliance with requirements is high (A), as this version of the software is the result of sev-

eral years of évolution. Usability is advanced (A), as the software targets professional

programmers rather than novices. The contribution to the users is intermediate (I), as this

software saves user time during algorithm development and maintenance.

Static Analyzer

A software quality assessment tool which analyzes source code, translates it into a formai

représentation of the source program, which is programming-language-independent, and

générâtes software metrics was also evaluated. A précise computation of many traditional

20

and innovative metncs is performed using this tool. See Table 2 for the évaluation results

using the framework.

PROJECT

SYSTEM

Table 2:

Process

Agent

Tool

Product

Performance

Technology

Compliance

Usability

Contribution

Z"ASE tool évaluation

Structure
Editor

l

l

l

l

l
l

A

A

l

Static
Analyzer

l

l

l

l

A
l

l

l

l

ENVIRONMENT

(B: basic, I: intermediate, A: advanced)

The project dimension in the Static Analyzer is similar to that in the Structure Editor

(I, I, I). The process model, methods and tools were basically the same, although minor

changes tended to improve the management of the process for the Stade Analyzer. A

record of changes in the process introduced during the development of this tool was kept.

The individuals working on the two projects were différent, their tasks overlapping only at

the supervisory or managerial level, but for the purposes of the framework they were

équivalent.

In terms of the System dimension, the Static Analyzer is équivalent to the Structure

Editor as far as the product factor is concerned (I). Being a source code analyzer, it was

developed with more stringent requirements in terms of efficiency (A). Regarding technol-

ogy (I), this tool was partially built using C++ and open-system technology; people in the

group are improving their mastery of this technology.

As for the environment dimension, there are slight variations in thèse CASE tools.

For usability, the Static Analyzer is. a research tool, thus a user interface oriented towards

researchers (I); the Structure Editer is a commercial tool, thus oriented towards users (A).

21

For compliance, the Structure Editer has high conformance to requirements (A), whereas

the Stade Analyzer is an evolving tool (I). For contribution (I), the two CASE tools are

considered équivalent.

Analyzing thèse two System categorizations, it is possible to conclude that the

framework is sensitive to changes in their dimension factors; the same development orga-

nization was responsible for producing both Systems, and the profiles are différent.

3.2 Rule-based aggregation

Factors in the framework can be represented by an évaluation profile (e.g., a histo-

gram) forpuq)oses ofhuman interprétation. However, it would be convenient to aggregate

the data to extract détails out for purposes of high-level management interprétation. Fol-

lowing a mle-based approach, it is possible to aggregate factor catégories and assign a cat-

egory at the dimension level. Table 3 shows the assignment of catégories at the project

dimension level. Rules have the following appearance:

IF (Process = 'intermediate') AND (Agent = 'basic') AND (Tool = 'intermediate'),

THEN Project = 'low'

This rule represents the assignment ofrow 5 in Table 3 (I - B -1) to the column 'low'

in the project category. An équivalent table can be built for each of the other dimensions

(Le., System and environment). The assignment from factors to dimensions is carried out

empirically, the importance of the factors is the same; process is as important as agent,

which is as important as tools. The first column is determined with the following rationale:

if at least two catégories are Bs, then 'low'; if there are two Is and one B, then 'low'. The

third column is determined as follows: if there are at least two As, then 'high'; if there are

two Is and one A, then 'high'. The middle column contains the remaining possibilities.

22

Table 3: Assîgnment of catégories at the project dimension level

Low

B-B-B

B-I-B

B-B-I

I-B-B

I-B-I

B-I-I

I-I-B

B-B-A

B-A-B

A-B-B

Medium

I-I-I

B-A-I

I-B-A

A-B-I

I-A-B

B-I-A

A-I-B

A-A-B

B-A-A

A-B-A

High

A-A-A

A-I-A

I-A-A

A-A-I

A-I-I

I-A-I

I-I-A

(Process - Agent - Tool)

Table 4 shows the aggregated classification of the tools according to each dimen-

sion. It is clear from thèse results that the organization has developed the tools through

équivalent projects. Différences in the évaluation appear at the System and environment

dimension levels. At the System dimension level, the Static Analyzer has a higher evalua-

tion because of the performance factor, which is advanced. At the environment dimension

level, one tool provides more support from the user's perspective.

