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B uilt-in self-test techniques are 
gaining ground in the testing of 
logic circuits because they offer a 

cost-effective way to test high-density dig- 
ital devices. The basic philosophy behind 
the BIST technique is “let the hardware 
test itself’ - that is, enhance the func- 
tionality of a logic circuit to test itself. The 
BIST concept was first proposed for com- 
binational circuits, but it later found a quick 
application in the testing of such regular 
structures as random-access memories, 
read-only memories, and programmable 
logic arrays. 

In the early days of memory design, test 
procedures were developed in an ad hoc 
manner. The fault coverages of these ad 
hoc test procedures were limited and often 
indeterminable. This shortcoming, ac- 
knowledged by most researchers, motivated 
the introduction of such fault models as 
stuck-at faults, decoder faults, coupling 
faults, and pattern-sensitive faults. By and 
large, the fault models have been simple. 
Until recently, researchers did not develop 
models covering complex cell interactions, 
because they believed that long tests would 
be required to detect such faults. In con- 
ventional testing environments with exter- 
nal testers, the only tests thought practical 
for large RAMs were those having a linear 
relationship with the number of bits, N, in 
the RAM. Ironically, the larger the RAM, 
the more complex the fault model required 
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An examination of 
BIST schemes 
indicates that 

approaches based on 
test architectures 

rather than on test 
algorithms are more 

versatile and will likely 
predominate in 

the future. 

to effectively model the variety of physical 
failures that could occur because of inter- 
ference between closely packed cells. 

In a BIST environment, relatively inex- 
pensive testers can perform functional test 
for testing RAMs. A BIST tester need only 
power up a chip, initiate the test signal, and 
read the chip’s status. Therefore, much 
longer tests providing higher fault cover- 
age without excessive cost can be applied. 
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The test time estimates in Table 1 (assum- 
ing a IO-megahertz clock) show that for 
large RAMs O(fl)-length tests may be 
unacceptable (an O(Na) test means a test of 
length CNa, where C is a constant). Nev- 
ertheless, O(N”2)-length tests can be 
practical for memories of 4 megabits or 
larger, depending on the extent to which 
the memory’s internal organization can be 
exploited by the BIST logic. 

Judging by the current trends, memory 
size will continue to increase. As memories 
become larger, BIST becomes more of a 
necessity because of the high costs incurred 
by off-line testers for even O ( N )  tests. 
Furthermore, even if the order of test length 
is moderately high, BIST techniques can 
bring down the effective test time by using 
such techniques as parallel testing and line- 
mode testing. 

Another motivation for BIST is that the 
BIST logic incorporated in a chip can be 
used for both manufacture testing and in- 
circuit testing. If the implemented algo- 
rithm’s test length is sufficiently small, the 
same BIST logic can even be used for 
testing RAMs during computer power-on, 
as part of the CPU’s self-test procedures. 
Current BIST implementations cannot, 
however, be used for testing when the chip 
contains useful data. 

Although BIST may still be a high-over- 
head concept (about 20 to 30 percent) for 
general integrated-circuit designs, it requires 
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Table 1. Test time for different test lengths and memory sizes (with a 10-mega- 
hertz clock). 

~ ~~ ~ ~ ~~~ 

Test Memory Size 
Length 1 Mbit 4 Mbits 16 Mbits 

N 0.1 sec. 0.4 sec. 
N log N 2.1 sec. 9.2 sec. 40.3 sec. 
N?/2 1.8 min. 14.3 min. 1.9 hr. 
N2 30.5 hr. 20.3 days 325.8 days 

1.6 sec. 

little overhead (less than 1 percent) for 
application in large RAMs, as a later sec- 
tion shows. Furthermore, recent develop- 
ments in very large scale integrated cir- 
cuitry allow moderately complex test 
algorithms to be built within a chip. 

In this context, the article has four major 
purposes: 

to demonstrate that BIST is a viable 
solution to the problem of testing large 
memories, 
to introduce the notion of generic test 
architectures suitable for implementing 
a wide variety of test algorithms, 
to provide a taxonomy for test archi- 
tectures and use this taxonomy to cat- 
egorize BIST implementations, and 
to survey the important BIST imple- 
mentations reported by universities and 
industry. 

A fair treatment of these four issues 
requires a discussion of the fault models 
and the test algorithms on which the BIST 
implementations are based. 

Fault models for RAMs 
Before discussing the important fault 

models, let’s consider how RAM chips are 
organized. A RAM chip consists of an 
array of memory cells, an address decoder, 
address and data registers, and a read/write 
logic. An N-bit RAM may be organized 
either as a single-bit output RAM (N-word 
x 1-bit RAM) or as a k-bit output RAM (M- 
word x k-bit RAM). Generally, an M-word 
x k-bit RAM is organized as k identical 
partitions. Each M-bit partition may itself 
be organized as 1(1 2 1) two-dimensional 
arraysofmxncells,suchthatM=Imn. Cells 
and their contents in each of these arrays 
are independent of the cells in other arrays. 
By assuming that no interaction can take 
place between cells of different arrays, we 
can model faults considering only a two- 
dimensional array. Therefore, we need only 

test each of these arrays completely, as 
opposed to testing the RAM as a single 
unit. The arrays can be tested sequentially 
or in parallel if the memory organization 
permits. The only restriction is that each 
array must be tested independently of the 
remaining arrays. 

A wide variety of physical failures can 
occur in the memory array, address decoder, 
and read/write logic, causing various fail- 
ures in the memory function. Their causes 
depend on such factors as component 
density, circuit layout, and manufacturing 
method. A number of fault models have 
been developed to capture the effects of 
physical failures in RAMs. In this section, 
we describe the important fault models 
relevant for the functional testing of RAMS 
using BIST. Faults not covered include 
soft faults such as transient faults and in- 
termittent faults. A recent survey paper on 
fault models and functional testing tech- 
niques for RAMs provides more detailed 
descriptions.’ 

