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A utomatic programming has been 
a goal of computer science and 
artificial intelligence since the 

first programmer came face to face with 
the difficulties of programming. As befits 
such a long-term goal, it has been a mov- 
ing target-constantly shifting to reflect 
increasing expectations. 

Much of what was originally conceived 
of as automatic programming was 
achieved long ago (see the sidebar on its 
status in 1958). On theother hand, current 
expectations regarding its potential are 
often based on an idealized view of reality 
and are probably unachievable. Neverthe- 
less, a number of important developments 
are appearing in research efforts and in 
commercially available systems. 

Automatic programming 
myths and realities 

The “cocktail party” description of the 
potential of automatic programming runs 
something like this: 

There will be no more program- 
ming. The end user, who only 
needs to know about the ipplica- 
tion domain, will write a brief 
requirement for what is wanted. 
The automatic programming sys- 
tem, which only needs to know 
about programming, will produce 
an efficient program satisfying the 

The “cocktail party” 
description of 

automatic 
programming is 

unachievable because 
it is based on faulty 

assumptions; 
nevertheless, we will 

see continued 
evolutionary progress. 

requirement. Automatic pro- 
gramming systems will have three 
key features: They will be end-user 
oriented, communicating directly 
with end users; they will be general 
purpose, working as well in one 
domain as in another; and they 
will be fully automatic, requiring 
no human assistance. 

Although this description is attractive, it 
is based on a number of faulty 
assumptions. 

Myth: End-user-oriented automatic 
programming systems do not need domain 
knowledge. It is no more possible for end 
users to communicate effectively with an 
automatic programming system that 
knows nothing about the application 
domain than it is for them to communicate 
effectively with a human programmer who 
knows nothing about the application 
domain. Rather, the path from an end 
user’s needs to a program involves a 
bradual progression from a description 
that can be understood only in the context 
of the domain to  a description that can be 
understood without relying on auxiliary 
knowledge (see the sidebar on agents in the 
programming process). There is no point 
at which someone who knows nothing 
about programming communicates 
directly with someone who knows nothing 
about the application domain. 

Reality: End-user-oriented automatic 
programming systems must be domain 
experts. In particular, it is not possible to 
describe something briefly unless the 
hearer knows at least as much about the 
domain as the speaker does and can there- 
fore understand the words and fill in what 
is left out. (For a detailed discussion of the 
necessity of domain knowledge in auto- 
matic programming, see Barstow.’) 

I .  
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Myth: End-user-oriented, general- 
purpose, fully automatic programming is 
possible. A corollary of the need for 
domain knowledge is that such an auto- 
matic programming system would have to 
be expert in every application domain. 
Unfortunately, artificial intelligence is 
nowhere near supporting this superhuman 
level of performance. 

Reality: Given the pragmatic impossi- 
bility of simultaneously supporting all 
three features, it is not surprising that all 
current approaches to automatic program- 
ming focus on two of the features at the 
expense of the third. This has given rise to 
the following three approaches to auto- 
matic programming, typified by the fea- 
ture given up: 

(1) Bottom up. This approach sacrifices 
end-user orientation. It starts at the 
programmer’s level and tries to push 
the threshold of automation 
upward. In the past, the threshold 
was raised from machine-level to 
high-level languages. The current 
goal is to raise the threshold further 
to so-called very high level lan- 
guages. 

(2) Narrow domain. This approach 
sacrifices being general purpose. 
Focusing on a narrow enough 
domain makes it feasible right now 
to construct a fully automatic pro- 
gram generator that communicates 
directly with end users. This 
approach is advancing to cover 
wider domains. 

(3) Assistant. This approach sacrifices 
full automation. Instead, it seeks to 
assist in various aspects of program- 
ming. With current technology, this 
approach is represented by pro- 
gramming environments consisting 
of collections of tools such as intel- 
ligent editors, on-line documenta- 
tion aids, and program analyzers. 
The goal here is to improve the inte- 
gration between tools and the level 
of assistance provided by individual 
tools. 

Myth: Requirements can be complete. 
Since the cocktail party description of 
automatic programming assumes that the 
only point of contact between the end user 
and the system is a requirement, this 
requirement must be complete. In the 
interest of producing an efficient program, 
the automatic programming system is 
expected to take full advantage of every 
degree of freedom allowed by the require- 
ment. The completeness of the require- 
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ment guarantees that anything the by likening requirements to legal con- 
automatic programming system produces tracts. However, any lawyer will tell you 
will be acceDtable to the end user. that contracts do not work that way. Con- 

ing in 19 
“automatic programming systems” known to ACM’s 

cifies the computer each system runs on and indi- 
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Agents in the programming process 

Suppose a large company needs a 
new accounting system. This figure 
shows the principal agents that typi- 
cally would be involved. The bars on 
the right indicate that near the top of 
the figure, accounting knowledge 
plays the crucial role, while program- 
ming knowledge dominates toward 
the bottom. 

