
Built-in Self-Testing of
Random-Access Memories

Manoj Franklin and Kewal K. Saluja
University of Wisconsin-Madison

B uilt-in self-test techniques are
gaining ground in the testing of
logic circuits because they offer a

cost-effective way to test high-density dig-
ital devices. The basic philosophy behind
the BIST technique is “let the hardware
test itself’ - that is, enhance the func-
tionality of a logic circuit to test itself. The
BIST concept was first proposed for com-
binational circuits, but it later found a quick
application in the testing of such regular
structures as random-access memories,
read-only memories, and programmable
logic arrays.

In the early days of memory design, test
procedures were developed in an ad hoc
manner. The fault coverages of these ad
hoc test procedures were limited and often
indeterminable. This shortcoming, ac-
knowledged by most researchers, motivated
the introduction of such fault models as
stuck-at faults, decoder faults, coupling
faults, and pattern-sensitive faults. By and
large, the fault models have been simple.
Until recently, researchers did not develop
models covering complex cell interactions,
because they believed that long tests would
be required to detect such faults. In con-
ventional testing environments with exter-
nal testers, the only tests thought practical
for large RAMs were those having a linear
relationship with the number of bits, N, in
the RAM. Ironically, the larger the RAM,
the more complex the fault model required

October 1990

An examination of
BIST schemes
indicates that

approaches based on
test architectures

rather than on test
algorithms are more

versatile and will likely
predominate in

the future.

to effectively model the variety of physical
failures that could occur because of inter-
ference between closely packed cells.

In a BIST environment, relatively inex-
pensive testers can perform functional test
for testing RAMs. A BIST tester need only
power up a chip, initiate the test signal, and
read the chip’s status. Therefore, much
longer tests providing higher fault cover-
age without excessive cost can be applied.

0018-9 162/90/1000-0045$01 00 0 1990 IEEE

The test time estimates in Table 1 (assum-
ing a IO-megahertz clock) show that for
large RAMs O(fl)-length tests may be
unacceptable (an O(Na) test means a test of
length CNa, where C is a constant). Nev-
ertheless, O(N”2)-length tests can be
practical for memories of 4 megabits or
larger, depending on the extent to which
the memory’s internal organization can be
exploited by the BIST logic.

Judging by the current trends, memory
size will continue to increase. As memories
become larger, BIST becomes more of a
necessity because of the high costs incurred
by off-line testers for even O (N) tests.
Furthermore, even if the order of test length
is moderately high, BIST techniques can
bring down the effective test time by using
such techniques as parallel testing and line-
mode testing.

Another motivation for BIST is that the
BIST logic incorporated in a chip can be
used for both manufacture testing and in-
circuit testing. If the implemented algo-
rithm’s test length is sufficiently small, the
same BIST logic can even be used for
testing RAMs during computer power-on,
as part of the CPU’s self-test procedures.
Current BIST implementations cannot,
however, be used for testing when the chip
contains useful data.

Although BIST may still be a high-over-
head concept (about 20 to 30 percent) for
general integrated-circuit designs, it requires

45

Table 1. Test time for different test lengths and memory sizes (with a 10-mega-
hertz clock).

~ ~~ ~ ~ ~~~

Test Memory Size
Length 1 Mbit 4 Mbits 16 Mbits

N 0.1 sec. 0.4 sec.
N log N 2.1 sec. 9.2 sec. 40.3 sec.
N?/2 1.8 min. 14.3 min. 1.9 hr.
N2 30.5 hr. 20.3 days 325.8 days

1.6 sec.

little overhead (less than 1 percent) for
application in large RAMs, as a later sec-
tion shows. Furthermore, recent develop-
ments in very large scale integrated cir-
cuitry allow moderately complex test
algorithms to be built within a chip.

In this context, the article has four major
purposes:

to demonstrate that BIST is a viable
solution to the problem of testing large
memories,
to introduce the notion of generic test
architectures suitable for implementing
a wide variety of test algorithms,
to provide a taxonomy for test archi-
tectures and use this taxonomy to cat-
egorize BIST implementations, and
to survey the important BIST imple-
mentations reported by universities and
industry.

A fair treatment of these four issues
requires a discussion of the fault models
and the test algorithms on which the BIST
implementations are based.

Fault models for RAMs
Before discussing the important fault

models, let’s consider how RAM chips are
organized. A RAM chip consists of an
array of memory cells, an address decoder,
address and data registers, and a read/write
logic. An N-bit RAM may be organized
either as a single-bit output RAM (N-word
x 1-bit RAM) or as a k-bit output RAM (M-
word x k-bit RAM). Generally, an M-word
x k-bit RAM is organized as k identical
partitions. Each M-bit partition may itself
be organized as 1(1 2 1) two-dimensional
arraysofmxncells,suchthatM=Imn. Cells
and their contents in each of these arrays
are independent of the cells in other arrays.
By assuming that no interaction can take
place between cells of different arrays, we
can model faults considering only a two-
dimensional array. Therefore, we need only

test each of these arrays completely, as
opposed to testing the RAM as a single
unit. The arrays can be tested sequentially
or in parallel if the memory organization
permits. The only restriction is that each
array must be tested independently of the
remaining arrays.

A wide variety of physical failures can
occur in the memory array, address decoder,
and read/write logic, causing various fail-
ures in the memory function. Their causes
depend on such factors as component
density, circuit layout, and manufacturing
method. A number of fault models have
been developed to capture the effects of
physical failures in RAMs. In this section,
we describe the important fault models
relevant for the functional testing of RAMS
using BIST. Faults not covered include
soft faults such as transient faults and in-
termittent faults. A recent survey paper on
fault models and functional testing tech-
niques for RAMs provides more detailed
descriptions.’

Invariably, two assumptions have been
used in the development of all fault models
and test algorithms: the single-fault as-
sumption and the nondestructive or fault-
free read operations assumption.

The single-fault assumption reduces the
complexity of test procedures, which be-
come unwieldy for most fault models if the
test is designed to detect multiple faults.
Tests that detect all single faults often
detect most multiple faults. This justifies
the use of the single-fault assumption.