Invariably, two assumptions have been 
used in the development of all fault models 
and test algorithms: the single-fault as- 
sumption and the nondestructive or fault- 
free read operations assumption. 

The single-fault assumption reduces the 
complexity of test procedures, which be- 
come unwieldy for most fault models if the 
test is designed to detect multiple faults. 
Tests that detect all single faults often 
detect most multiple faults. This justifies 
the use of the single-fault assumption. 

The fault-f iee reads assumption has also 
been used for practical reasons. Test pro- 
cedures for RAMs often have some form of 
embedded checking experiment, that is, the 
application of a sequence of writes to bring 
the memory to a known state and the veri- 
fication of this state by reading the memo- 
ry cells. The test procedure becomes ex- 
tremely complex - and sometimes 
impossible - if the read operations are 
assumed to be faulty or destructive. In 
reality, however, most faults in the read/ 

write logic are easily detected because they 
result in catastrophic failures.’ Simple tests 
can be derived and applied by an external 
tester in the final testing stages to detect 
noncatastrophic faults in the read/write 
logic. 

Stuck-at fault model. A memory cell is 
said to be stuck-at-1 (stuck-at-0) if its 
contents remain fixed at logic 1 (0), irre- 
spective of what is written into it. Stuck-at 
faults are also useful for modeling faults in 
other parts of the memory system, such as 
the decoder. 

Coupling fault model. A pair of mem- 
ory cells is said to be coupled if a transition 
in one of them changes the contents of the 
other cell from 0 to 1 or 1 to 0. Coupling 
faults are of two types. An idempotent 
couplingfault is one in which a transition 
in one cell forces the contents of another 
celltoacertainvalue(either0or I ) ,  whereas 
an inversion coupling fault  is one in which 
the transition causes an inversion in the 
contents of the second cell. Coupling faults 
could also exist between three or more 
cells. 

Pattern-sensitive fault model. A 
memory cell is said to have a pattern- 
sensitive fault if its state is altered by a 
pattern of 0’s and l’s, 0 + 1 transitions, 1 
+ 0 transitions, or both 0 + 1 and 1 + 0 
transitions in a group of other memory 
cells. The group of cells that influences the 
base cell’s behavior is called the neigh- 
borhood of the base cell. The problem of 
pattern sensitivity arises primarily from 
the high component densities of RAMS and 
the related effect of unwanted interacting 
signals. As RAM density increases, the 
cells become physically closer, andpattern- 
sensitive faults become the predominant 
faults. Moreover, other fault classes that 
affect the memory cells - shorts, stuck-at 
faults, andcoupling faults-can be regarded 
as special types of pattern-sensitive faults. 

Testing a RAM for unrestricted pattern- 
sensitive faults is impractical, as it requires 
an 0 ( 2 N )  test.’ This fact has led researchers 
to consider restricted pattern-sensitive fault 
models in which the neighborhood size is 
small. Another restriction is on the positions 
in the array that a neighborhood is allowed 
to take. Often the neighborhood is allowed 
to take only the position that physically 
surrounds the base cell. Traditionally, the 
restricted neighborhoods considered are 
the five-cell and nine-cell physical neigh- 
borhoods. Figure l a  shows the five-cell 
physical neighborhood of a memory cell. 
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Figure 1. Different types of neighborhood: (a) a five-cell neighborhood; (b) a row/column neighborhood. 

Within the context of pattern sensitivity, 
different fault models have been proposed, 
based on the type of interaction between 
the cells. In the static-pattern-sensitive fault 
model, a cell is said to be faulty if its 
contents change when a certain pattern of 
0’s and 1’s exists in the neighborhood cells 
(that is, the pattern to which the cell is 
sensitive is static). A dynamic-pattern- 
sensitive fault is said to occur if the state of 
a cell changes because of a change in its 
neighborhood pattern. Researchers have 
also studied variations of these fault models, 
for example, those using active and passive 
neighborhoods. ’ 

Row/column weight-sensitive fault 
model. The neighborhoods discussed so 
far for restricted pattern-sensitive faults 
are the physical neighborhoods of a cell. 
The row/column weight-sensitive fault 
model is based on the broader rowlcolumn 
neighborhood.’ The row (column) neigh- 
borhood of a cell consists of all the cells in 
the same row (column) but excluding the 
cell. It is related to the electrical neigh- 
borhood of a cell because cells of the same 
row share acommon word line, and cells of 
the same column share a common bit line. 
The row/column neighborhood is much 
larger than the conventional five-cell and 
nine-cell physical neighborhoods described 
earlier. Row weight of a cell is the number 
of 1’s in its row neighborhood; column 
weight is the number of 1’s in its column 
neighborhood. 

Figure l b  shows the row/column neigh- 
borhood, row weight, and column weight 
of a memory cell. The row/column weight- 
sensitive fault model is based on the obser- 

vation that the contents of a cell can be 
affected by the contents of cells in its row 
and column neighborhood. Interference 
could occur between cells of the same 
column or row, since these cells are electri- 
cally connected and share common ad- 
dressing and refresh circuitry. In the row/ 
column weight-sensitive fault model, a 
memory cell is said to be faulty if its con- 
tent is sensitive to any combination of row 
and column weights. 

Besides considering a larger neighbor- 
hood than the conventional five-cell and 
nine-cell neighborhoods, this fault model 
has an additional advantage: Tests that 
detect row/column weight-sensitive faults 
also detect most of the faults modeled by 
other fault models. Furthermore, weight- 
sensitive fault tests are also applicable for 
reconfigurable memory chips, whereas the 
five-cell-neighborhood pattern-sensitive 
fault tests are not. 