The manager at the top of the fig- 
ure quite likely has only a rudimen- 
tary knowledge of accounting. The 
manager’s job is to identify a need 
and initiate the programming pro- 
cess by creating a brief, vague 
requirement. Use of the term “vague” 
here highlights the fact that the only 
way this initial requirement can suc- 
ceed in being brief is for it also to be 
incomplete, ambiguous, and/or 
inconsistent. 

accounting expert, whose job is to 
take the manager’s vague require- 
ment and create a detailed require- 
ment. A key feature of this 
requirement is that it is couched in 
the technical vocabulary of account- 
ing and is intended for evaluation by 
other accounting experts. The 
accounting expert’s knowledge of 
programming does not have to 
extend much beyond basic notions 
of feasibility. 

The next agent in the process is an 

The third agent in the process is 
some sort of systems analyst, whose 
job is to define the basic architecture 
of the program and translate the 
requirement into a detailed specifica- 
tion. In contrast to the requirement, 
the specification is couched in the 
technical vocabulary of programming 
rather than accounting. To perform 
this transformation, the systems ana- 
lyst must have a considerable under- 
standing of accounting-in addition to 
an extensive knowledge of pro- 
gramming. 

The final agent is a programmer, 
n 
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who must produce code in a high- 
level language on the basis of the 
detailed specification. The program- 
mer does not have to know very 
much about accounting. However, it 
is very unlikely that the accounting 
system will actually work if the pro- 
grammer knows nothing about 
accounting. 

Although not shown in the figure, 
agents for validation, testing, 
documentation, and modification are 
required as well. To do their jobs, 
these agents also need significant 
domain knowledge. 

Domain 
knowledge 

Programming 
knowledge 

a good-faith effort to work toward a com- 
mon end. If good faith breaks down, the 
parties can always cheat without violating 
the “letter” of the contract. 

The problem with requirements (and 
contracts) is that they cannot be complete. 
No matter how trivial the situation, there 
is no practical limit to what must be said 
when trying to pin down a potential 
adversary. 

Consider, for example, specifying a 
controller for an automated teller 
machine. When describing the withdrawal 
operation, it is easy enough to say that 
after inserting the bank card the customer 
should enter a password, select an 
account, and then select an amount of cash 
which the machine then dispenses. How- 
ever, this is nowhere near complete. 

To start with, a lot of details are miss- 
ing regarding the user interface: What 
kinds of directions are displayed to the cus- 
tomer? How is the customer to select 

among various accounts? What kind of 
acknowledgment is produced? To be com- 
plete, these details must include the layout 
of every screen and printout, or at least a 
set of criteria for judging the acceptabil- 
ity of these layouts. 

Even after the interface details are all 
specified, the requirement is still far from 
complete. For example, consider just the 
operation of checking the customer’s pass- 
word. What are passwords to be compared 
against? If this involves a central reposi- 
tory of password information, how is this 
to be protected against potential fraud 
within the bank? What kind of response 
time is required? Is anything to be done to 
prevent possible tampering with bank 
cards? 

Looking deeper, a truly complete 
requirement would have to list every pos- 
sible error that could occur-in the CUS-- 

tomer’s input, the teller machine, the 
central bank computer, the communica- 

tion lines-and state exactly how each 
error should be handled. 
‘ . Beyond what is computed, the user 
undoubtedly wants a reasonably efficient 
program. This could be specified as max- 
imum limits on space and time. However, 
what is really desired is for the imple- 
menter to make a good-faith effort to 
make the program as efficient as possible. 
Further, the code produced should be easy 
to read and modify, and well documented. 

Finally, the end user also cares about the 
cost of implementing the program and 
how long implementation will take. This 
implies a need for trade-offs, particularly 
when it comes to the last few issues men- 
tioned above. Thus, it is very difficult- 
if not impossible-to make complete state- 
ments about these issues. 