The fault-f iee reads assumption has also
been used for practical reasons. Test pro-
cedures for RAMs often have some form of
embedded checking experiment, that is, the
application of a sequence of writes to bring
the memory to a known state and the veri-
fication of this state by reading the memo-
ry cells. The test procedure becomes ex-
tremely complex - and sometimes
impossible - if the read operations are
assumed to be faulty or destructive. In
reality, however, most faults in the read/

write logic are easily detected because they
result in catastrophic failures.’ Simple tests
can be derived and applied by an external
tester in the final testing stages to detect
noncatastrophic faults in the read/write
logic.

Stuck-at fault model. A memory cell is
said to be stuck-at-1 (stuck-at-0) if its
contents remain fixed at logic 1 (0), irre-
spective of what is written into it. Stuck-at
faults are also useful for modeling faults in
other parts of the memory system, such as
the decoder.

Coupling fault model. A pair of mem-
ory cells is said to be coupled if a transition
in one of them changes the contents of the
other cell from 0 to 1 or 1 to 0. Coupling
faults are of two types. An idempotent
couplingfault is one in which a transition
in one cell forces the contents of another
celltoacertainvalue(either0or I) , whereas
an inversion coupling fault is one in which
the transition causes an inversion in the
contents of the second cell. Coupling faults
could also exist between three or more
cells.

Pattern-sensitive fault model. A
memory cell is said to have a pattern-
sensitive fault if its state is altered by a
pattern of 0’s and l’s, 0 + 1 transitions, 1
+ 0 transitions, or both 0 + 1 and 1 + 0
transitions in a group of other memory
cells. The group of cells that influences the
base cell’s behavior is called the neigh-
borhood of the base cell. The problem of
pattern sensitivity arises primarily from
the high component densities of RAMS and
the related effect of unwanted interacting
signals. As RAM density increases, the
cells become physically closer, andpattern-
sensitive faults become the predominant
faults. Moreover, other fault classes that
affect the memory cells - shorts, stuck-at
faults, andcoupling faults-can be regarded
as special types of pattern-sensitive faults.

Testing a RAM for unrestricted pattern-
sensitive faults is impractical, as it requires
an 0 (2 N) test.’ This fact has led researchers
to consider restricted pattern-sensitive fault
models in which the neighborhood size is
small. Another restriction is on the positions
in the array that a neighborhood is allowed
to take. Often the neighborhood is allowed
to take only the position that physically
surrounds the base cell. Traditionally, the
restricted neighborhoods considered are
the five-cell and nine-cell physical neigh-
borhoods. Figure l a shows the five-cell
physical neighborhood of a memory cell.

46 COMPUTER

Figure 1. Different types of neighborhood: (a) a five-cell neighborhood; (b) a row/column neighborhood.

Within the context of pattern sensitivity,
different fault models have been proposed,
based on the type of interaction between
the cells. In the static-pattern-sensitive fault
model, a cell is said to be faulty if its
contents change when a certain pattern of
0’s and 1’s exists in the neighborhood cells
(that is, the pattern to which the cell is
sensitive is static). A dynamic-pattern-
sensitive fault is said to occur if the state of
a cell changes because of a change in its
neighborhood pattern. Researchers have
also studied variations of these fault models,
for example, those using active and passive
neighborhoods. ’

Row/column weight-sensitive fault
model. The neighborhoods discussed so
far for restricted pattern-sensitive faults
are the physical neighborhoods of a cell.
The row/column weight-sensitive fault
model is based on the broader rowlcolumn
neighborhood.’ The row (column) neigh-
borhood of a cell consists of all the cells in
the same row (column) but excluding the
cell. It is related to the electrical neigh-
borhood of a cell because cells of the same
row share acommon word line, and cells of
the same column share a common bit line.
The row/column neighborhood is much
larger than the conventional five-cell and
nine-cell physical neighborhoods described
earlier. Row weight of a cell is the number
of 1’s in its row neighborhood; column
weight is the number of 1’s in its column
neighborhood.

Figure l b shows the row/column neigh-
borhood, row weight, and column weight
of a memory cell. The row/column weight-
sensitive fault model is based on the obser-

vation that the contents of a cell can be
affected by the contents of cells in its row
and column neighborhood. Interference
could occur between cells of the same
column or row, since these cells are electri-
cally connected and share common ad-
dressing and refresh circuitry. In the row/
column weight-sensitive fault model, a
memory cell is said to be faulty if its con-
tent is sensitive to any combination of row
and column weights.

Besides considering a larger neighbor-
hood than the conventional five-cell and
nine-cell neighborhoods, this fault model
has an additional advantage: Tests that
detect row/column weight-sensitive faults
also detect most of the faults modeled by
other fault models. Furthermore, weight-
sensitive fault tests are also applicable for
reconfigurable memory chips, whereas the
five-cell-neighborhood pattern-sensitive
fault tests are not.

Faults in the decoder and read/write
logic. Most faults occurring in the address
decoder and the read/write logic can be
mapped to faults in the memory cell array;
that is, during tests of the memory cell
array, they will behave as faults in the
memory cell array.’ A stuck-at fault in the
read/write logic will appear as a large group
of memory cells with a stuck-at fault. Thus,
an algorithm that detects stuck-at faults in
the memory array can easily detect this
fault. The same arguments are valid for
coupling faults. Similarly, faults in the
address decoder can be modeled by faults
in the memory array, so the decoder faults
will be detected by tests for the memory
cell array.

Test algorithms and
their fault coverages

Over the years, several algorithms of
different complexities have been developed
to test RAMs. The early algorithms were
ad hoc; the later algorithms were specifi-
cally designed to detect faults from various
fault models. Recently, random pattern
testing has also been proposed for RAMs.
In this article, we discuss only those test
algorithms (ad hoc or specific) that have
been applied (in original or modified form)
for BIST implementation in either univer-
sities or industry.

All test algorithms consist of a sequence
of writes and reads applied to the cells in
the memory array. In our discussion, W, t
v denotes the operation “Write value v into
cell i.” Similarly, R, (= v) denotes the op-
eration “Read cell i, with v as the expected
value.”

Mscan test. Memory scan is a trivial test
procedure developed in an ad hoc manner.
The Mscan test writes each cell, first with
a 0 and then with a 1 . Each value is verified
by reading it before a new value is written.
The formal algorithm is as follows:

For i =0, 1, ..., n - 1
w, t 0
R, (= 0)
w, t 1
R , (= 1)

The deterministic fault coverage of this
test procedure is rather low. All that is
known at the end is that there is at least one

October 1990 47

(b) - Write a 0

Figure 2. Tiling a memory array for the checkerboard test: (a) pattern one; (b)
pattern two.

cell in the RAM that can be set to 0 and 1.
This is because a fault in the decoder may
cause the same cell to be referenced each
time. Since the test performs four operations
on each cell, its length is 4N.

