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Trace Processors:
Moving to Fourth-
Generation
Microarchitectures

F
undamentally new generations of microarchi-
tectures have been occurring approximately
every two decades since the 1940s. Each gen-
eration has been driven by advances in under-
lying hardware technologies, and by attempts

to extract and realize higher degrees of instruction-
level parallelism. Given this pattern and the contin-
ued push for higher performance, we are midway
through the third generation and are currently laying
the groundwork for the fourth.

Technology trends are clear. By the end of the next
decade a single IC chip will contain several hundred
million, if not a billion, transistors. The Semiconduc-
tor Industry Association’s road map1 projects proces-
sors with 350 million transistors in 2007 and with
800 million by 2010. These large numbers of transis-
tors result from greatly reduced feature sizes and lead
to higher wiring densities. Thus, a major challenge is
to use these transistors effectively and to accommo-
date the dramatic shifts in design constraints that will
result from these changes.

As the sidebar “Why Large Uniprocessors?”
describes, there are primarily three ways to respond to
this challenge: build a multiprocessor on chip, inte-
grate more of the computer system on a chip, or build
a large uniprocessor, which would realize the fourth
generation of microarchitectures. We have chosen to
explore building large uniprocessors, specifically trace
processors. A trace processor can execute ordinary
serial programs written in standard languages at much
higher speeds than are currently possible. It replicates
superscalar pipelines (characteristic of the current
microarchitecture generation) to form a set of con-
nected processing elements. To this is added a level of
hierarchy for control and data. A high-level control
unit partitions the instruction stream into segments, or
traces. A specially organized cache holds traces, and
the processor fetches and executes traces as a unit.
Another important feature is the heavy use of predic-

tion for both control and data, which increases the
exploitable parallelism in ordinary programs.

Although we describe features of the trace proces-
sor’s architecture, our goal in this article is to focus on
trace processors as a vehicle for describing the require-
ments of a fourth-generation microarchitecture. In this
we include the technology trends that drive those
requirements and the underlying features to support
the microarchitecture.

REQUIREMENTS OF A NEW GENERATION
Figure 1 diagrams the four generations of microar-

chitectures. The first generation (top), serial proces-
sors, began in the 1940s with the first electronic digital
computers and ended in the early 1960s. Serial proces-
sors fetch and execute each instruction before going
to the next. The second generation was distinguished
by pipelining and similar methods for overlapping
instruction execution. IBM Stretch was a precursor of
this generation, and the CDC 6600 was probably the
first to achieve commercial success. The 6600 was fol-
lowed shortly by pipelined processors in IBM main-
frames. Second-generation microarchitectures using
pipelining were the norm for high-performance pro-
cessing until the late 1980s. 

The third and current generation is characterized
by superscalar processors, which first appeared in
commercially available processors in the late 1980s.
Out-of-order instruction execution also became wide-
spread, though it was pioneered by a second-genera-
tion machine, the IBM 360/91. Both superscalar and
out-of-order execution processors are still widely
used.

For higher performance, there will likely be a tran-
sition to a fourth generation during the next decade.
As Figure 1 shows, high-performance processors of
the next generation will be composed of multiple
superscalar pipelines, with some higher level control
that dispatches groups of instructions to the individ-

Trace processors rely on hierarchy, replication, and prediction to
dramatically increase the execution speed of ordinary sequential
programs. The authors describe some of the ways these processors
will meet future technology demands.
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ual superscalar pipes. This organization will solve the
communication scalability problem of very wide issue
superscalar processors while retaining a high clock
rate and exploiting higher instruction-level paral-
lelism.

Technology drivers
Beyond simple transistor count, we see processor

technology being driven by high wire delays, and chip
design and test cost.

Wire delays. Wire delays will soon dominate gate
delays.2 Basically, short wire delays have historically
gone down quadratically as wire lengths shrink; how-
ever, physical limitations in metal wiring will reduce
this to a linear improvement. Long wires, where
remote communication delays dominate, will see lit-
tle or no overall improvement in delays.