Reality: At best, requirements are only 
approximations. Instead of serving as a 
,defensive measure between adversaries, 
requirements should serve as a tool for 
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a good-f&h effort tocreate a reasonable 
program, many of the points above can go Automatic 
unsaid. programming systems Just like human programmers, an auto- 
matic programming system must make a of the future will be 
good-faith effort to satisfy the spirit of the 
requirements. The system must be oriented 
toward making reasonable assumptions 
about unspecified properties, rather than 
trying to minimally satisfy specified 
properties. This observation reinforces the 
need for domain knowledge as part of an 
automatic programming system. 

more like vacuum 
cleanem than like 

selfaleaning ovens. 

Myth: Programming is a serial process. 
In many ways, the worst aspect of the 
cocktail party description of automatic 
programming is that it perpetuates the 
myth that creating a program is a two-step 
process: First, an end user creates a 
requirement; second, the automatic pro- 
gramming system makes a program. This 
view is just as impractical in the context of 
an automatic programming system as it is 
in human-based programming. 

First of all, given the approximate 
nature of requirements, a considerable 
amount of back-and-forth communica- 
tion is required to convey the end user’s 
full intent. Second, users typically start the 
programming process with only a vague 
idea of what they want, and they need sig- 
nificant feedback to flesh out their ideas 
and determine the exact requirement. 
Also, what end users want today is never 
the same as what they want tomorrow. 
Third, users do not want programmers to 
follow requirements blindly. If problems 
arise, they want advice. For example, the 
programmer should tell the user if a slight 
relaxation in the requirement would allow 
a much more efficient algorithm to be 
used. 

Reality: Programming is an iterative 
process featuring continual dialogue 
between end user and programmer. The 
desired requirement evolves on the basis of 
prototypes and initial versions of the 
system. 

The inherently iterative nature of pro- 
gramming has two important implications 
for automatic programming. First, just as 
in nonautomatic programming, the focus 
of activity will be on changing require- 
ments as much as on implementing them. 
Thus, there will be no reduction in the need 
for regression testing and other techniques 
for managing evolution. 

Second, to carry on a dialogue with the 
user, automatic programming systems will 

have to explain what they have done and 
why. In particular, they will need to 
explain the assumptions thty have intro- 
duced into a requirement, so that users can 
debug those assumptions. 

Myth: There will be no more program- 
ming. There will certainly be many differ- 
ences between the input to future 
automatic programming systems and what 
is currently called a program. However, 
programming is best typified not by what 
programs are like but by what program- 
ming tasks are like. Undoubtedly these 
new inputs will still have to be carefully 
crafted, debugged, and maintained 
according to changing needs. Whether or 
not one chooses to call these inputs pro- 
grams, the tasks associated with them will 
be strongly reminiscent of programming. 

Reality: End users will become 
programmers. As an example of this 
phenomenon, consider spreadsheet pro- 
grams. When spreadsheets first appeared, 
they were heralded as a way to let users get 
their work done without having to deal 
with programmers or learn programming. 
Spreadsheets have succeeded admirably in 
letting users get results by themselves. 
However, maintaining a spreadsheet over 
time differs very little from maintaining a 
program. The only real difference is that 
a spreadsheet is a concise domain-specific 
interface that makes it remarkably easy to 
write certain kinds of programs and 
startlingly hard to write other kinds of 
programs. 

Myth: There will be no more program- 
ming in the large. Even if we accept that 
programming will be around forever, we 
might well hope that by continuing the 
trend of writing programs more com- 
pactly, automatic programming will con- 

vert all programming into programming in 
the small. 

Unfortunately, this dream overlooks 
software’s extreme elasticity of demand. 
Most of the productivity improvements 
introduced by automatic programming 
will almost certainly be used to attack 
applications that are enormous rather than 
merely huge. 

Reality: We are not likely to ever settle 
for only those application systems that can 
be created by a few people. As a result, 
there will be no lessening of the need for 
version control, management aids, and all 
the other accoutrements of cooperative 
work and programming in the large. 

A down-to-earth perspective. The auto- 
matic programming systems of the future 
will be more like vacuum cleaners than like 
self-cleaning ovens. With a self-cleaning 
oven, all you have to do is decide that you 
want the oven cleaned and push a button. 
With vacuum cleaners, your productivity 
is greatly enhanced, but you still have a lot 
of work to do. 

Our discussion of the fundamental tech- 
nical issues in automatic programming will 
be divided according to three questions 
that must be addressed in the design of any 
automatic programming system: What 
does the user see? How does the system 
work? What does the system know? 