Marching test. Perhaps the most widely
used test algorithm in the industry is the
marching test. A reason for its popularity is
its simplicity, coupled with a moderate
fault coverage. The marching-test algorithm
initializes the memory array to all O’s, and
then scans the memory cells in ascending
and descending orders. For each cell,
scanning involves reading the cell for the
expected value, writing the complement
value, and reading it again.

The idea behind this algorithm is that,
while scanning the memory in ascending
order, any direct coupling between the
current cell and a higher address cell is
detected when reading the latter. Along
with this, any error in the higher address
cell due to decoder faults will also be de-
tected. Similarly, scanning the memory in
the descending order detects all the effects
on lower address cells.

The formal algorithm is given below;
the details can be found elsewhere.’

Step 1.W, t 0 for i = 0, 1, ..., n - 1

S t e p 2 . F o r i = O , l ,..., n - 1
R, (= 0)
w, t 1
R , (= 1)

Step 3.For i = n - 1, n - 2, ..., 0
R , (= 1)
w, t 0
R, (= 0)

Step 4. Repeat steps 1 through 3,
interchanging 0’s and 1’s

The marching test detects all stuck-at
faults and decoder faults. However, it does
not detect all single coupling faults. Dif-
ferent variations of the marching test, all of
length O(N), have been suggested in the
literature.’

Checkerboard test. This simple algo-
rithm, developed in an ad hoc manner, is
designed for two-dimensional memory
architectures. The algorithm fills the
memory array with a checkerboard pattern
by writing 0’s and 1’s in alternate cells.
Two patterns, as shown in Figures 2a and
2b, are written. The cells are read after the
application of each checkerboard pattern.

Step 1. W(,,,) t 0 for i + j = even
W(,,,) t 1 for i + j = odd

Step 2. R(!,,) (= 0) for i + j = even
R(,,,) (= 1) for i + j = odd

Step 3.Repeat steps 1 and 2,
interchanging 0’s and 1’s.

The deterministic fault coverage of this
test procedure is rather low. As with the

Mscan test, a decoder fault may cause only
four cells at most to be referenced. There-
fore, all that is known at the end of this
procedure is that at least four cells in the
RAM can be set to 0 and 1.

Five-cell-neighborhood static-pattern-
sensitive fault test. Many algorithms have
been proposed to detect five-cell-neigh-
borhood pattern-sensitive faults. All these
algorithms are based on tiling the memory
array. We briefly explain an algorithm re-
ported by Kinoshita and Saluja, because
this algorithm was later implemented as a
built-in self-test.3 Figures 3a and 3b show
the tiling arrangements used by this algo-
rithm for the static-pattern-sensitive fault
test. The unmarked cells are the base cells.
Each base cell is surrounded by four
characters (A, B, C, D). The first phase of
the test uses the tiling arrangement shown
in Figure 3a. During this phase, the base
cells are kept fixed at logic 0. The five-cell-
neighborhood patterns are applied to the
base cells using all four-tuples (16patterns),
consisting of variables A, B, C, and D. The
base cells are read after the application of
each pattern. The second phase uses the
tiling arrangement of Figure 3b, and the
above process is repeated. Then both phases
are repeated with the base cells at logic 1.

Rowkolumn weight-sensitive fault test.
Different test algorithms of varying test
lengths have been proposed for testing
RAMs for row/column weight-sensitive
faults.2 All the tests are of length O(N”*) and
use divide and conquer by recursive parti-
tioning as the basic strategy. First the border
cells of an array are tested. Then the two
middle rows and columns are tested, thereby
effectively partitioning the array into four,
as Figure 4 shows. Partitioning continues
recursively until all the cells of the array
are tested. Testing the border cells involves
scanning the memory array as in the
marching test, and this helps to detect de-
coder faults. The row/column weight-
sensitive fault test also detects five-cell-
neighborhood pattern-sensitive faults.

Fault coverage. All the algorithms dis-
cussed so far have been implemented as
built-in self-tests. Some have also been
implemented for embedded RAMs in ap-
plication-specific integrated circuits. Table
2 lists the complexities and fault-detection
capabilities of the algorithms. Blank entries
indicate that those classes of faults are
either not detected or detected only to a
small extent. The entries marked “unidi-
rectional” mean that a cell may be sensitive

48 COMPUTER

to one or more patterns or transitions, but
all of them change the cell’s state from
either 0 to 1 or 1 to 0. The table shows that
the fault coverages offered by the Mscan
test, marching test, and checkerboard test
are rather poor.

Test architectures
Generally, test algorithms for RAMS are

developed assuming no knowledge of the
internal organization of the memory array.
This makes sense, because a test algorithm
should be generic to be applicable to
memories with different internal organi-
zations. Quite often, the internal details of
a RAM chip are not released by the vendor
and therefore are not available to custom-
ers. The BIST logic designer, on the other
hand, knows the internal organization and
could use this knowledge to reduce the test
time and area overhead with possible
modifications to the test algorithm that do
not sacrifice the fault coverage. For example,
for reads and writes the BIST logic may be
able to access multiple bits of an array in
parallel if the technology and test algorithm
allow, instead of accessing the bits serial-
ly. Similarly, the internal organization might
permit the testing of multiple arrays in
parallel. The modifications made to test
algorithms to suit memory’s internal struc-
ture are analogous to the modifications
made to high-level-language computer
programs by optimizing and vectorizing
compilers that take advantage of the com-
puter’s internal organization.

So far, BIST logic design has been driv-
en in an ad hoc manner by the desire to
implement specific test algorithms. That

Figure 3. Tiling a memory array for the static-pattern-sensitive fault test:
(a) phase one; (b) phase two.

Figure 4. Partitioning a memory array into four in the row/column weight-sensi-
tive fault test: (a) memory array with the border cells tested; (b) memory array
partitioned into four.

Table 2. Summary of faults detected by the test algorithms.