Table 4: Comparison of CASE tools

PROJECT

SYSTEM

ENVIRONNENT

Structure
Editer

Medium

Medium

High

Stade
Analyzer

Medium

High
Medium

23

Our expérience in evaluating Systems according to the framework demonstrates that

an évaluation requires a short time to complète; an average of one and a half hours per

software System is expected. Catégories are presented in a way that minimizes the effect

of subjectivity in the sélection process, participants interacting with interviewers to choose

one option.

4.0 Conclusions and directions for further research

We have proposed a software System évaluation framework which intégrâtes in a

hierarchy the important dimensions of a software System, its development environment

and the organizational assessment of the System. Several factors which impact project pro-

ductivity, software product quality and user satisfaction can be organized around thèse

three perspectives of the framework, and which represent the producers' (Le., develop-

ment or enhancement), the operators' (Le., the software product itself) and the users' (i.e.,

post-evaluation stage) view of the System. The framework is an original contribution to

software engineering and the évaluation of software Systems.

The framework is a mechanism to gain insight into, and an understanding of, soft-

ware System quality and sophistication from a high-level perspective. The approach facili-

tates assessments by non-experts on software System évaluation, representing a

compromise between huge amounts of software metrics détail and practical évaluation

considérations. Detailed approaches, described in the appendix, identify large amounts of

information which is difficult to grasp. To evaluate a software System, weeks or months

are required. The framework can be used to evaluate a software System in a few hours and

identify areas that require further investigation. The framework can be used for summa-

tional évaluations once the software System has been completed, as well as for formative

évaluations during the construction of the System. Even before the System is built, goals

for each factor in the framework can be established, such that actual results can be com-

pared to goals.

Because this framework represents a model of reality, it has its limitations, however,

and avenues for extendibility can be identifiée! by following the approach appropriately.

The évaluation catégories suggested in the framework are oriented towards assessing

each factor globally, using an evolving maturity scale. It is clear that addidonal subfactors

can be established for each factor, which can be categorized by objective or subjective

24

évaluations. Each organization can idendfy thèse addirional attributes using the frame-

work as a bas&line. In fact, expérience in applying the framework to identifying a set of

metrics for estimation purposes in industry indicates the usefulness of the framework:

élimination of redundant metrics, assignment of metncs to the appropriate factors, analyz-

ing composite metrics and understanding the nature of each measurement.

In some organizations there may be a need for more formai approaches to aggrega-

tion. A possible alternative would be to define a quantitative model to aggregate data,

taken from the décision sciences, using a différent scale (e.g., a ratio scale) and consider-

ing the relative importance among éléments in the framework. A computational method is

being analyzed for such purposes, based on a décision model.9 The approach quantifies

the relative importance of éléments in the framework at each level in the hierarchy. Nor-

malized indices for each dimension are obtained which indicate the level of quality and

sophistication of the software System.

The software System évaluation framework acknowledges current contributions of

productivity and quality models, and the assessment of software Systems suggested in

évaluation approaches. Il has been determined that current approaches to productivity and

quality do not consider the contribution of Systems to the organization, however this

aspect has been considérée! in information System évaluations and total quality manage-

ment approaches. While customer satisfaction issues and the social impact of computing

have been the subject of research lately10, metrics which consider the overall benefits of a

System to an organization are currently needed. Cost/benefit analyses of operational sys-

tems, as well as software quality évaluations involving user satisfaction, should be

included in organizational évaluation programs.

Further research to evaluate Systems from historical metrics data automatically is

deemed important. The availability of subjective and objective metrics for each factor in

the framework requires cohesive approaches for their intégration. As the amount of infor-

mation being gathered for a System increases, mechanisms have to be devised to deter-

mine commonality among metric data. The goal would be to attach an évaluation to the

catégories ofthe framework automatically, thereby minimizing evaluatorjudgments.

Defining a comprehensive software System évaluation framework to be shared

among organizations is a step towards improvement-oriented software engineering.

According to guidelines for implementing metrics programs in organizations, the initial

25

stage requires the establishment of a subset of metrics to demonstrate ils feasibility. Our

research is a top-down categorizarion of important factors to be considered for an organi-

zational metrics program. This model can be allowed to evolve in order to détermine a

basic set of metrics that could be used to exchange data among organizations. Useful anal-

ysis and comparisons can be performed when it is possible to share expériences based on

this framework.

There are several possible applications of the framework. For évaluation purposes, it

allows software System évaluation data to be identified uniformly for classification and

comparison purposes. It can be used as a baseline to establish metrics programs in organi-

zations. It can be used to validate current metrics in an organization. It can be useful in the

sélection of metrics for spécifie purposes, such as estimation or requirements définition. A

taxonomy of software System characteristics can be deduced from the framework to deter-

mine homogeneous clusters of metrics data for comparison purposes. Several acdvities in

software engineering, such as planning and estimation, require expert opinion to suggest

the characteristics of software Systems. Current research involves identifying and propos-

ing a set of estimation metrics for an organization using the framework.