We will also review the most recent 
trends in currently available automated 
programming tools. Under the rubric of 
computer-aided software engineering, or 
CASE, these tools are following the 
bottom-up, narrow-domain, and assistant 
approaches to automatic programming. 

Finally, we offer ideas on the kinds of 
toobithat will soon be available. CASE 
tools in particular are poised to emerge 
from a somewhat rocky adolescence into 
maturity. In this regard, we observe that 
the path toward automatic programming 
is impeded as much by the need for 
managerial change as by the need for tech- 
nical advances. 

What does the user see? 
From the user’s perspective, the most 

prominent aspect of an automatic pro- 
gramming system is the language used to 
communicate with it. The range of possi- 
bilities is illustrated in the accompanying 
sidebar on input languages and is further 
discussed below. 

Natural language. Because they are 
familiar, natural languages such as English 
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Potential inputs to an automatic programming system 
The figures in this sidebar illustrate the wide variety of inputs an automatic programming system might support. Each 

example is a specification for a program that determines the value of an octal number represented in a string. A Pascal 
implementation is included that illustrates what the output of an automatic programming system might look like. Note that 
no single example can illustrate all of the important issues in selecting an input medium. 

The function EvalOctal is a recog- 
nizer that determines whether a 
given string contains an octal num- 
ber optionally surrounded by 
blanks. If this is the case, the deci- 
mal value of the number is returned. 
Otherwise -1 is returned. 

A natural language (English). 

A special-purpose language 
(state transition diagrams). 

Examples (input/output pairs). 

A logical formalism 
(predicate calculus). 

a = “  ‘0’ 5 a 5 ’7’ 
V := 8*V+Digit(a) 

a = “  

n n n 

a = EOF 

Other a 
return -1 

I 
input: S 

precondition : String(S) 
output: v 

postcondition : Integer( V )  A (Valid(S) -* Value(S, V ) )  A (-Valid@) + V =  -1 1 

where: 

Valid(S) = (Vi 1 si< IS1 - S(i)€{’ ’,’1’,’2’,’3’,’4’,’5’,’6’,’7’}) A 
( 3 ;  1 <is IS1 - S(i)+’ ’) A 
( ~ 3 i j k  1 s i < j < k s ( S I  A S(i)+’ ’ A S ( j ) = ’  ’ A S ( k ) + ’  ’) 

Value(& V )  = Vij(l~i<js[Sl A S( i )+ ’  ’ A S(j) ,+,’  ’ A ( j = l S l  v Sci+l)=’ 7) - (Digit(S(i)) =Div(Rem( V ,  8’-‘-’), 8’-’-’) 
A ( ( i = l  VS( i -1 )= ’  ’)- V<8’-’)) 

procedure EvalOctal(S); 
if (forall C in S I C in { ’  ’,’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’}) and 

(exists C in S I C / = ’ ’) and 
(not exists Ci in S(i), Cj in S(j), Ck in S(k) 

1 i < j a n d j < k a n d C i / = ’  ’ a n d C j = ’  ’ a n d C k / = ’  ’) 
then Digits : = [abs C - abs ’0’: C in S I C/ = ’ ’I; 

else return - 1 ; 
return + /[D*8**(#Digits - i): D in Digits(i)]; 

end if; 
end procedure EvalOctal; 

A very high level language (SETL). 

A high-level language (Pascal). 

function EvalOctal (var S array [M..N: Integer] of Char): 

{End of input string flagged with chr(O).} 

begin 

Integer ; 

var J ,  V: Integer; 

J :=  M; 
v :=  -1; 
while S[J]=’ ’ do J : = J +  1; 
if S[J] < > chr(0) then begin 

v :=  0; 
while (’0’ < = S[J]) and (S[J] < = ’7’) do begin 

V : = 8*V + ord(S[J]) - ord(’0’); 

end; 
J :=  J + l  

while S[J]=’ ’ do J :=  J + 1 ;  
if S[J]< >chr(O) then V : = -1 
end; 

EvalOctal : = V 
end 
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are an attractive choice for communica- 
tion between end users and an automatic 
programming system. Three features that 
make natural language attractive are 
vocabulary, informality, and syntax. As 
discussed later, the existing vocabulary of 
thousands of predefined words contrib- 
utes most to making natural language an 
efficient communication medium. 

Informality (for example, the possibil- 
ity of a statement’s being ambiguous, 
incomplete, contradictory, and/or inac- 
curate) is also very important. In fact, it is 
essential to a powerful strategy for dealing 
with complexity: Start with an almost- 
right description and incrementally 
modify it until it is acceptable. An interest- 
ing research direction is the design of arti- 
ficial languages that intentionally allow 
informality. 