Faults in the decoder and read/write 
logic. Most faults occurring in the address 
decoder and the read/write logic can be 
mapped to faults in the memory cell array; 
that is, during tests of the memory cell 
array, they will behave as faults in the 
memory cell array.’ A stuck-at fault in the 
read/write logic will appear as a large group 
of memory cells with a stuck-at fault. Thus, 
an algorithm that detects stuck-at faults in 
the memory array can easily detect this 
fault. The same arguments are valid for 
coupling faults. Similarly, faults in the 
address decoder can be modeled by faults 
in the memory array, so the decoder faults 
will be detected by tests for the memory 
cell array. 

Test algorithms and 
their fault coverages 

Over the years, several algorithms of 
different complexities have been developed 
to test RAMs. The early algorithms were 
ad hoc; the later algorithms were specifi- 
cally designed to detect faults from various 
fault models. Recently, random pattern 
testing has also been proposed for RAMs. 
In this article, we discuss only those test 
algorithms (ad hoc or specific) that have 
been applied (in original or modified form) 
for BIST implementation in either univer- 
sities or industry. 

All test algorithms consist of a sequence 
of writes and reads applied to the cells in 
the memory array. In our discussion, W, t 
v denotes the operation “Write value v into 
cell i.” Similarly, R, ( = v )  denotes the op- 
eration “Read cell i, with v as the expected 
value.” 

Mscan test. Memory scan is a trivial test 
procedure developed in an ad hoc manner. 
The Mscan test writes each cell, first with 
a 0 and then with a 1 .  Each value is verified 
by reading it before a new value is written. 
The formal algorithm is as follows: 

For i  =0, 1, ..., n - 1 
w, t 0 
R, ( = 0 )  
w, t 1 
R , ( =  1) 

The deterministic fault coverage of this 
test procedure is rather low. All that is 
known at the end is that there is at least one 
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(b) - Write a 0 

Figure 2. Tiling a memory array for the checkerboard test: (a) pattern one; (b) 
pattern two. 

cell in the RAM that can be set to 0 and 1. 
This is because a fault in the decoder may 
cause the same cell to be referenced each 
time. Since the test performs four operations 
on each cell, its length is 4N. 

Marching test. Perhaps the most widely 
used test algorithm in the industry is the 
marching test. A reason for its popularity is 
its simplicity, coupled with a moderate 
fault coverage. The marching-test algorithm 
initializes the memory array to all O’s, and 
then scans the memory cells in ascending 
and descending orders. For each cell, 
scanning involves reading the cell for the 
expected value, writing the complement 
value, and reading it again. 

The idea behind this algorithm is that, 
while scanning the memory in ascending 
order, any direct coupling between the 
current cell and a higher address cell is 
detected when reading the latter. Along 
with this, any error in the higher address 
cell due to decoder faults will also be de- 
tected. Similarly, scanning the memory in 
the descending order detects all the effects 
on lower address cells. 

The formal algorithm is given below; 
the details can be found elsewhere.’ 

Step 1.W, t 0 for i  = 0, 1, ..., n - 1 

S t e p 2 . F o r i = O , l  ,..., n - 1  
R, ( = 0) 
w, t 1 
R , ( = 1 )  

Step 3.For i = n  - 1, n - 2, ..., 0 
R , ( =  1) 
w, t 0 
R,  ( = 0) 

Step 4. Repeat steps 1 through 3, 
interchanging 0’s and 1’s 

The marching test detects all stuck-at 
faults and decoder faults. However, it does 
not detect all single coupling faults. Dif- 
ferent variations of the marching test, all of 
length O(N), have been suggested in the 
literature.’ 

Checkerboard test. This simple algo- 
rithm, developed in an ad hoc manner, is 
designed for two-dimensional memory 
architectures. The algorithm fills the 
memory array with a checkerboard pattern 
by writing 0’s and 1’s in alternate cells. 
Two patterns, as shown in Figures 2a and 
2b, are written. The cells are read after the 
application of each checkerboard pattern. 

Step 1. W(,,,) t 0 for i + j = even 
W(,,,) t 1 for i + j = odd 

Step 2. R(!,,) ( = 0) for i + j = even 
R(,,,) ( = 1) for i + j  = odd 

Step 3.Repeat steps 1 and 2, 
interchanging 0’s and 1’s. 

The deterministic fault coverage of this 
test procedure is rather low. As with the 

Mscan test, a decoder fault may cause only 
four cells at most to be referenced. There- 
fore, all that is known at the end of this 
procedure is that at least four cells in the 
RAM can be set to 0 and 1.  

Five-cell-neighborhood static-pattern- 
sensitive fault test. Many algorithms have 
been proposed to detect five-cell-neigh- 
borhood pattern-sensitive faults. All these 
algorithms are based on tiling the memory 
array. We briefly explain an algorithm re- 
ported by Kinoshita and Saluja, because 
this algorithm was later implemented as a 
built-in self-test.3 Figures 3a and 3b show 
the tiling arrangements used by this algo- 
rithm for the static-pattern-sensitive fault 
test. The unmarked cells are the base cells. 
Each base cell is surrounded by four 
characters (A, B, C, D). The first phase of 
the test uses the tiling arrangement shown 
in Figure 3a. During this phase, the base 
cells are kept fixed at logic 0. The five-cell- 
neighborhood patterns are applied to the 
base cells using all four-tuples (16patterns), 
consisting of variables A, B, C, and D. The 
base cells are read after the application of 
each pattern. The second phase uses the 
tiling arrangement of Figure 3b, and the 
above process is repeated. Then both phases 
are repeated with the base cells at logic 1. 