Acknowledgements

The authors would like to thank the anonymous référées for their valuable com-

ments. The contribution of senior analysts from Groupe DMR who collaborated to test the

framework with real cases is greatly appreciated. The contribution of André Beaucage,

Project Manager at the Software Engineering Lab in evaluating CASE tools is also appre-

ciated.

26

Références

l Kumar, K. 'Post Implementation Evaluation ofComputer-Based Information System:

Carrent Practices', Communications of the ACM, Vol. 33, No. 2, February 1990, pp. 203-

212.

2 Chandler, J.S. 'A Muldple Criteria Approach for Evaluating Information Systems', MIS

Quarteriy, March 1982, pp. 61-74.

3 Basili, V.R.; Rombach, H.D. 'The TAME Project: Towards Improvement-Oriented Soft-

ware Environments', IEEE Transactions on Software Engineering, Vol. 14, No. 6,June

1988,pp.758-773.

4 Mylopoulus, J. 'Conceptual Modeling and Telos', in Conceptual Modeling, Databases

and CASE, Loucopoulos, P.; Zicari, R. (editors), Wiley, 1992.

5 Constantine, L.L. 'Work Organization: Paradigms for Project Management and Organi-

zation', CACM, Vol. 36, No. 10, October 1993, pp. 34-43.

6 Fuggetta, A. 'A Classification of CASE Technology', IEEE Computer, Vol. 26, No. 12,

December 1993, pp. 25-38.

7 Nielsen, J. Usability Engineering, Académie Press, Inc. 1993.

8 Brynjolfsson, E. 'The Producdvity Paradox of Information Technology', Communica-

tions ofACM, Vol. 36, No. 12, December 1993, pp. 66-77.

9 Saaty, T.L. The Analytic Hierarchy Process, McGraw-Hill, Inc. 1980.

10 Clément, A. 'Computing at Work: Empowering Action by Low-level Users', CACM

Vol. 37, No. l, January 1994,pp.53-63.

27

Appendix

Current approaches

Approaches which suggest important factors to consider in software measurement

include producdvity and quality models. Productivity models surveyed are Walston et al.,

productivity factors"1; Basili et al., factors affecting software developmenf*^ ; Boehm's

Software Development Modes and Cost Drivers ; Mohanty's Software Cost Estimation

Factorsa4; Conte et al., factors affecting productivitya5; Ramsey et al., homogeneous

projectsa6; and Kemayel et al., factors for programmer productivity37. Software quality

models surveyed are those suggested by Boehm et al.,a8 and McCall . Also, SEI's Capa-

bility Maturity Model for process assessment and the ISO 9126 standard for software

quality. Total quality approaches include the Malcolm Baldrige and European Quality
Awards.a12

Productivity models center their analysis in the prqject and System dimensions,

whereas software quality models emphasize the System and some usability factors from

the environment dimension. Quality Awards are more organization-oriented than soft-

ware-oriented, providing a wider view of quality concerns.

WF-77. Walston and Félix productivity factors

The objective of this research was to search for a method of estimating program-

ming productivity. Twenty-nine factors which correlate with programming productivity

were identifiée!. Thèse were related to complexity, user participation, personnel expérience

and qualifications, staff size/duration, programming techniques, constraints on the pro-

grams, type of application, database classes of items, and pages of documentation.

BZ-78. Basili and Zelkowitz factors on software development

Data from several projects were collected at the Software Engineering Laboratory

(from NASA's Goddard Space Flight Center and the University of Maryland) to evaluate

software engineering méthodologies. For each project, a set of factors affecting software

development was gathered: people factors, problem factors, process factors, product fac-

tors, resource factors and tools.

28

B-81. Boehm's Software Development Modes and Cost Drivers

Boehm distinguishes three modes of software development: organic, semi-detached

and embedded. The important features that allow the identification of Software Develop-

ment Modes are: organizational understanding of product objectives; expérience in work-

ing with related software Systems; conformance with pre-established requu-ements;

conformance with extemal interface spécifications; concurrent development of associated

new hardware and operational procédures; innovative data processing architectures, algo-

rithms; a premium on early completion; and product size range. Boehm also proposed sev-

eral cost drivers for estimation purposes, organized by product attributes, computer

attributes, personnel attributes and project attributes.