To compensate for high relative wire delays, a design
must be partitioned in a way that maximizes the local
communication of data values. Designers can proba-
bly best accomplish this by dividing the microarchitec-
ture into multiple processing elements, each no larger
than today’s superscalar processors. Coordinating these
processing elements to act as a single, unified proces-
sor will require an additional level of microarchitecture
hierarchy for both control (distribution of instructions)
and data (for communicating values among the pro-
cessing elements).

Chip design and test. If trends continue, the cost
and time to design and test a chip will dominate time
to market and overall manufacturing time and cost.
A new chip technology is developed every two to
three years. To be competitive, microprocessor com-
panies must have a design completed and verified
when a new chip technology is ready to go into pro-
duction. 

To keep design and test costs manageable, design-

ers are likely to create subsystems similar in com-
plexity to today’s superscalar processors and to com-
bine replicated subsystems into a full processor.
RAM-based devices for enhancing performance apply
replication at a lower level, for example, in caches and
prediction tables.

Instruction-level parallelism
As we mentioned, each new generation of microar-

chitectures strives to increase performance through
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Why Large Uniprocessors?
There are primarily three approaches to

dealing with very large numbers of tran-
sistors on a chip: 

• Put a multiprocessor on a single chip.
• Integrate more of the computer on a

chip: the processor, DRAM, and
parts of the I/O subsystem.

• Build a large uniprocessor.

We favor the third approach, although
the other two are important for some
classes of applications and should continue
to be explored. Both follow the well-estab-
lished trend toward higher levels of system

integration, and each has its pros and cons.
A tightly integrated single-chip multi-

processor, for example, will have low
interprocessor communication delays.
However, it will not solve the decades-old
problem of how to develop parallel gen-
eral-purpose applications.

Manufacturers are already announcing
products that take the second approach,
and for some applications—especially
embedded applications—this approach
clearly has significant cost advantages. For
future high-performance systems, how-
ever, even a billion transistors will not be
enough to hold the main memory
required, and a significant number of the

transistors will still have to be directed
toward higher processor performance.

Thus, for high-performance computing,
we favor building large uniprocessors.
This also follows a well-established trend:
that of continually improving processor
organization to enhance ordinary single
program performance—a trend that the
computer industry has come to depend on.
As argued in 1967 by Gene Amdahl (in his
famous “Amdahl’s Law” talk), a large,
powerful uniprocessor provides speedup
on virtually every program. Furthermore,
multiple uniprocessors of the type we envi-
sion could eventually be put on a chip or
be combined with DRAM.

(a)

(b)

(c)

(d)

Figure 1. Four processor generations: (a) serial, (b) pipelined,
(c) superscalar, and (d) fourth generation. The fourth-genera-
tion processor is likely to use hierarchy and replication to
greatly increase the execution speed of sequential programs. 
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lelism must have a large instruction window, and
the instructions in it must be useful—not on a
mispredicted branch path, for example.

• Dynamically partition hierarchical parallelism.
If processors are to be built around replication
and hierarchy, control hardware must be able to
allocate parts of a program to the replicated units
in a way that enhances parallelism. The hardware
should also be able to do this dynamically in a
way that is transparent to the software. The
processor should be able to quickly scan the pro-
gram in large steps, allocating many instructions
in each step to a replicated unit.

• Incorporate speculation for both control and
data. Control flow speculation in the form of
branch prediction is already an important feature
of superscalar processors and will doubtless
remain so. In addition, dealing with data depen-
dences is likely to become an important part of
future processor microarchitectures. Other forms
of speculation are also likely to become impor-
tant; for example, speculation that deals with
memory addressing hazards.

We believe the trace processing paradigm meets all
these goals and will become a widely used fourth-gen-
eration microarchitecture. Figure 3 depicts the major
components of a trace processor. It incorporates par-
allel processing elements with hierarchical control
and communication. Instruction fetch hardware
unwinds programs into traces, each of which may
have eight to 32 instructions as well as embedded,
predicted conditional branches. The traces are placed
in a trace cache,4 and a trace fetch unit subsequently
reads traces from the trace cache and parcels them
out to the parallel processing elements. Thus, the trace
becomes the basic execution unit throughout the