Rowkolumn weight-sensitive fault test. 
Different test algorithms of varying test 
lengths have been proposed for testing 
RAMs for row/column weight-sensitive 
faults.2 All the tests are of length O(N”*) and 
use divide and conquer by recursive parti- 
tioning as the basic strategy. First the border 
cells of an array are tested. Then the two 
middle rows and columns are tested, thereby 
effectively partitioning the array into four, 
as Figure 4 shows. Partitioning continues 
recursively until all the cells of the array 
are tested. Testing the border cells involves 
scanning the memory array as in the 
marching test, and this helps to detect de- 
coder faults. The row/column weight- 
sensitive fault test also detects five-cell- 
neighborhood pattern-sensitive faults. 

Fault coverage. All the algorithms dis- 
cussed so far have been implemented as 
built-in self-tests. Some have also been 
implemented for embedded RAMs in ap- 
plication-specific integrated circuits. Table 
2 lists the complexities and fault-detection 
capabilities of the algorithms. Blank entries 
indicate that those classes of faults are 
either not detected or detected only to a 
small extent. The entries marked “unidi- 
rectional” mean that a cell may be sensitive 
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to one or more patterns or transitions, but 
all of them change the cell’s state from 
either 0 to 1 or 1 to 0. The table shows that 
the fault coverages offered by the Mscan 
test, marching test, and checkerboard test 
are rather poor. 

Test architectures 
Generally, test algorithms for RAMS are 

developed assuming no knowledge of the 
internal organization of the memory array. 
This makes sense, because a test algorithm 
should be generic to be applicable to 
memories with different internal organi- 
zations. Quite often, the internal details of 
a RAM chip are not released by the vendor 
and therefore are not available to custom- 
ers. The BIST logic designer, on the other 
hand, knows the internal organization and 
could use this knowledge to reduce the test 
time and area overhead with possible 
modifications to the test algorithm that do 
not sacrifice the fault coverage. For example, 
for reads and writes the BIST logic may be 
able to access multiple bits of an array in 
parallel if the technology and test algorithm 
allow, instead of accessing the bits serial- 
ly. Similarly, the internal organization might 
permit the testing of multiple arrays in 
parallel. The modifications made to test 
algorithms to suit memory’s internal struc- 
ture are analogous to the modifications 
made to high-level-language computer 
programs by optimizing and vectorizing 
compilers that take advantage of the com- 
puter’s internal organization. 

So far, BIST logic design has been driv- 
en in an ad hoc manner by the desire to 
implement specific test algorithms. That 

Figure 3. Tiling a memory array for the static-pattern-sensitive fault test: 
(a) phase one; (b) phase two. 

Figure 4. Partitioning a memory array into four in the row/column weight-sensi- 
tive fault test: (a) memory array with the border cells tested; (b) memory array 
partitioned into four. 

Table 2. Summary of faults detected by the test algorithms. 

Test Procedure Order of Detected Faults 
Test Length Stuck-at-Faults Coupling Faults Restricted PSF Row/Column WSF 

Mscan Test 00“ Does not detect 
decoder faults 

Marching Test O(N) All Does not detect all 
single coupling faults 

Checkerboard O(N) Does not detect 
decoder faults 

All Unidirectional SPSF Tests OW) 

Unidirectional Unidirectional Unidirectional Row/Column Test O(N3’*) All 

Mscan - memory scan 
PSF - pattern-sensitive faults 

SPSF - static-pattern-sensitive fault 
WSF - weight-sensitive faults 
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Figure 5. Memory cell accesses for (a) single-array single-bit, (b) single-array multiple-bit, (c) multiple-array single-bit, 
and (d) multiple-array multiple-bit architectures. 

is, a new BIST logic design is carried out 
for each new algorithm implemented. Much 
design time goes into the implementation 
of features common to all test algorithms. 
This ad hoc approach also makes it diffi- 
cult to integrate a number of test algo- 
rithms on the same chip. An alternative 
(structured) approach is to develop generic 
test architectures for implementing a number 
of test algorithms. For example, in a mi- 
crocode-based test architecture, it might 
be possible to implement a class of different 
test algorithms by changing the microcode, 
just like changing the microarchitecture of 
acornputer.* The test architecture proposed 
by Matsuda et al. seems to be a step in the 
right d i r e ~ t i o n . ~  

Taxonomy. Although a number of RAMS 
have been implemented with BIST func- 
tions, to the best of our knowledge, no one 
has classified these implementations. Here 
we provide a taxonomy for classifying BIST 
RAM test architectures. The categories in 
a rigorous taxonomy must be exclusive to 
avoid ambiguity and exhaustive to avoid 
incompleteness, providing an unambigu- 
ous category for every instance presented 
to it. Our taxonomy matches the number of 
simultaneously tested arrays and the num- 
ber of simultaneously accessed bits within 
an array. Accordingly, we can classify all 
BIST RAM implementations into one of 
four test architectures: 

single-array single-bit, 
single-array multiple-bit, 

*This concept is similar to the idea of developing 
general-purpose computers (architectures) to d o  a va- 
riety of computations, as opposed to developing a 
special-purpose computer for each computation. 

multiple-array single-bit, and 
multiple-array multiple-bit. 

Single-array single-bit (SASB) test ar- 
chitectures are those in which a single 
array of the RAM chip is tested at a time 
and a single bit of the tested array is accessed 
at a time. Since a maximum of one bit from 
the entire memory chip is accessed at any 
instant, SASB architectures require the 
maximum amount of time for testing. Some 
classes of faults, such as arbitrary coupling 
faults, restrict the choice of test architec- 
ture to SASB architectures. Before the in- 
troduction of design for testability and BIST, 
external tester-based testing also limited 
the choice mostly to SASB architectures, 
because only one address can be transmit- 
ted from the tester to the chip at a time. 