Syntax is the least important feature of 
natural language. Natural syntax is con- 
venient because it is familiar. However, it 
is of relatively little value unless the other 
features are supported as well. 

Unfortunately, enabling machines to 
converse in natural language is way 
beyond the current capabilities of artificial 
intelligence. As a result, natural language 
input-although an active area of inquiry 
in its own right-is not a major topic in 
current automatic programming research. 

Special-purpose languages. Even when 
people communicate among themselves, 
natural language is not always the lan- 
guage of choice. For example, many appli- 
cation areas have specialized symbolic or 
graphical languages associated with them 
(mathematical formulas and circuit dia- 
grams, for instance) that experts routinely 
use in preference to natural language. 

Many kinds of special-purpose lan- 
guages can be supported in straightfor- 
ward ways, as long as their focus is 
sufficiently narrow. A particularly suc- 
cessful example is the so-called “what you 
see is what you get” interfaces. Screen 
painters allow end users to specify the lay- 
out (and some of the semantics) of a data- 
entry-and-retrieval program by simply 
making a picture of how the screen should 
look. Then a code generator automatically 
writes the code to drive the terminal and 
access the database. 

Unfortunately, special-purpose lan- 
guages have a fundamental problem: They 
are essentially useless outside their 
domains of applicability. This brings up a 
key unsolved problem-namely, how to 
combine several special-purpose languages 
or a special-purpose language with a 

general-purpose one. 
Almost every current system that sup- 

ports a special-purpose language follows 
the narrow-domain approach to auto- 
matic programming, restricting itself to 
situations where the special-purpose lan- 
guage is appropriate. Even when multiple 
special-purpose input languages are sup- 
ported,* the user can only combine the 
languages in simple ways. Much more 
work is necessary before special-purpose 
languages can reach their full potential as 
part of the interface to general-purpose 
systems. 

Examples. An attractive idea, pursued 
with some vigor in the early days of auto- 
matic programming, is to specify a pro- 
gram via examples of its behavior. The 
appeal of this approach is that non- 
programmers are familiar with examples 
as a communication techni8ue, just as they 
are with natural and special-purpose lan- 
guages. Furthermore, collections of exam- 
ples are easy to understand and modify. 

Unfortunately, except for toy problems, 
RO one has been able to make an example- 
based automatic programming system 
work, and there is reason to believe this 
failure is fundamental. It is trivial, but use- 
less, to construct a program that duplicates 
a particular set of examples and does noth- 
ing else. What is desired is a program that 
operates on whole classes of input data in 
a manner “analogous to” the examples. 
However, experience has shown that no 
matter how many examples are provided, 
there is no way to ensure that the generali- 
zation derived will be correct-without 
placing severe constraints on the domain 
of possible generalizations. 

Logical formalisms. Logic is the most 
powerful (and general) formal description 
language known. As a result, it is reasona- 
ble to suppose that it might make a good 
communication medium between a user 
and an automatic programming system. 

Unfortunately, there are two fun- 
damental barriers to the use of logical for- 
malisms. First, most interesting tasks in 
general logical systems (for example, 
detecting contradictions) are computa- 
tionally intractable (see the discussion of 
deductive methods in the next section). 
Second, complex logical formulas are 
notoriously difficult for most people to 
write and understand. 

Research on logic as a communication 
medium between man and machine is 
being carried out primarily under the 
topics of formal specification languages 

and logic-programming languages. A key 
issue in both of these areas is the introduc- 
tion of extensions and restrictions that ren- 
der logic more tractable to man and 
machine. For example, Prolog3 guaran- 
tees executability of logical descriptions by 
placing strong restrictions on the form of 
expressions. 

Very high level languages. While speci- 
fication languages and logic-programming 
languages essentially extend downward 
from logic, very high level languages build 
upward from current high-level languages. 
Typically, very high level languages add 
powerful abstract data types, such as sets 
and mappings (to allow programmers to 
ignore the details of data structure imple- 
mentation), and a few features of logical 
notation, such as quantification over sets 
(to allow programmers to ignore certain 
kinds of algorithmic detail). 

The archetype of very high level lan- 
guages is SETL.4 More recent very high 
level languages, such as Refine’ and Gist,6 
have added other features-for example, 
constraints and nondeterminism. 

Other communication issues. Beyond 
the topics discussed above, the following 
three general issues apply to any commu- 
nication medium. 