M-81. Mohanty's Software Cost Estimation factors

Mohanty identifiée! the significant factors considered by various model builders in

the literature. Thèse factors were organized by System size (Le., number of instructions),

database (Le., number of words in the database), System complexity (e.g., System unique-

ness, complexity of interfaces and program structure), type ofprogram (Le., type of appli-

cation), documentation (i.e., number of pages of documentation), environment (e.g.,

development environment, languages, computer speed and memory capacity, productiv-

ity), and other factors (e.g., safety considérations, System growth requirements).

CDS-86. Conte, Dunsmore and Shen: factors on productivity

There are many factors that appear to affect the software development process and

the product. Some of the factors that affecting productivity are related to people factors

(e.g., individual capability, size of the team, language expérience), process factors (e.g.,

establishment of milestones, development schedule, use of spécification techniques or

methods), product factors (e.g., size of product, type of program structures, amount of

reused code) and computer factors (e.g., response time, turnaround time, storage con-

straints).

29

RB-89. Ramsey and Basili: homogeneous environment

The software which provided the data for Ramsey and Basili's study was developed

at the NASA Goddard Space Flight Center. The authors claim that the software develop-

ment environment was homogeneous. Le., many similar projects are developed for the

same application area. Additional considérations for homogeneous environments are: a

standard process model, a software development methodology that is similar across

projects, and a great deal ofreuse of code from previous projects.

KMO-91. Kemayel, Mili, and Ouederni: programmer productivity factors

In a survey study, the authors suggested 33 controllable factors of programmer pro-

ductivity. Thèse factors are related to personnel, the software process and the user commu-

nity. Personnel includes motivation (e.g., nature of work, level of responsibility, salary)

and expérience (e.g., expérience on application domain, programming language and user

community). Process factors include project management (e.g., adherence to a software

life cycle, use of cost estimation procédures) and programming environment (e.g., use and

power of programming tools, modem programming practices and power of the equip-

ment).

BBL-76. Boehm, Brown, and Lipow: software quality factors

A set of important software characteristics related to quality have been proposed.

Metrics to assess the degree to which the software has the defined characteristics were

developed and correlated with the characteristics. Refinements were made on the set of

characteristics to produce a set that supports software quality évaluation. Relationships

were established between characteristics and refined characteristics. Finally, the metrics

themselves were refined. The list of characteristfcs includes: portability, reliability, effi-

ciency, human engineering, testability, understandability, modifiability and maintainabil-

ity.

Mc-79. MacCaII: software qualify criteria

Eleven quality factors were proposed and grouped according to three orientations or

viewpoints (Le., product opération, product révision and product transition). The factors

are conditions or characteristics that actively contribute to the quality of the software.

They represent a management-oriented view of software quality. To introduce a dimension

30

of quandfication, this management orientation must be translated into a software-related

viewpoinL This is accomplished by defining a. set of criteria for each factor. The criteria

are independent attnbutes of the software, or of the software production process, by which

the quality can be judged, defined and measured. Finally, quality metrics can be estab-

lished to provide a quantitative measure of the attnbutes represented by the criteria. The

list of quality factors includes: correctness, reliability, efficiency, integrity, usability, main-

tainability, testability, flexibility, portability, reusability and interoperability.

SEI-88. SEI's Capability Maturity Model

The CMM is désignée to provide guidance to control the software production pro-

cess and to evolve towards software excellence. The model identifies the current process

maturity level of an organization and the issues most cridcal to software quality and pro-

cess improvement. Key Process Areas are defined by Maturity Level. Level l (Initial) has

no key process areas. Level 2 (Repeatable) has the following key process arcas: require-

ments management, software project planning, software project tracking and oversight,

software subcontract management, software quality assurance and software configuration

managment. Level 3 (Defined) includes: organization process focus, organization process

définition, training program, integrated software management, software product engineer-

ing, intergroup coordination and peer reviews. Level 4 (Managed) includes: quantitative

process management and software quality management. Finally, level 5 (Optimizing)

includes: defect prévention, technology change management and process change manage-

ment.

ISO-9126. Software product évaluation

The International Standard ISO 9126 'Information technology - Software product

évaluation - Quality characteristics and guidelines for their use' présents a list of software

quality characterisdcs for evaluating the quality of a software product. It includes func-

tionality, reliability, usability, efîiciency, maintainability and portability.