Fetch Decode Rename Register
file Bypass Data

cache
Instruction

window
Wakeup+

select

Figure 2. Instruction flow through a typical superscalar pipeline. The fetch unit reads multiple instructions every cycle from the instruction cache (not
shown). The next pipe stage decodes instructions and renames their registers so that only true register data dependences remain. Dispatch logic
routes renamed instructions into a set of buffers, collectively referred to as the instruction window, where they wait for their source operands and the
appropriate functional unit to become available. Wakeup logic associated with the instruction window detects when an instruction’s source operands
are ready; select logic chooses from among the ready instructions and issues instructions to the appropriate functional units. Instructions fetch source
operands from the register file, or they are bypassed from earlier instructions in the pipeline.

support for a higher degree of instruction-level par-
allelism. A typical processor today, as shown in
Figure 2, can issue four to six instructions per clock
cycle. Parallelism in the instruction stream is
exploited by performing different phases of instruc-
tion processing in an overlapped fashion (pipelin-
ing), and by issuing and executing multiple
instructions in parallel (superscalar execution).

As designers seek higher degrees of instruction-level
parallelism, the logic and wiring complexity for several
parts of the superscalar pipeline increase, making delay
paths longer. A recent study3 looked at the delays of
key pipelined components as superscalar processors
achieve higher parallelism and as technology moves to
smaller features. The study shows that for a given fea-
ture size, instruction-issue logic moderately increases
delays for higher degrees of instruction-level paral-
lelism. Reducing feature size decreases the delays, but
they are likely to remain an important design consid-
eration because of faster clock cycles. What really
stands out are bypass delays: the complexity of bypass
paths (long wires) grows quadratically with the num-
ber of functional units required to support higher
instruction-level parallelism. This is significant because
as we described earlier, wire delays are not likely to
scale well for smaller features, so bypass delays will
become critical.

WHY TRACE PROCESSORS?
These requirements for a fourth generation trans-

late into three major design goals:
• Make parallel instructions more visible. The

hardware can exploit parallelism only by simul-
taneously issuing instructions from the set of
instructions visible to the issue hardware, the
instruction window in Figure 2. A processor that
attains a high degree of instruction-level paral-
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Figure 3. Architecture of
the trace processor. If
each processing
element issues four
instructions per cycle,
the four-element system
shown can achieve an
aggregate performance
of 16 instructions per
cycle.

processor. By exploiting the characteristics of traces
and frequently reusing them, we can build mecha-
nisms that support a peak throughput rate of one
trace per clock cycle and simultaneously maintain a
fast clock cycle.

The trace processor is similar to the multiscalar par-
adigm developed by Guri Sohi, which he describes in
the sidebar “Multiscalar: Another Fourth-Generation
Processor.” Both paradigms use multiple superscalar
pipelines and a level of control hierarchy. The trace
processor has several key differences, however. The most
significant is its use of hardware-generated dynamic
traces rather than compiler-generated static tasks.

Instruction preprocessing
Instruction preprocessing is an important step in

lifting processing from individual instructions to
traces. A trace cache miss causes a trace to be built
through conventional instruction fetching with branch
prediction. Blocks of instructions are preprocessed
before being put in the trace cache, which greatly sim-
plifies processing after they are fetched. Preprocessing
can include capturing data dependence relationships,
combining and reordering instructions, or determin-
ing instruction resource requirements5—all of which
can be reused. To support precise interrupts, infor-
mation about the original instruction order must also
be saved with the trace.

Trace caches
A single entry in the trace cache holds an entire

trace. The trace cache is indexed using the next-
address field of the previously fetched trace combined
with prediction information returned by the trace
predictor. Thus, an entire trace consisting of multi-
ple basic blocks is fetched in one clock cycle, with-
out the need for multiple cache lookups; multiported
caches; or complicated and time-consuming mask,
alignment, and concatenation operations on multi-
ple cache blocks. Such logic is moved off the critical
path to the trace construction hardware.

Next-trace prediction
Because traces are the basic unit for fetching and

execution, control flow prediction is moved up to the
trace level. Next-trace prediction must be able to pre-
dict multiple branches per cycle, either explicitly or
implicitly—we favor the implicit approach. Work
with multiscalar machines6 shows that traces can be
predicted accurately on the basis of the immediately
preceding trace sequence.