Single-array multiple-bit (SAMB) ar- 
chitectures test a single array at a time, but 
within the tested array, multiple bits are 
accessed simultaneously. Generally, the 
accessed multiple bits are all from the same 
row; multiple cells from the same column 
are not accessed simultaneously, as this 
slows memory access. Multiple bits can be 
accessed by modifying the address decod- 
er. An SAMB test architecture in which all 
the n cells of a row (word) within an array 
are accessed simultaneously has often been 
referred to as line-mode testing. 

Multiple-array single-bit (MASB) test 
architectures can be used if a memory chip 
is organized as a number of independent 
arrays, allowing multiple arrays to be test- 
ed simultaneously. A single bit from each 
array is accessed at a time. The concept is 
similar to the simultaneous testing of many 
memory chips using external test equip- 
ment. In the MASB architecture, a maxi- 
mum of kl cells can be accessed at a time, 

where kl is the number of arrays in the 
memory chip. 

Multiple-array multiple-bit (MAMB) 
architectures use a combination of multi- 
ple-array and multiple-bit testing. A number 
of arrays are tested simultaneously, with a 
number of cells (normally within a row) in 
each array accessed simultaneously. 
Therefore, as many as kln cells can be ac- 
cessed simultaneously. Sridhar’s parallel 
simultaneous testing of a number of bits 
from all the arrays is an e ~ a m p l e . ~  

Figure 5 illustrates these concepts with a 
RAM organized as four arrays. The above 
discussion demonstrates that the SAMB, 
MASB, and MAMB architectures provide 
a speedup over the SASB architecture. An 
SAMB architecture can, at best, reduce the 
test length by a factor of n, if all the n cells 
in a row within an array are accessed si- 
multaneously. The effective speedup can 
be less than n for certain classes of test 
algorithms because, during some stages of 
testing, these algorithms require the con- 
tents of part of the row to be kept unchanged 
when the rest of the row is being tested. 
Examples are the ping-pong test for cou- 
pling faults6 and the row/column weight- 
sensitive fault test.2 The MASB and MAMB 
architectures can give a maximum speedup 
of kl and kln, respectively. 

Some algorithms are inherently serial 
and therefore do not attain the maximum 
speedup offered by the test architecture. 
Given a test algorithm, the BIST designer 
must choose one of the four architectures, 
considering test time, speedup, and tech- 
nology. Alternatively, given a memory chip 
design, the BIST designer can select a test 
architecture based on the available tech- 
nology and silicon area and then select test 
algorithms that can be implemented on the 
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selected architecture. Such an approach 
uses more efficiently the silicon area set 
aside by the memory designers for the test 
logic. Only algorithms with good fault 
coverage should be selected. 

All the test implementations reported so 
far can be categorized into one of the above 
four test architectures. Memory sizes have 
now reached the stage where an SASB 
architecture is almost impractical. Gener- 
ally, as the memory size increases, the 
number of arrays increases, with the size of 
an array remaining more or less constant. 
Therefore, in the future we can expect 
many more designers to use the MASB and 
MAMB test architectures. 

Modifying test algorithms. If the ar- 
rays are independent of each other and 
cells of different arrays do not interact, an 
algorithm developed for an SASB archi- 
tecture need not be modified for a MASB 
architecture. However, modifications may 
be required to implement a conventional 
SASB algorithm in an SAMB or MAMB 
architecture. 

Most test algorithms can be modified to 
benefit from the simultaneous access of 
multiple bits of a row. When multiple bits 
of an array are accessed simultaneously, 
faults due to interactions between the si- 
multaneously accessed cells may not be 
detected, unless special care is taken. Sridhar 
describes a method to detect errors caused 
by interactions between cells accessed si- 
m~ltaneously.~ 

BIST logic 
Memory chip designers generally use 

aggressive design rules to maximize the 
number of cells in a chip and to minimize 
the memory access time. This imposes rather 
hard constraints on the BIST logic design- 
er. In general, the BIST logic designer tries 
to minimize 

the area occupied by the BIST hard- 
ware, 
the performance penalty incurred for 
the normal memory operation, 
the number of additional pins required, 
the disparity between the functional 

the test time, by using the memory’s 
speed and testing speed, and 

internal structure. 

Conceptually, the BIST logic can be 
divided into four parts: control logic, ad- 
dress-generation logic, data-generation and 
response-verification logic, and test-trig- 
ger logic. Figure 6 (based on Ohsawa et 

1 Address 
buffers 

I I  , 

I I  - - - l r - - - - - l I  

v 
Error flag CAS -Column aarsss strobe 

WE- Write enable 

Figure 6. A generic block diagram of random-logic-based BIST logic for RAMS 
(based on Ohsawa et al.’). 

aL7) shows a generic BIST organization 
for testing RAMs. We have modified the 
figure to show the main parts of the BIST 
logic clearly. 

Control logic. The control logic initiates 
and stops testing and supervises the control 
flow of the test algorithm. It can be imple- 
mented using random logic or microcode. 
Random logic offers higher speed and has 
traditionally been used for designing the 
control logic; nevertheless, recent designs 
seem to prefer microcode-based control. 
For large memories (4megabits andmore), 
microcode-based BIST design has been 
shown to have an area overhead which 
does not exceed that of random-logic-based 
 design^.^ Therefore, the flexibility and 
implementational ease offered by micro- 
code makes it superior to random logic for 
large RAMs. 

Microcode fits well with RAM technol- 
ogy because of its regular structure. For 
BIST RAMs, it may be even more area 
efficient than random logic, because the 
aggressive design rules used for RAM cells 

can also be used for the microcode array. 
Furthermore, the designer can use such 
microcode-optimization techniques as 
microprocedures, microstacks, and encod- 
ing by grouping of microinstruction fields, 
developed for microcode-based comput- 
ers. 