Test Procedure Order of Detected Faults
Test Length Stuck-at-Faults Coupling Faults Restricted PSF Row/Column WSF

Mscan Test 00“ Does not detect
decoder faults

Marching Test O(N) All Does not detect all
single coupling faults

Checkerboard O(N) Does not detect
decoder faults

All Unidirectional SPSF Tests OW)

Unidirectional Unidirectional Unidirectional Row/Column Test O(N3’*) All

Mscan - memory scan
PSF - pattern-sensitive faults

SPSF - static-pattern-sensitive fault
WSF - weight-sensitive faults

October 1990 49

Figure 5. Memory cell accesses for (a) single-array single-bit, (b) single-array multiple-bit, (c) multiple-array single-bit,
and (d) multiple-array multiple-bit architectures.

is, a new BIST logic design is carried out
for each new algorithm implemented. Much
design time goes into the implementation
of features common to all test algorithms.
This ad hoc approach also makes it diffi-
cult to integrate a number of test algo-
rithms on the same chip. An alternative
(structured) approach is to develop generic
test architectures for implementing a number
of test algorithms. For example, in a mi-
crocode-based test architecture, it might
be possible to implement a class of different
test algorithms by changing the microcode,
just like changing the microarchitecture of
acornputer.* The test architecture proposed
by Matsuda et al. seems to be a step in the
right d i r e ~ t i o n . ~

Taxonomy. Although a number of RAMS
have been implemented with BIST func-
tions, to the best of our knowledge, no one
has classified these implementations. Here
we provide a taxonomy for classifying BIST
RAM test architectures. The categories in
a rigorous taxonomy must be exclusive to
avoid ambiguity and exhaustive to avoid
incompleteness, providing an unambigu-
ous category for every instance presented
to it. Our taxonomy matches the number of
simultaneously tested arrays and the num-
ber of simultaneously accessed bits within
an array. Accordingly, we can classify all
BIST RAM implementations into one of
four test architectures:

single-array single-bit,
single-array multiple-bit,

*This concept is similar to the idea of developing
general-purpose computers (architectures) to d o a va-
riety of computations, as opposed to developing a
special-purpose computer for each computation.

multiple-array single-bit, and
multiple-array multiple-bit.

Single-array single-bit (SASB) test ar-
chitectures are those in which a single
array of the RAM chip is tested at a time
and a single bit of the tested array is accessed
at a time. Since a maximum of one bit from
the entire memory chip is accessed at any
instant, SASB architectures require the
maximum amount of time for testing. Some
classes of faults, such as arbitrary coupling
faults, restrict the choice of test architec-
ture to SASB architectures. Before the in-
troduction of design for testability and BIST,
external tester-based testing also limited
the choice mostly to SASB architectures,
because only one address can be transmit-
ted from the tester to the chip at a time.

Single-array multiple-bit (SAMB) ar-
chitectures test a single array at a time, but
within the tested array, multiple bits are
accessed simultaneously. Generally, the
accessed multiple bits are all from the same
row; multiple cells from the same column
are not accessed simultaneously, as this
slows memory access. Multiple bits can be
accessed by modifying the address decod-
er. An SAMB test architecture in which all
the n cells of a row (word) within an array
are accessed simultaneously has often been
referred to as line-mode testing.

Multiple-array single-bit (MASB) test
architectures can be used if a memory chip
is organized as a number of independent
arrays, allowing multiple arrays to be test-
ed simultaneously. A single bit from each
array is accessed at a time. The concept is
similar to the simultaneous testing of many
memory chips using external test equip-
ment. In the MASB architecture, a maxi-
mum of kl cells can be accessed at a time,

where kl is the number of arrays in the
memory chip.

Multiple-array multiple-bit (MAMB)
architectures use a combination of multi-
ple-array and multiple-bit testing. A number
of arrays are tested simultaneously, with a
number of cells (normally within a row) in
each array accessed simultaneously.
Therefore, as many as kln cells can be ac-
cessed simultaneously. Sridhar’s parallel
simultaneous testing of a number of bits
from all the arrays is an e ~ a m p l e . ~

Figure 5 illustrates these concepts with a
RAM organized as four arrays. The above
discussion demonstrates that the SAMB,
MASB, and MAMB architectures provide
a speedup over the SASB architecture. An
SAMB architecture can, at best, reduce the
test length by a factor of n, if all the n cells
in a row within an array are accessed si-
multaneously. The effective speedup can
be less than n for certain classes of test
algorithms because, during some stages of
testing, these algorithms require the con-
tents of part of the row to be kept unchanged
when the rest of the row is being tested.
Examples are the ping-pong test for cou-
pling faults6 and the row/column weight-
sensitive fault test.2 The MASB and MAMB
architectures can give a maximum speedup
of kl and kln, respectively.

Some algorithms are inherently serial
and therefore do not attain the maximum
speedup offered by the test architecture.
Given a test algorithm, the BIST designer
must choose one of the four architectures,
considering test time, speedup, and tech-
nology. Alternatively, given a memory chip
design, the BIST designer can select a test
architecture based on the available tech-
nology and silicon area and then select test
algorithms that can be implemented on the

50 COMPUTER

selected architecture. Such an approach
uses more efficiently the silicon area set
aside by the memory designers for the test
logic. Only algorithms with good fault
coverage should be selected.

All the test implementations reported so
far can be categorized into one of the above
four test architectures. Memory sizes have
now reached the stage where an SASB
architecture is almost impractical. Gener-
ally, as the memory size increases, the
number of arrays increases, with the size of
an array remaining more or less constant.
Therefore, in the future we can expect
many more designers to use the MASB and
MAMB test architectures.

Modifying test algorithms. If the ar-
rays are independent of each other and
cells of different arrays do not interact, an
algorithm developed for an SASB archi-
tecture need not be modified for a MASB
architecture. However, modifications may
be required to implement a conventional
SASB algorithm in an SAMB or MAMB
architecture.

Most test algorithms can be modified to
benefit from the simultaneous access of
multiple bits of a row. When multiple bits
of an array are accessed simultaneously,
faults due to interactions between the si-
multaneously accessed cells may not be
detected, unless special care is taken. Sridhar
describes a method to detect errors caused
by interactions between cells accessed si-
m~ltaneously.~

BIST logic
Memory chip designers generally use

aggressive design rules to maximize the
number of cells in a chip and to minimize
the memory access time. This imposes rather
hard constraints on the BIST logic design-
er. In general, the BIST logic designer tries
to minimize

the area occupied by the BIST hard-
ware,
the performance penalty incurred for
the normal memory operation,
the number of additional pins required,
the disparity between the functional

the test time, by using the memory’s
speed and testing speed, and

internal structure.