Quality Awards

Awards promote awareness of quality as an increasingly important élément in com-

petitiveness, in understanding the requirements for performance excellence, and in shar-

31

ing information on successful performance stratégies and the benefits derived from

implementation of thèse stratégies. Even Aough Ae awards are not direcdy oriented

towards software Systems, they stress the importance of customer sadsfaction, which is an

indicator of benefits to the organization.

Malcolm Baldrige National Quality Awards

The awards are made annually to recognize companies for business excellence and

quality achievement. Awards may be given in each of three eligibility catégories: manu-

facturing companies, service companies and small businesses.

Leadership: The senior executives' success in creating and sustaining a quality culture.

Information and Analysis: The effectiveness of information collection and analysis in

maintaining a customer focus, driving quality excellence and achieve excellence.

Stratégie Quality Planning: The effectiveness of integrating quality requirements into

business plans.

Human Resource Development and Management: The success of efforts to realize the full

potential of the work force to meet a company's quality and performance objectives.

Management of Process Quality: The effectiveness of Systems and processes for ensuring

the quality ofproducts and services.

Quality and Operational Results: Improvement in quality and operational performance,

and supplier quality, as demonstrated through quantitative measures.

Customer Focus and Sadsfacdon: The effectiveness of Systems to détermine customer

requirements and satisfaction, and the demonstrated success in meeting customers' expec-

tations.

The European Quality Award

Quality encompasses the activities that organizations perform to meet the needs and

expectations of its custormers, its people, its financial stakeholders and society at large.

Quality has alrcady become the compétitive edge.

32

ENABLERS

l. Leadership: The behavior of all managers in driving the organization towards Total

Quality

2. Policy and Strategy: The organization's mission, values and stratégie du-ection and the

manner in which it achieves them

3. People Management: The management of the organization's people

4. Resources: The management, utilization and préservation ofresources

5. Processes: The management of all value-adding activities within the organization

RESULTS

6. Customer Satisfaction: What the perception of your extemal customers is of the organi-

zation and of its products and services

7. People Satisfaction: What your people's feelings are about their organization

8. Impact on Society: What the perception of your company is in the community at large.

This includes views of the company's approach to quality of life, the environment and to

the préservation of global resources

9. Business Results: What the organization is achieving in relation to ils planned business

performance

33

Références

al HiVF-77] Walston, CE.; Félix, C.P. 'A method of programming measurement and esti-

mation', IBM Systems Journal, No. l,1977,pp.54-73.

a2 [BZ-78] Basili, V.R.; Zelkowitz, M.V. 'Analyzing Medium-scale Software Develop-

ment', 3rd. International Conférence on Software Engineering, May 10-12,1978, Atlanta,

Georgia, USA.

a3 [B81] Boehm, B. Software Engineering Economies, Prentice-Hall, Inc., 1981.

a4 [M81] Mohanty S.N. 'Software Cost Estimation: Présent and Future', Software Prac-

tice and Expérience, Vol. 11, 1981, pp.103-121.

a5 [CDS86] Conte, S.D.; Dunsmore, H.E.; Shen, V.Y. Software Engineering Metrics and

ModeSs, The Benjamin / Cummins Publishing Company, Inc. 1986.

a6 [RB-89] Ramsey C.L.; Basili V.R. 'An Evaluation of Expert Systems for Software

Engineering Management', IEEE Transactions on Software Engineering, Vol. SE-15, No.

6, June 1989, pp. 747-759.

a7 [KMO-91] Kemayel, L.; Mili, A.; Ouederni, I. 'Controllable Factors for Programmer

Productivity: A Statistical Study', Journal of Systems and Software, 1991; 16, pp.151-163

a8 [BBL-76] Boehm, B.W.; Brown, J.R.; Lipow, M. 'Quantitative Evaluation of Software

Quality', International Conférence on Software Engineering, 1976, pp.592-605.

a9 [Mc79] McCall, J.A. 'An Introduction to Software Quality Metrics', in Software Qual-

ity Management, Cooper, J.D. and Fisher, M.J., editors. Petrocelly Books, Inc. 1979,

pp. 127-142.

alO [SEI-88] Humphrey, W.S. 'Characterizing the Software Process: A Maturity Frame-

work', IEEE Software, March 1988, pp. 73-79.

al l European Quality Award, Self-assessment based on the European Model for Total

Quality Management 1994, The European Foundation for Quality Management, 1994.

34

al2 Malcolm Baldrige National Quality Award, 1994 Award Criteria, United States

Department of Commerce, Technology Administration, National Institute of Standards

and Technology, 1994.

35

ÉCOLE POLYTECHNIQUE DE MONTREAL

393340o28â924'1