Address-generation logic. Almost all 
test algorithms require the addresses to be 
generated in a fairly uniform manner. The 
control logic can be designed to generate 
the addresses, but leaving this task to a 
separate unit is better. For most algorithms, 
address generation can be achieved by lin- 
ear-feedback shift registers, registers, or 
counters, with occasional intervention from 
the control logic. With the MASB and 
MAMB architectures, a single address- 
generation unit can be used for testing 
multiple arrays. 

Data-generation and response-verifi- 
cation logic. The data-generation unit 
produces the test pattern(s) to be written in 
the cells. Given a test architecture, differ- 
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ent strategies can be used for data genera- 
tion as well as response verification. Lin- 
ear-feedback shift registers or counters as- 
sisted by the control logic can generate 
data. In an SASB architecture, the correct- 
ness of the read values can be verified 
either by comparing them against the ex- 

pected values or by signature analysis. 
Direct comparison is superior, because it 
can locate single stuck-at faults. Further- 
more, with signature analysis, some faults 
may go undetected because of aliasing er- 
Tors. For the SAMB, MASB, and MAMB 
architectures, other fault-detection meth- 

ods - in addition to comparison against 
expected values -are comparison of val- 
ues read from multiple bits, AND reading, 
and OR reading. 

In the MASB and MAMB architectures 
another convenient verification method is 
comparing the outputs of symmetrically 

Then they developed procedures to apply 
these patterns using optimal test length 
sequences. The grouping of the patterns 

microcode-based 

using signature analyz- 
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the end of the test. In the write mode, the 
value stored in the analyzer is written to a 
number of bit lines in parallel. Finally, in 
the signature mode, the contents of the 
memory cells written earlier are read, and 

ture is generated. This 
ines whether an error 

Ily BlST scheme, be- 
cause lt requires the scanning in of data 
from outside the chip. The scheme uses 
the marching-test algorithm, modified to 

testing. It can be categorized 
approach, as the parallel sig- 

nature analyzer can access multiple bits 
from multiple arrays simultaneously. The 
MAMB architecture results in very fast 
testing. 

A potential problem with the scheme is 
that it requires an externat tester to scan 
in the data. Another problem is the low 
fault coverage offered by the marching 
test. If a wide enough parallel signature 
analyzer is used, then the probability for 
aliasing errors will be very low. The error- 
detection capability can be significantly 
enhanced by monitoring the quotient bit of 
the analyzer, in addition to verifying the 

2.2 percent; for a 64-kilobit static RAM, 
1.8 to 2.9 percent. 

Self-te?btlng dynamic RAM. You and 
Hayes proposed another type of parallel 

figuring the cells of an array 
shift register and using a 

built-in test generator to test multiple bits 
~oncurrently.~ The dynamic RAM is orga- 
nized as two identical arrays, and the ar- 
rays are tested in parallel to reduce the 

each array to act as a circular shift regis- 
ter during testing. When a row (that is, a 
word line) within an array is activated, the 
contents of the n cells of the row are 
transferred to n bit lines, sensed by n 
sense amplifiers, and then written to the 

he same row. Each n- 
as an n-bit shift register. 
ut from the right-most 

is stored in the left-most cell of the next 
row in the next shift cycle. 

ier IS saved in a flip-flop and 

Thus, all m rows of an array effectively 
form an mn-bit shift register. By saving 
the initial contents of the right-most cell of 
the last row, the array realizes an mn-bit 
circular shift register. The standard sense 
amplifier circuits are modified so that 
when a bit value is read from one cell, it 
can be written into the adjacent cell in the 
same row. This is accomplished by intro- 
ducing pass transistors between the phys- 
ically adjacent bit lines and may adversely 

es of the sense ampli- 
fiers and the RAM access time in the nor- 
mal operation mode. 

An on-chip comparison circuit consist- 
ing of exclusive-OR gates detects faults 
by comparing the outputs of symmetrically 
placed cells of the two arrays. The self- 
testing dynamic RAM implementation can 
be categorized as a MAMB test architec- 
ture, since two arrays are tested in paral- 
lel and multiple bits of an array (all the 
bits of a row) are accessed simultaneous- 
ly. This scheme detects bit-line imbalance 
faults and restricted types of pattern-sen- 
sitive faults in which a write operation be- 
comes faulty in the presence of a few 
specific patterns in the cell's adjacent 
cells. It does not detect faults caused by 
transitions in the neighborhood. The area 
overhead for a 4-kilobit dynamic RAM is 
about 12 percent, and the estimated over- 
head for a 1 -megabit dynamic RAM is 
about 5 percent. 

Paraliel testing for VLSl memories. 
lnoue et al. proposed the line-mode test, 
a special case of SAMB te~t ing .~  In the 
line-mode test, all cells connected to a 
word line are tested simultaneously. The 
on-chip test circuit can perform parallel 
write and parallel compare. The parallel 
write circuit writes data into all cells con- 
nected to a word line, and the parallel 
compare circuit compares the data in par- 
allel with the expected data. Apart from 
the memory cell arrays, separate tests 
check the decoders, the test logic, and 
the I/O circuits. The memory cells are 
tested with the marching-test algorithm. 