Conceptually, the BIST logic can be
divided into four parts: control logic, ad-
dress-generation logic, data-generation and
response-verification logic, and test-trig-
ger logic. Figure 6 (based on Ohsawa et

1 Address
buffers

I I ,

I I - - - l r - - - - - l I

v
Error flag CAS -Column aarsss strobe

WE- Write enable

Figure 6. A generic block diagram of random-logic-based BIST logic for RAMS
(based on Ohsawa et al.’).

aL7) shows a generic BIST organization
for testing RAMs. We have modified the
figure to show the main parts of the BIST
logic clearly.

Control logic. The control logic initiates
and stops testing and supervises the control
flow of the test algorithm. It can be imple-
mented using random logic or microcode.
Random logic offers higher speed and has
traditionally been used for designing the
control logic; nevertheless, recent designs
seem to prefer microcode-based control.
For large memories (4megabits andmore),
microcode-based BIST design has been
shown to have an area overhead which
does not exceed that of random-logic-based
 design^.^ Therefore, the flexibility and
implementational ease offered by micro-
code makes it superior to random logic for
large RAMs.

Microcode fits well with RAM technol-
ogy because of its regular structure. For
BIST RAMs, it may be even more area
efficient than random logic, because the
aggressive design rules used for RAM cells

can also be used for the microcode array.
Furthermore, the designer can use such
microcode-optimization techniques as
microprocedures, microstacks, and encod-
ing by grouping of microinstruction fields,
developed for microcode-based comput-
ers.

Address-generation logic. Almost all
test algorithms require the addresses to be
generated in a fairly uniform manner. The
control logic can be designed to generate
the addresses, but leaving this task to a
separate unit is better. For most algorithms,
address generation can be achieved by lin-
ear-feedback shift registers, registers, or
counters, with occasional intervention from
the control logic. With the MASB and
MAMB architectures, a single address-
generation unit can be used for testing
multiple arrays.

Data-generation and response-verifi-
cation logic. The data-generation unit
produces the test pattern(s) to be written in
the cells. Given a test architecture, differ-

October 1990 51

ent strategies can be used for data genera-
tion as well as response verification. Lin-
ear-feedback shift registers or counters as-
sisted by the control logic can generate
data. In an SASB architecture, the correct-
ness of the read values can be verified
either by comparing them against the ex-

pected values or by signature analysis.
Direct comparison is superior, because it
can locate single stuck-at faults. Further-
more, with signature analysis, some faults
may go undetected because of aliasing er-
Tors. For the SAMB, MASB, and MAMB
architectures, other fault-detection meth-

ods - in addition to comparison against
expected values -are comparison of val-
ues read from multiple bits, AND reading,
and OR reading.

In the MASB and MAMB architectures
another convenient verification method is
comparing the outputs of symmetrically

Then they developed procedures to apply
these patterns using optimal test length
sequences. The grouping of the patterns

microcode-based

using signature analyz-

52

the end of the test. In the write mode, the
value stored in the analyzer is written to a
number of bit lines in parallel. Finally, in
the signature mode, the contents of the
memory cells written earlier are read, and

ture is generated. This
ines whether an error

Ily BlST scheme, be-
cause lt requires the scanning in of data
from outside the chip. The scheme uses
the marching-test algorithm, modified to

testing. It can be categorized
approach, as the parallel sig-

nature analyzer can access multiple bits
from multiple arrays simultaneously. The
MAMB architecture results in very fast
testing.

A potential problem with the scheme is
that it requires an externat tester to scan
in the data. Another problem is the low
fault coverage offered by the marching
test. If a wide enough parallel signature
analyzer is used, then the probability for
aliasing errors will be very low. The error-
detection capability can be significantly
enhanced by monitoring the quotient bit of
the analyzer, in addition to verifying the

2.2 percent; for a 64-kilobit static RAM,
1.8 to 2.9 percent.

Self-te?btlng dynamic RAM. You and
Hayes proposed another type of parallel

figuring the cells of an array
shift register and using a

built-in test generator to test multiple bits
~oncurrently.~ The dynamic RAM is orga-
nized as two identical arrays, and the ar-
rays are tested in parallel to reduce the

each array to act as a circular shift regis-
ter during testing. When a row (that is, a
word line) within an array is activated, the
contents of the n cells of the row are
transferred to n bit lines, sensed by n
sense amplifiers, and then written to the

he same row. Each n-
as an n-bit shift register.
ut from the right-most

is stored in the left-most cell of the next
row in the next shift cycle.

ier IS saved in a flip-flop and

Thus, all m rows of an array effectively
form an mn-bit shift register. By saving
the initial contents of the right-most cell of
the last row, the array realizes an mn-bit
circular shift register. The standard sense
amplifier circuits are modified so that
when a bit value is read from one cell, it
can be written into the adjacent cell in the
same row. This is accomplished by intro-
ducing pass transistors between the phys-
ically adjacent bit lines and may adversely

es of the sense ampli-
fiers and the RAM access time in the nor-
mal operation mode.

An on-chip comparison circuit consist-
ing of exclusive-OR gates detects faults
by comparing the outputs of symmetrically
placed cells of the two arrays. The self-
testing dynamic RAM implementation can
be categorized as a MAMB test architec-
ture, since two arrays are tested in paral-
lel and multiple bits of an array (all the
bits of a row) are accessed simultaneous-
ly. This scheme detects bit-line imbalance
faults and restricted types of pattern-sen-
sitive faults in which a write operation be-
comes faulty in the presence of a few
specific patterns in the cell's adjacent
cells. It does not detect faults caused by
transitions in the neighborhood. The area
overhead for a 4-kilobit dynamic RAM is
about 12 percent, and the estimated over-
head for a 1 -megabit dynamic RAM is
about 5 percent.