First, a medium should be wide- 
spectrum. The user should be able to 
specify everything from very abstract 
properties to low-level implementation 
advice. This is necessary (at least for the 
foreseeable future) because automatic pro- 
gramming systems cannot operate without 
getting a certain amount of advice at all 
ley& It is desirable for wide-spectrum 
codmunication to be supported in a sin- 
gle coherent formalism. However, in addi- 
tion to a general-purpose wide-spectrum 
language, the ideal automatic program- 
ming system would support a number of 
special-purpose languages. 

Second, because of programming’s 
inherently iterative nature, a medium must 
be able to support a dialogue between the 
user and the automatic programming sys- 
tem. Therefore, serious attention must be 
paid to the language the system is going to 
use when speaking to the user. In addition, 
the input language must be capable of 
expressing “metalevel” information, that 
is. information about changes to the state 
of knowledge. One can imagine how nat- 
ural language would serve well as a dia- 
logue medium; however, restricted 
notations, such as very high level lan- 
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guages, are clearly not sufficient by them- 
selves. 

Third, a medium should come with a 
large vocabulary of predefined terms so 
that the system can converse with the user 
at a suitably high level. Given a choice, 
most users would prefer to use an awk- 
ward medium in which almost everything 
they want is already defined, rather than 
an otherwise convenient medium in which 
everything needs to be defined from first 
principles. 

How does the system 
work? 

Automatic programming systems map 
a configuration of domain-specific terms 
(a requirement stated in terms of one of the 
input mediums above) into a configuration 
of implementation-specific terms (a pro- 
gram). Four mechanisms currently being 
pursued as a basis for such systems are 
procedural methods, deductive methods, 
transformational methods, and inspection 
methods. 

Procedural methods. To date, the most 
successful approach has been to simply 
write a special-purpose program that gets 
the right results. For example, most cur- 
rent compilers and program generators are 
essentially procedural in nature, although 
a few use transformations to some extent. 

The big advantage of procedural 
methods is that they let you get off the 
ground fast. It is very seldom difficult to 
support the first few desired features. Fur- 
thermore, you can always (try to) modify 
the code to support any additional feature. 

Unfortunately, as more and more fea- 
tures are added to a procedural system, 
you reach a point of rapidly diminishing 
returns, because the system becomes 
progressively more difficult to modify. As 
a result, it is unlikely that the procedural 
approach can support the broad-coverage 
end-user-oriented automatic program- 
ming systems of the future. 

Deductive methods. The problem of 
synthesizing a program satisfying a given 
specification is formally equivalent to 
finding a constructive proof of the speci- 
fication’s satisfiability . This fundamental 
idea underlies the deductive approach to 
automatic programming.’ In principle, 
any method of automated deduction- 
resolution, natural deduction, reasoning 
about anonymous individuals-can be 
used to support automatic programming. 

Like engineers in 
other disciplines, 

programmers think 
mostly in terms 

of clichds. 

Unfortunately, in practice none of these 
methods is yet able to prove the kinds of 
complex theorems required to synthesize 
programs of realistic size. 

Deduction is basitally a problem of 
searching for an inference path from some 
initial set of facts to a goal fact. The search 
is exponential in nature because at every 
step there are many ways for inference 
rules to be applied to facts. Current deduc- 
tive systems cannot discover complex 
proofs because they are unable to effec- 
tively control the search process. 

To deal with this control problem, 
deductive systems typically must adopt the 
assistant approach-that is, they seek 
advice from the user. Unfortunately, users 
who want to avoid programming probably 
want to avoid theorem proving as well. 

An even more fundamental problem 
with the deductive approaqh is that it is at 
odds with the need for an automatic pro- 
gramming system to make a good-faith 
effort to satisfy the “spirit” of a require- 
ment. For example, the theorem-proving 

programming system is a program written 
in a very high level language. A sequence 
of transformations is applied to convert 
this input into a low-level implementation. 

A transformation has three parts: a pat- 
tern, a set of logical applicability condi- 
tions, and an action procedure. When an 
instance of the pattern is found, the logi- 
cal applicability conditions are checked to 
see whether the transformation should be 
applied. If the applicability conditions are 
satisfied, the action is evaluated to com- 
pute a new section of code, which is used 
to replace the code matched by the pattern. 
Typically, transformations are correctness 
preserving, meaning that the matched code 
and its replacement represent logically 
equivalent computations. 