The test circuit occupies less than 1 
percent of the chip area for a 2-megabit 
dynamic RAM. The parallel write opera- 
tion allows only certain patterns to be ap- 
plied to the cells; therefore, the technique 
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placed bits in the tested arrays. An advan- 
tage of the parallel comparison methods is 
that the expected values need not be gener- 
ated. A basic assumption is that all bits 
would not simultaneously have erroneous 
values. In large dynamic RAMS, memory 
cell pitches are very small. Thus, the addi- 

tional area of parallel write and parallel 
compare circuits should be small enough 
to be arranged in the small pitch. 

inactive and one or more test modes in 
which the BIST logic is active. The test 
modes can be entered using overvoltages, 
extra package pins, or unique timing se- 
quences with such inputs as Chip Enable, 
Write Enable, Row Address Strobe, and 

Test trigger logic. All BISTRAMs have 
a normal mode in which the BIST logic is 

cannot clearly identify interference be- 
tween memory cells. 

Parallel testing for pattern-sensitive 
faults. Mazumder and Patel proposed a 
BlST parallel testing scheme in which a 
number of cells on the same word line are 
accessed simultane~usly.~ The decoder is 
modified so that in the test mode multiple 
bit lines are selected, allowing the same 
data to be simultaneously written to multi- 
ple cells of the same word line. In the 
read mode, a multibit comparator concur- 
rently compares the outputs of the bit 
lines. The additional hardware is designed 
to fit within the intercell pitch. The algo- 
rithm detects both static- and dynamic- 
pattern-sensitive faults over the nine-cell 
neighborhood of every cell. Mazumder 
and Patel estimate the area overhead for 
a 256-kilobit RAM to be about 0.4 per- 
cent. 

Built-in processor for self-test. Ritter 
and Muller have reported a BlST scheme 
in which a built-in processor tests and re- 
pairs large  RAMS.^ Repair requires fault 
localization and computation of a repair 
plan, calling for an intelligent self-test 
concept. This and the demand for high 
flexibility necessitated a test processor. 
The test processor also allows for easier 
and faster adaptation to various types of 
memory technology and organization. 
Furthermore, complex algorithms can be 
incorporated later, when new memory 
technologies are developed or new types 
of faults and fault models (not yet consid- 
ered) are introduced during product life. 
The test function can be applied not only 
at manufacturing time, but also during in- 
coming inspection and system-mainte- 
nance service. The main components of 
the test processor are RAM cells, ROM 
cells, and decoders. The size of the ROM 
holding the test program is 512 x 14 bits. 
The area overhead for a 1-megabit RAM 
is about 5 percent, and the test architec- 
ture can be classified as an SAMB archi- 
tecture. 

CMOS dynamic RAM with BlST func- 
tion. Perhaps the first fully BlST imple- 
mentation in the industry was the one re- 
ported by Ohsawa et al. for a 4-megabit 
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Block diagram of microcode-based BET logic for the rowlcolumn weight- 
sensitive fault test. 

RAM7 Their scheme implements a check- 
erboard test pattern and its complement, 
and their test architecture falls under the 
MAMB category. The RAM is divided into 
eight arrays, two of which are activated in 
a read/write cycle. From each of the test- 
ed arrays, eight bits are accessed simul- 
taneously. A data comparator compares 
the read pattern with the expected pat- 
tern. The control logic is implemented by 
random logic. The BlST mode is entered 
through a unique timing sequence. Figure 
6 in the main text shows a block diagram 
of this scheme. The area overhead for the 
BlST logic is less than 1 percent. A poten- 
tial problem is the low fault coverage of 
the checkerboard test. 

Rowkolumn pattern-sensitive fault 
test implementation. The row/column 
weight-sensitive fault test algorithm has 
been implemented using both random- 
logic-based and microcode-based de- 
signs.e Both schemes use the SASB ar- 
chitecture. We shall briefly describe the 
microcode-based implementation to pro- 
vide more insight into the workings of mi- 
crocode-based BIST. The figure above 
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Column Address Strobe. Using unique 
timing sequences is better than using over- 
voltages and extra package pins, because 
the latter methods may be incompatible 
with existing systems. Also, the overvolt- 
age method requires either an additional 
power supply or the generation of an addi- 

tional voltage signal. Voss et al. describe 
an implementation of a 256-kilobit x 1-bit 
static RAM with multiple test modes in 
which the test modes are entered by a 
unique timing sequence.8 They also de- 
scribe how a particular test mode can be 
selected using the normal address input 

pins, ifthere are multiple test modes. Miyaji 
et al. describe the design and implementa- 
tion of a test trigger circuit for megabit 
static RAMS that uses the Chip Enable and 
Write Enable signals to generate a unique 
timing sequence for entering the testmode.9 

10-bit control store, which controls the ini- 
tialization, sequencing, and completion of 
testing. The control store is conceptually 
divided into four microroutines. Control 
passes from one microroutine to another 
when the former issues a call signal to the 
latter; control passes back to the former 
when the latter issues a return signal. A 
microstack stores the return addresses in 
the proper order during nested calls. A 4- 
bit microprogram counter points to the mi- 
croinstruction currently being executed. 

The address-generation logic consists 
of a register file and some combinational 

logic (glue logic). The registers hold the 
row and column addresses of the cell be- 
ing tested and the cell being read or writ- 
ten. The width of the registers depends on 
the memory organization and the size of 
the cell array. The microcode initializes 
and updates the register file. 

A major innovation of this scheme is the 
implementation of a moderately complex 
algorithm with a small control store, using 
microcode-optimizing techniques such as 
microprocedures and microstacks. The 
row/column weight-sensitive fault test has 
higher fault coverage than the other algo- 

rithms (see table below). A potential prob- 
lem with the SASB implementation is that 
the test time is comparatively long. How- 
ever, the test time can be reduced by us- 
ing the MASB or MAMB test architectures. 
The area overhead of the random logic 
design for a 4-megabit RAM is less than 
0.8 percent. 