Paraliel testing for VLSl memories.
lnoue et al. proposed the line-mode test,
a special case of SAMB te~t ing .~ In the
line-mode test, all cells connected to a
word line are tested simultaneously. The
on-chip test circuit can perform parallel
write and parallel compare. The parallel
write circuit writes data into all cells con-
nected to a word line, and the parallel
compare circuit compares the data in par-
allel with the expected data. Apart from
the memory cell arrays, separate tests
check the decoders, the test logic, and
the I/O circuits. The memory cells are
tested with the marching-test algorithm.

The test circuit occupies less than 1
percent of the chip area for a 2-megabit
dynamic RAM. The parallel write opera-
tion allows only certain patterns to be ap-
plied to the cells; therefore, the technique

COMPUTER

placed bits in the tested arrays. An advan-
tage of the parallel comparison methods is
that the expected values need not be gener-
ated. A basic assumption is that all bits
would not simultaneously have erroneous
values. In large dynamic RAMS, memory
cell pitches are very small. Thus, the addi-

tional area of parallel write and parallel
compare circuits should be small enough
to be arranged in the small pitch.

inactive and one or more test modes in
which the BIST logic is active. The test
modes can be entered using overvoltages,
extra package pins, or unique timing se-
quences with such inputs as Chip Enable,
Write Enable, Row Address Strobe, and

Test trigger logic. All BISTRAMs have
a normal mode in which the BIST logic is

cannot clearly identify interference be-
tween memory cells.

Parallel testing for pattern-sensitive
faults. Mazumder and Patel proposed a
BlST parallel testing scheme in which a
number of cells on the same word line are
accessed simultane~usly.~ The decoder is
modified so that in the test mode multiple
bit lines are selected, allowing the same
data to be simultaneously written to multi-
ple cells of the same word line. In the
read mode, a multibit comparator concur-
rently compares the outputs of the bit
lines. The additional hardware is designed
to fit within the intercell pitch. The algo-
rithm detects both static- and dynamic-
pattern-sensitive faults over the nine-cell
neighborhood of every cell. Mazumder
and Patel estimate the area overhead for
a 256-kilobit RAM to be about 0.4 per-
cent.

Built-in processor for self-test. Ritter
and Muller have reported a BlST scheme
in which a built-in processor tests and re-
pairs large RAMS.^ Repair requires fault
localization and computation of a repair
plan, calling for an intelligent self-test
concept. This and the demand for high
flexibility necessitated a test processor.
The test processor also allows for easier
and faster adaptation to various types of
memory technology and organization.
Furthermore, complex algorithms can be
incorporated later, when new memory
technologies are developed or new types
of faults and fault models (not yet consid-
ered) are introduced during product life.
The test function can be applied not only
at manufacturing time, but also during in-
coming inspection and system-mainte-
nance service. The main components of
the test processor are RAM cells, ROM
cells, and decoders. The size of the ROM
holding the test program is 512 x 14 bits.
The area overhead for a 1-megabit RAM
is about 5 percent, and the test architec-
ture can be classified as an SAMB archi-
tecture.

CMOS dynamic RAM with BlST func-
tion. Perhaps the first fully BlST imple-
mentation in the industry was the one re-
ported by Ohsawa et al. for a 4-megabit

October 1990

r-l Clock generator

Microcode

Next
address ' I

Call
Return

~

Conditional branch ~ -

I ' '-
I I I I I

.
Error flag

strobe

CAS -Column address strobe
pPC - Microprogram counter

Block diagram of microcode-based BET logic for the rowlcolumn weight-
sensitive fault test.

RAM7 Their scheme implements a check-
erboard test pattern and its complement,
and their test architecture falls under the
MAMB category. The RAM is divided into
eight arrays, two of which are activated in
a read/write cycle. From each of the test-
ed arrays, eight bits are accessed simul-
taneously. A data comparator compares
the read pattern with the expected pat-
tern. The control logic is implemented by
random logic. The BlST mode is entered
through a unique timing sequence. Figure
6 in the main text shows a block diagram
of this scheme. The area overhead for the
BlST logic is less than 1 percent. A poten-
tial problem is the low fault coverage of
the checkerboard test.

Rowkolumn pattern-sensitive fault
test implementation. The row/column
weight-sensitive fault test algorithm has
been implemented using both random-
logic-based and microcode-based de-
signs.e Both schemes use the SASB ar-
chitecture. We shall briefly describe the
microcode-based implementation to pro-
vide more insight into the workings of mi-
crocode-based BIST. The figure above

53

Column Address Strobe. Using unique
timing sequences is better than using over-
voltages and extra package pins, because
the latter methods may be incompatible
with existing systems. Also, the overvolt-
age method requires either an additional
power supply or the generation of an addi-

tional voltage signal. Voss et al. describe
an implementation of a 256-kilobit x 1-bit
static RAM with multiple test modes in
which the test modes are entered by a
unique timing sequence.8 They also de-
scribe how a particular test mode can be
selected using the normal address input

pins, ifthere are multiple test modes. Miyaji
et al. describe the design and implementa-
tion of a test trigger circuit for megabit
static RAMS that uses the Chip Enable and
Write Enable signals to generate a unique
timing sequence for entering the testmode.9

10-bit control store, which controls the ini-
tialization, sequencing, and completion of
testing. The control store is conceptually
divided into four microroutines. Control
passes from one microroutine to another
when the former issues a call signal to the
latter; control passes back to the former
when the latter issues a return signal. A
microstack stores the return addresses in
the proper order during nested calls. A 4-
bit microprogram counter points to the mi-
croinstruction currently being executed.

The address-generation logic consists
of a register file and some combinational

logic (glue logic). The registers hold the
row and column addresses of the cell be-
ing tested and the cell being read or writ-
ten. The width of the registers depends on
the memory organization and the size of
the cell array. The microcode initializes
and updates the register file.

A major innovation of this scheme is the
implementation of a moderately complex
algorithm with a small control store, using
microcode-optimizing techniques such as
microprocedures and microstacks. The
row/column weight-sensitive fault test has
higher fault coverage than the other algo-

rithms (see table below). A potential prob-
lem with the SASB implementation is that
the test time is comparatively long. How-
ever, the test time can be reduced by us-
ing the MASB or MAMB test architectures.
The area overhead of the random logic
design for a 4-megabit RAM is less than
0.8 percent.