Two basic kinds of transformations 
exist. Some transformations replace 
specification-like constructs (for example, 
quantification over a set) with conven- 
tional constructs (for example, iteration 
over a list). These transformations encode 
knowledge of how t o  implement 
algorithms and data structures. Other 
transformations perform rearrangements 
and optimizations (for example, moving 
an unchanging computation out of a 
loop), which do not change the level of 
abstraction. In practice, these two kinds of 
transformations are interleaved in long 
sequences, passing through multiple levels 
of abstraction. 

The central feature of transformational 
methods is the transformational rewrite 
cycle. The state of the transformation pro- 
cess is represented as a program in a wide- 
spectrum representation capable of 
expressing both the user’s input and the 
desired result. On each cycle, a transfor- 

process contains no bias toward finding , :mational system selects a transformation 
the proof corresponding to the most effi- 
cient progran, or even a reasonably effi- 
cient program. 

Despite these limitations, deductive 
methods have several advantages. In par- 
ticular, they are very general and quite 
effective, as long as they are limited to 
proving simple theorems. As a result, 
deductive methods are certain to play an 
important role in the automatic program- 
ming systems of the future. The challenge 
is to combine automated deduction with 
other methods so that its inherent limita- 
tions can be avoided. 

Transformational methods. Transfor- 
mational implementation systems* (for 
example, TI6 and PDS? dominate current 
research in automatic programming. In 
this approach, the input to the automatic 

‘and applies it to some place in the pro- 
gram. The cycle continues, accumulating 
the results of longer and longer chains of 
transformations, until some condition is 
satisfied (for example, until there are no 
more very high level constructs). 

In many ways, sequences of transfor- 
mation steps are not that different from 
sequences of proof steps. Therefore, it is 
not surprising that transformational 
implementation systems suffer from essen- 
tially the same control problem as auto- 
matic theorem provers. As a consequence, 
transformational systems must either seek 
advice from the user or place strong res- 
trictions on the kinds of transformations 
that can be used. Unfortunately, advice- 
taking transformational systems are not 
much more satisfactory than advice-taking 
deductive systems and have not yet made 
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it out of the laboratory. However, 
restricted transformational modules can 
be found as components of various com- 
pilers and other systems. 

An interesting aspect of transformation 
sequences is that they usually contain a 
small percentage of key steps (typically 
making decisions about how to implement 
abstractions) interleaved with many small, 
less intuitive steps that set things up and 
move things around. Current research on 
transformational methods is directed 
toward automating the many small steps 
while seeking user advice on the key steps. 

A major strength of transformational 
methods is that they provide a very clear 
representation for certain kinds of pro- 
gramming knowledge. For this reason, 
transformational methods in some form 
are certain to be part of all future auto- 
matic programming systems. 

Inspection methods. Human program- 
mers seldom think only in terms of primi- 
tive elements such as assignments and 
tests. Rather, like engineers in other dis- 
ciplines, they think mostly in terms of 
cliched combinations of elements cor- 
responding to familiar concepts. Succes- 
sive approximation, interrupt-driven 
architecture, and information system are 
examples of cliches spanning the range 
from low-level implementation ideas to 
high-level specification concepts. 

Given a knowledge of cliches, it is pos- 
sible to perform many programming tasks 
by inspection rather than by reasoning 
from first principles. For example, in anal- 
ysis by inspection, properties of a program 
are deduced by recognizing occurrences of 
cliches and referring to their known 
properties. In synthesis by inspection, 
implementation decisions are made by 
recognizing cliches in specifications and 
then choosing among various cliched 
implementations. By using global under- 
standing, inspection methods reduce the 
search-control problems that arise with 
other methods. 

The central feature of inspection 
methods is the codification and use of 
cliches. A cliche has three parts: a skeleton 
that is present in every occurrence of the 
cliche, roles whose contents vary from one 
Occurrence to the next, and constraints on 
what can fill the roles. An essential prop- 
erty of cliches is their interrelationships. 
For example, a cliche may specialize or 
extend another cliche. Algorithmic and 
data structure cliches implement specifica- 
tion cliches. These relationships are the 
driving force behind analysis and synthe- 

ically, transformationally, or in ~ some 
other way, the benefits of automatic pro- 

Benefits of automatic 
programming can be 

traced almost 
exclusively to reuse. 

sis by inspection. 
As with deductive and transformational 

methods, it has not yet been shown that 
inspection methods can be automated 
without advice from the user. However, 
when used with the assistant approach to 
automatic programming, inspection 
methods have an important advantage: A 
shared vocabulary of cliches is a natural 
medium for communicating explanations 
and advice between the system and the 
user. 