Serial interfacing for embedded- 
memory testing. Nadeau-Dostie, Silburt, 
and Agarwal proposed a serial interfacing 
scheme for testing embedded  RAMS.^ 
Embedded RAMs are on-chip RAMs 

Summary of different implementations. (Fault coverage for each implementation can be inferred from Table 2 in the main 
text, which shows the coverage for each type of algorithm.) 

Implementation Algorithm Test Architecture Control Logic Type of RAM 

On-chip compact test scheme SPSF test SASB 

Parallel test using signature analyzer Marching test MAMB 

Self-testing DRAM Restricted PSF test MAMB 

Parallel test for VLSl memories Marching test SAMB 

Parallel test for PSFs PSF test SAMB 

Built-in processor for self-test Not specified SAMB 

CMOS DRAM with BET Checkerboard test MAMB 

Row/column test implementation Row/column test SASB 

Embedded-memory testing Marching test MAMB 
Galpat 
Walk 

16-Mbit CMOS DRAM Marching test SAMB 
Mscan test 

Random logic 
microcode 

Random logic 

Random logic 

Random logic 

Random logic 

Processor 

Random logic 

Random logic 
microcode 

Random logic 

Microcode 

SRAM 

SRAM, DRAM 

DRAM 

DRAM 

DRAM 

DRAM 

SRAM 

SRAM 

DRAM 

MAMB - multiple-array multiple-bit 
SAMB - single-array multiple-bit 
SASB - single-array single-bit 
SPSF - static-pattern-sensitive fault 
PSF - pattern-sensitive fault 
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Future trends describe how these areas are likely to be 
affected. 

BIST technology combines several dif- 
ferent areas: fault models, test algorithms, 
test implementation, and fault diagnosis. 
Changes can be expected in each of these 
areas as technology progresses. Below, we 

Fault models. State-of-the-art memory 
chips are designed with spare rows and 
columns meant for reconfiguration. Dur- 
ing manufacture, the memory is tested and 

whose address, data, and read/write 
controls cannot be directly controlled or 
observed through the chip’s I/O pins, 
making them good targets for BlST ap- 
piications. The implemented scheme in- 
volves shifting data from one memory 
cell to another, similar to the self-testing 
dynamic RAM method described eqrlier. 
Although both schemes use the MAMB 
architecture, there are Some differences. 
While the self-testing dynamic RAM ’ 
scheme shifted data only within an array 
and independently tested two arrays in 
parallel, the new scheme shifts data 
within an array as well as across arrays, 
by shifting the data at the end of one ar- 
ray to the beginning bf next array in a 
daisy-chained fashion. This makes shar- 
ing the BlST logic among multiple arrays 
easier, because fewer interconnection 
lines need to be routed between the 
BlST logic and the RAM blocks. Further- 
more, in the serial interfacing scheme, 
multiplexers implement the shifting 
along the I/O data path. Therefore, no 
modification is required in the RAM. The 
implemented algorithms are adaptations 
of the marching test, Galpat (galloping 
patterns), and walk algorithms. 

16-Mbit CMOS DRAM with BIST 
function. Using microcode-based con- 
trol logic, Takeshima et al. have imple- 
mented the marching test ahd a scan 
read/write test with a checkerboard pat- 
tern for a %-megabit dynamic RAM.’O 
The size of the control store is 18 x 10 
bits. Perhaps theirs is the first industrial 
BlST RAM implementation using micro- 
code. The dynamic RAM enters the test 
mode through a unique timing se- 
quence. 
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repaired (if necessary) by bringing in the 
spare rows and columns. With such new 
fault-tolerance techniques as dynamic re- 
configuration, fault models based on logi- 
cal adjacency become irrelevant, whereas 
those based on physical adjacency and 
electrical connectivity become more rele- 
vant. Future fault models must consider 
the effects of such reconfiguration within 
memory chips. With the new high-speed 
RAM realizations, such as gallium arsenide 
RAMs, future models must also consider 
delay faults. 

Test algorithms. When a memory chip 
is reconfigured, physically adjacent cells 
may no longer have consecutive addresses. 
Test algorithms for the detection of physi- 
cal neighborhood pattern-sensitive faults 
have to account for this fact. Furthermore, 
we believe that there will be a trend to find 
optimal or near-optimal, yet simple, test 
algorithms. These will save testing time as 
memory size continues to grow, and BIST 
logic will be used for maintenance testing 
of RAMs embedded in a system. 

Test implementation. When a memory 
chip is being used in a system (that is, when 
the chip contains valid data), it cannot be 
tested on line because the test procedure 
might destroy the memory contents. Fu- 
ture systems may implement BIST algo- 
rithms that have on-line test capabilities. 
Further research is required not only to 
develop such algorithms, but also to deter- 
mine the merits and demerits of such an 
approach, especially since most memory 
systems use error-correction code at some 
level. 

Fault diagnosis and self-reconfigura- 
tion. In general, current BIST implemen- 
tations cannot diagnose faults. In the fu- 
ture, BIST will potentially be used in field 
diagnosis. Such diagnosis will help in re- 
configuration of memory chips and repair 
of multichip memory modules (silicon mass 
storages). 

T he separation of test algorithm and 
test architecture clearly shows the 
range of possible implementations 

for a given test algorithm. The test archi- 
tecture-based approach is more versatile 
than the ad hoc design approach for BIST 
logic design, especially with various de- 
sign constraints. It also facilitates the inte- 
gration of a number of test algorithms within 
the same chip. 

Our taxonomy for classifying BIST ar- 
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chitectures provides a framework to de- 
scribe widely differing implementations at 
a level of abstraction that eliminates many 
algorithm-related details, while preserv- 
ing the important implementation charac- 
teristics. We expect that most future imple- 
mentations in large RAMS will use the 
test-architecture-based approach, since 
it can easily adapt to changes in tech- 
nology. 
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