Serial interfacing for embedded-
memory testing. Nadeau-Dostie, Silburt,
and Agarwal proposed a serial interfacing
scheme for testing embedded RAMS.^
Embedded RAMs are on-chip RAMs

Summary of different implementations. (Fault coverage for each implementation can be inferred from Table 2 in the main
text, which shows the coverage for each type of algorithm.)

Implementation Algorithm Test Architecture Control Logic Type of RAM

On-chip compact test scheme SPSF test SASB

Parallel test using signature analyzer Marching test MAMB

Self-testing DRAM Restricted PSF test MAMB

Parallel test for VLSl memories Marching test SAMB

Parallel test for PSFs PSF test SAMB

Built-in processor for self-test Not specified SAMB

CMOS DRAM with BET Checkerboard test MAMB

Row/column test implementation Row/column test SASB

Embedded-memory testing Marching test MAMB
Galpat
Walk

16-Mbit CMOS DRAM Marching test SAMB
Mscan test

Random logic
microcode

Random logic

Random logic

Random logic

Random logic

Processor

Random logic

Random logic
microcode

Random logic

Microcode

SRAM

SRAM, DRAM

DRAM

DRAM

DRAM

DRAM

SRAM

SRAM

DRAM

MAMB - multiple-array multiple-bit
SAMB - single-array multiple-bit
SASB - single-array single-bit
SPSF - static-pattern-sensitive fault
PSF - pattern-sensitive fault

54 COMPUTER

Future trends describe how these areas are likely to be
affected.

BIST technology combines several dif-
ferent areas: fault models, test algorithms,
test implementation, and fault diagnosis.
Changes can be expected in each of these
areas as technology progresses. Below, we

Fault models. State-of-the-art memory
chips are designed with spare rows and
columns meant for reconfiguration. Dur-
ing manufacture, the memory is tested and

whose address, data, and read/write
controls cannot be directly controlled or
observed through the chip’s I/O pins,
making them good targets for BlST ap-
piications. The implemented scheme in-
volves shifting data from one memory
cell to another, similar to the self-testing
dynamic RAM method described eqrlier.
Although both schemes use the MAMB
architecture, there are Some differences.
While the self-testing dynamic RAM ’
scheme shifted data only within an array
and independently tested two arrays in
parallel, the new scheme shifts data
within an array as well as across arrays,
by shifting the data at the end of one ar-
ray to the beginning bf next array in a
daisy-chained fashion. This makes shar-
ing the BlST logic among multiple arrays
easier, because fewer interconnection
lines need to be routed between the
BlST logic and the RAM blocks. Further-
more, in the serial interfacing scheme,
multiplexers implement the shifting
along the I/O data path. Therefore, no
modification is required in the RAM. The
implemented algorithms are adaptations
of the marching test, Galpat (galloping
patterns), and walk algorithms.

16-Mbit CMOS DRAM with BIST
function. Using microcode-based con-
trol logic, Takeshima et al. have imple-
mented the marching test ahd a scan
read/write test with a checkerboard pat-
tern for a %-megabit dynamic RAM.’O
The size of the control store is 18 x 10
bits. Perhaps theirs is the first industrial
BlST RAM implementation using micro-
code. The dynamic RAM enters the test
mode through a unique timing se-
quence.

References

1. K.K. Saluja, S.H. Sng, and K. Kinoshita,
“Built-In Self-Testing RAM: A Practical Al-

ternative,” l€€€ Design & Test of
Computers, Vol4, No. 1, Feb. 1987,
pp. 42-51.

2. T. Sridhag ‘New Parallel Test Ap-
proach for Large Memories,” Pmc.
lnt’l Test Conf.. Computer Society
Press, Los Alamitos, Calif., Order
No. 641 (microfiche only), 1985, pp.

3. Y. You and J.P. Hayes, “A Self-Test-
ing Dynamic RAM Chip,” /E€€ J.
Solid-state Circuits, Vol. 20, No. 1,
Feb. 1985, pp. 428-435.

Technology for VLSl Memories,”
Proc. lnt7 Test Conf., Computer So-
ciety Press, Los Alamitos, Calif., Or-
der No. 798 (microfiche only), t987,

462-470.

4. J. lnoue et al., “Parallel Testing

pp. 1,066-1,071.

5. P. Mazumder and J.H. Patel, “Paral-
lel Testing for Pattern-Sensitiwe
Faults in Semiconductor Random-
Access Memories,“ /€€€ Trans.
Computers, Vol. 38, No. 3, Mar.

6. H.C. flitter and B. Muller, “Built-In

1989, pp. 394-407.

Processor for Self-Testing Re-
ble ries,”
lnt so-

ciety Pre , or-
der No. 798 (microfiche only), 1987,
pp. 1,07&1,084.

stie, A. Silburt, and
“Serial Interfacing for
mory Testing,” IEEE

Design 8 Test of Computers, Vol. 7,
No. 2, Apr. 1990, pp. 52-63.

10. T. Takeshima et al., “A 55-11s 16-Mb
DRAM with Built-in Self-Test Func-

October 1990

repaired (if necessary) by bringing in the
spare rows and columns. With such new
fault-tolerance techniques as dynamic re-
configuration, fault models based on logi-
cal adjacency become irrelevant, whereas
those based on physical adjacency and
electrical connectivity become more rele-
vant. Future fault models must consider
the effects of such reconfiguration within
memory chips. With the new high-speed
RAM realizations, such as gallium arsenide
RAMs, future models must also consider
delay faults.

Test algorithms. When a memory chip
is reconfigured, physically adjacent cells
may no longer have consecutive addresses.
Test algorithms for the detection of physi-
cal neighborhood pattern-sensitive faults
have to account for this fact. Furthermore,
we believe that there will be a trend to find
optimal or near-optimal, yet simple, test
algorithms. These will save testing time as
memory size continues to grow, and BIST
logic will be used for maintenance testing
of RAMs embedded in a system.

Test implementation. When a memory
chip is being used in a system (that is, when
the chip contains valid data), it cannot be
tested on line because the test procedure
might destroy the memory contents. Fu-
ture systems may implement BIST algo-
rithms that have on-line test capabilities.
Further research is required not only to
develop such algorithms, but also to deter-
mine the merits and demerits of such an
approach, especially since most memory
systems use error-correction code at some
level.