Instruction dispatch
During the dispatch phase, instructions move from

the trace cache to the instruction buffers in the pro-
cessing elements. Only intertrace dependence check-
ing and register renaming are required. The dispatch
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Multiscalar: Another Fourth-Generation Processor

Guri Sohi, University of Wisconsin-Madison

The multiscalar paradigm first appeared about 1990 as a par-
adigm for a circa 2000 processor. The name came from its struc-
ture: the computing engine is a collection of sequential (or
scalar) processors that cooperate in executing a sequential pro-
gram.1

A conventional superscalar processor sequences through a sta-
tic program to create a single dynamic window of instructions,
schedules instructions for execution from this window, and com-
municates instruction results to other waiting instructions. The
multiscalar processor does all of this but in a more powerful,
decentralized manner.

Interoperation communication can be carried out more effi-
ciently if the total instruction window is broken into sub-
windows, with (frequent) intrawindow and (less frequent) inter-
window communication. Likewise, instruction scheduling
becomes more efficient if the overall schedule is treated as an
ensemble of (several) smaller schedules, where the smaller sched-
ule is the schedule in a subwindow. 

This “splitting” is the reason for multiscalar’s earlier moniker:
the Expandable Split Window paradigm. The remaining issue is
how to improve the sequencing process. Here multiscalar uses
multiple sequencers to sequence through a sequential program—
each sequencer (speculatively) sequences through (a portion of)
the program that results in a portion (subwindow) of the instruc-
tion window; collectively the multiple sequencers capture a por-
tion of the dynamic instruction stream.

Figure A1 shows a static program represented as a task flow
graph, in which each task is a collection of instructions, for exam-
ple, part of a (large) basic block, a basic block, a collection of
basic blocks, a loop iteration, an entire loop, and so on. A task
sequencer (speculatively) sequences through the program a task
at a time, assigning the task to a processing element (PE). The
processing element unravels the task to determine the dynamic
instructions to be executed, and executes them. 

Figure A2 shows the dynamic instruction stream divided into
task-sized steps. The four tasks A, B, D, and E are assigned to
processing elements 0 through 3.

To execute an instruction, the processor must establish depen-
dence relationships. The interesting case is dependences on
instructions in (predecessor) tasks that are currently executing.
For register data, a create mask is used. Bits in the create mask
correspond to each of the logical registers; a bit is set to one if the
register is potentially written by the task. The accumulation of
the predecessor tasks’ create masks provides the necessary reg-
ister dependence information—the tasks that generate these val-
ues will eventually send them to later tasks. For memory
operations, the situation is more involved. When a processing
element is ready to execute a load, the processing element does
not even know if previous tasks have stores, let alone stores to
a given memory location. Here multiscalar resorts to data depen-
dence speculation—speculating that a load does not depend on

instructions executing in predecessor tasks. An address resolu-
tion buffer also checks that the speculation was correct, squash-
ing instructions if it is not. Thus the multiscalar paradigm has
at least two forms of speculation: control speculation, which the
task sequencer uses, and data dependence speculation, which
each processor performs. It could also use other forms of spec-
ulation, such as data value speculation, to alleviate intertask
dependences.

Information that allows a sequential program to run in a
(speculatively) parallel fashion (such as task flow information
and register masks) can be implemented in a variety of ways: it
could reside within the instructions of the static program, or
could be computed dynamically and reside off to the side to
allow a higher degree of compatibility with existing instruction
sets and binaries.

Reference
1. G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar Proces-
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Figure A. Multiscalar task processing. The multiscalar paradigm divides
a program, represented by (1) its task flow graph into (2)  a dynamic
instruction stream, sequential tasks executed in parallel by four
processing elements (PE 0, 1, 2, and 3). Data values are for both 
memory and registers. The dashed arrow in (1) represents the
execution path.



logic may also predict a trace’s input data values; the
trace’s execution is based on data speculation. Data
prediction at the trace level tends to decouple the
traces and enhance instruction-level parallelism.

Hierarchical registers
Even though the trace processor uses a conventional

set of logical registers, physical registers are divided
into local and global sets.7 The hierarchical organiza-
tion of registers allows small register files with fast
access times and fewer ports per file. The trace dis-
patcher remaps the trace’s source and destination reg-
isters to the global registers without the need for
intratrace dependence checking. The dispatcher maps
local registers with reusable mappings based on the
intratrace dependences detected during instruction
preprocessing. Typically dispatch logic can remap a
16-instruction trace line using register rename logic
as complex as that used by a conventional four-way
superscalar processor.

Data value prediction
Successfully predicting a trace’s input data values

makes the trace data independent, allowing the trace
to execute immediately and in parallel with any other
trace. The development of data value prediction is
just beginning. Initial work8 focused on constant
value predictions—many instructions produce the
same value repeatedly. We are currently attempting
to characterize the potential accuracy of data value
prediction. Early results, not yet published, suggest
that sophisticated methods can predict data values
with up to 80 percent accuracy for fairly irregular
integer programs such as the gcc compiler. Data value
prediction is a good example of using RAM, in the
form of prediction tables, to enhance processor per-
formance.

Instruction issuing
Each conventional superscalar processing element

issues a small number of instructions from its trace
every clock cycle, thus distributing issue operations
and avoiding a centralized control bottleneck. The
expected parallelism within a single trace is suitable
for execution in a modest superscalar unit. As multi-
ple processing elements issue instructions in parallel,
both intratrace and intertrace parallelism are
exploited, which leads to large increases in overall
instruction-level parallelism.

Result forwarding, register file access
Because the processing elements and register files

are distributed, so is the communication of register
data. The relatively simple bypass paths within a unit
allow local result forwarding in a single cycle—typi-
cal of today’s superscalar processors. Global paths are

used for communicating global register results
between processing units. The global bypass paths are
likely to require multiple clock cycles. Bypass paths
with this structure are already starting to appear in
advanced superscalar processors.9

Memory systems
Memory systems for fourth-generation processors

are an important topic unto themselves. Clearly, mem-
ory systems for the trace processor will have to pro-
vide very high bandwidth. Distributed, multiported
caches will have to supply data to the processor’s mul-
tiple processing elements. This cache system will prob-
ably have some characteristics in common with
today’s small multiprocessor systems. In particular,
designers will have to maintain coherence among dis-
tributed caches. A large, interleaved cache system is
also possible, although designers will have to deal with
the additional latency in such systems. 

Another very important issue is the parallel resolu-
tion of memory addressing hazards. Each processing
element in the trace processor generates a stream of load
and store requests to memory. Moreover, these address
streams are generated speculatively and out-of-order.
The hardware to sort out the address streams and make
sure that all memory locations are accessed in correct
order will have to be fairly sophisticated. The address
resolution buffer is a proposed solution for multiscalar
processors.10 The ARB may also be useful for other
fourth-generation processors. As initially proposed, it
is a centralized device, separate from data caches.
However, it is likely to evolve to distributed mechanisms
that merge address resolution and data caching.

B ecause new generations of microarchitecture are
so widely separated in time, it is difficult to look
ahead to the next generation early in the life-

time of the current one. However, as a generation
becomes mature and future hardware technologies
are better defined, the next generation starts to
become visible. We are at that stage now. The last
time we were in a similar position was almost 20
years ago—when superscalar processors began to be
discussed. Once again, it is time to lay the ground-
work for many more years of high-performance
processor development.

We believe that the next-generation microarchitec-
ture will be able to execute 16 or more instructions per
cycle while processing ordinary binary programs. But
to achieve this level of parallelism without negatively
affecting the clock cycle, the processor microarchitec-
ture must rely heavily on replication and hierarchy. We
have proposed one such architecture. Regardless of
the details of the fourth-generation microarchitecture,
many supporting microarchitectural technologies need
to be developed—some of which will also be useful for

The trace
processing
paradigm
will become
a widely
used fourth-
generation
architecture.
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near-term implementations of superscalar processors.
And whatever the outcome, the next decade of proces-
sor development, driven by the need for high perfor-
mance and enabled by huge chip transistor budgets,
promises to be an exciting time. ❖
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