Fault diagnosis and self-reconfigura-
tion. In general, current BIST implemen-
tations cannot diagnose faults. In the fu-
ture, BIST will potentially be used in field
diagnosis. Such diagnosis will help in re-
configuration of memory chips and repair
of multichip memory modules (silicon mass
storages).

T he separation of test algorithm and
test architecture clearly shows the
range of possible implementations

for a given test algorithm. The test archi-
tecture-based approach is more versatile
than the ad hoc design approach for BIST
logic design, especially with various de-
sign constraints. It also facilitates the inte-
gration of a number of test algorithms within
the same chip.

Our taxonomy for classifying BIST ar-

55

chitectures provides a framework to de-
scribe widely differing implementations at
a level of abstraction that eliminates many
algorithm-related details, while preserv-
ing the important implementation charac-
teristics. We expect that most future imple-
mentations in large RAMS will use the
test-architecture-based approach, since
it can easily adapt to changes in tech-
nology.

Acknowledgments
This work was supported by the University of

Wisconsin Graduate Research Committee, an
IBM graduate fellowship, and the National Sci-
ence Foundation under contract MIP 8509194.
We thank the referees for their comments and
suggestions, which greatly enhanced the quality
of presentation of this work.

References
1. A.J. van de Goor and C.A. Verruijt, “An

Overview of Deterministic Functional RAM
Chip Testing,” ACM Computing Sur\,eys,
Vol. 22, No. I , Mar. 1990, pp. 5-33.

2. M. Franklin, K.K. Saluja, and K. Kinoshita
“Built-In Self-Test Algorithm for RowKol-

umn Pattern Sensitive Faults in RAMS,”
IEEEJ. Solid-Stare Circuits, Vol. 25, No. 2,
Apr. 1990, pp. 5 14-524.

3. K. Kinoshita and K.K. Saluja, “Built-In
Testing of Memory Using an On-Chip Com-
pact Testing Scheme,” IEEE Trans. Com-
puters, Vol. 35, No. 10, Oct. 1986, pp. 862-
870.

4. Y. Matsuda et al., “New Array Architecture
for Parallel Testing in VLSI Memories,”
Proc. Int’l Tesr Conf., Computer Society
Press, Los Alamitos, Calif., Order No. 1962,
1989, pp. 322-326.

5. T. Sridhar “New Parallel Test Approach for
Large Memories,” Proc. Inr‘l Test Conf.,
Computer Society Press, Los Alamitos, Ca-
lif., Order No. 641 (microfiche only). 1985,
pp. 462-470.

6. M.M. Breuer and A.D. Friedman, Diagnosis
and Reliable Design of Digital Systems,
Computer Science Press, Potomac, Md.,
1976.

7. T. Ohsawa et al., “A 60-11s 4-Mbit CMOS
DRAM with Built-In Self-Test Function,”
IEEE J . Solid-State Circuits, Vol. 22, No. 5 ,
Oct. 1987, pp. 663-668.

8. P.H. Voss et al., “A 14-11s 256K x 1 CMOS
SRAM with Multiple Test Modes,”

IEEE EDUCATIONAL ACTIVITIES
INTRODUCES

I ”

ICASSP/SO
The following four video tutorials were
recorded April 1990 in Albuquerque, New
Mexico at ICASSPEKI.

T h e Structure of FFT and
Convolution Algorithms, presented
by James W. Cooley, IBM T.J.
Watson Research Labs
High-Resolution and Higher-Order
Spectral Analysis, presented by
Larry Marple, Chief Scientist,
ORINCON Inc.
Synthetic Aperture Radar: A Signal
Processing Viewpoint, presented by
David C. Munson, Jr., University of
Illinois

presented by Edward A. Lee, UC
Berkeley and K. Wojtek Pnytula,
Hughes Research Laboratories

ICASSPEKI Package (AI1 Four Programs)
IEEE member price, $225.95, list $129.50.
Plus shipping and handling.

VLSI For Signal Processing,

Individual tutorials I E E E member price,
$65.95, list $135.95. Plus shipping and han-
dling. PAL video standard available upon
request.

VLSI
Design Principles and

Practices
This Self-study Course provides practical
application of comprehensive information
o n circuit and logic design offering a n op
portunity t o become a valuable interface
for VLSI selection.

Program includes a study guide, answer
book, applications workbook, diskette,
and a textbook, VLSI Handbook by
Joseph DiGiacomo, McGraw Hill, 1989.

VLSI is I E E E member price, $249, list
$498. Plus shipping and handling.

I
For a full description of these programs and complete ordering information, call I E E E a t
1-800478-IEEE, FAX# 201-981-1686, or Telex: 0833233. For shipments t o CA, DE, NJ,
and NY add appropriate sales tax. Please call for appropriate overseas Air Mail Charges.

IEEE J . Solid-State Circuzts,Vol. 24, No. 4,
Aug. 1989, pp. 874-880.

9. F. Miyaji et al., “Multibit Test Trigger Cir-
cuit for Megabit SRAMs,” lEEE J . Solid-
Sture Circuits, Vol. 25, No. 1, Feb. 1990, pp.
68-7 1.

Manoj Franklin is a PhD student in computer
science at the University of Wisconsin--Madison.
He has been awarded an IBM graduate fellow-
ship. Recently he was a summer intern at Cray
Research. His research interests include high-
performance computing, memory testing, built-
in self-test, and design for testability. Before
graduate studies, he was an engineer at BHEL,
Bangalore, India.

Franklin received his BSc (engineering) in
electronics and communications from the Uni-
versity of Kerala, Trivandrum, India, in 1984.

Kewal K. Saluja is an associate professor in the
Department of Electrical and Computer Engi-
neering at the University of Wisconsin-Madi-
son, where he teaches logic design, computer
architecture, microprocessor-based systems,
VLSI design, and testing. Previously, he was at
the University of Newcastle, Australia. He has
also heldvisiting and consulting positions at the
University of Southern California, University of
Iowa, State University of New York, and Hiro-
shima University. His research interests include
design for testability, fault-tolerant computing,
VLSI design, and ccmputer architecture.

Saluja received his BE in electrical engineer-
ing from the University of Roorkee, India, in
1967, and his MS and PhD from the University
of Iowa in 1972 and 1973.

Saluja can be contacted at the Department of
Electrical and Computer Engineering, Universi-
ty of Wisconsin, 141.5 Johnson Dr., Madison,
WI 53706.

COMPUTER