Following the assistant approach, the 
Programmer's Apprentice project'0911 has 
demonstrated several aspects of inspection 
methods. For example, given a library of 
cliches, the system can automatically ana- 
lyze a program to identify the algorithms 
used. In addition, programs can be con- 
structed by combining user-selected 
cliches. Current research is directed 
toward automatic selection of some of the 
cliches to use. 

In human programming, inspection 
methods are the most effective approach, 
whenever applicable. However, since 
inspection methods are ultimately based 
on experience, they apply only to the rou- 
tine parts of programming problems. As 
a result, inspection methods must be used 
as part of a hybrid strategy that falls back 
on more general methods such as deduc- 
tion and transformation when inspection 
fails. 

What does the system 
know? 

No matter what mechanism is used 
inside an automatic programming system, 
the system.must have at least an implicit 
knowledge of domain cliches (so that it can 
interpret the terms used by the user) and of 
programming cliches (so that it can pro- 
duce programs without endlessly "rein- 
venting the wheel"). Whether knowledge 
of cliches is represented procedurally, log- 

gramming can be traced almost exclusively 
to the productivity and reliability benefits 
of reusing this knowledge. The following 
examples of programming cliches illus- 
trate the diversity of knowledge required: 

Matrix add-the algorithm for adding 
together two matrices. This cliche is 
independent of the data representation 
of the matrices and the type of number 
stored in the matrices. 
Stack-the data abstraction and its 
associated operations. Both the repre- 
sentation and the operations are 
independent of the type of stack 
element. 
Filter positive-selecting the positive 
elements of a temporal sequence of 
quantities in a loop. For example, in the 
code fragment below, the if statement 
implements a filter positive. 

do . . .  
x : =  . . . ; 
ifX>Othen . . . X . . . ;  

end; 

This cliche is independent of the type of 
number in the sequence and how the 
sequence is generated. 
Master file system-a cluster of pro- 
grams (reports, updates, audits, etc.) 
that operate on a single master file, 
which is the sole repository for informa- 
tion on some topic. This cliche is essen- 
tially a set of constraints on the 
programs and how they interact with the 
file. It is independent of the kind of data 
stored in the file and the details of the 
computation performed by the 
programs. 
Deadlock free-the property of a set of 
asynchronously interacting programs 
that guarantees they will not reach a 
state where each program is blocked 
waiting for some other program to act. 
This cliche restricts the ways in which 
the programs can interact. However, it 
is independent of the details of the com- 
putations performed by the programs. 

The cliches above differ along many 
dimensions. Matrix add is primarily com- 
putational, while stack is data oriented. 
Matrix add can be used in a program as a 
module, while filter positive is fragmen- 
tary and must be combined with other 
fragments to be useful. Matrix add, stack, 
and filter positive are all relatively low- 
level, localized cliches. In contrast, mas- 
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Programming-knowledge representations 
This diagram traces the 

inheritance of ideas among the 
major approaches that have been 
used to represent programming 
knowledge. The two oldest 
approaches are subroutines and the 
encoding of knowledge in proce- 
dures that “write the right code.” 
Subroutines are very limited in 
expressive power but are easy to 
combine. In contrast, procedural 
encoding has unlimited expressive 
power but makes it very hard to com- 
bine cliches. 

Program schemas extend the 
expressive power of subroutines, 
while macros are essentially a 
restricted and more tractable form of 
procedural encoding. Flowcharts and 
flowchart schemas (especially those 
that include dataflow as well as con- 
trol flow) introduce the idea of 
programming-language inde- 
pendence. 

Logic can express even the most 
diffuse cliches in a declarative fash- 
ion. However, because of the weak- 
ness and inefficiency of current 
automatic theorem provers, pure 
logic is not sufficiently machine 
manipulable to serve as the sole rep 
resentation for programming clichbs. 
Data abstraction approaches com- 
bine program schemas (to specify 
abstract operations) with logic (to 
specify data structure invariants). 

Goal and plan representations are 
used to explain the structure of p ro  
grams at a deeper level than source 

Subroutines 

Program 
Flowcharts schemas 

I 

text. This information is essential if 
an automatic programming system is 
to explain its actions. 

Program transformations” incor- 
porate ideas from program schemas, 
macros, and logic. As discussed in 
the subsection on transformational 
methods, a transformation has three 
parts: a pattern (which is essentially 
a program schema), a set of logical 
applicability conditions, and an 
action (which is essentially a macro). 

The Plan Calculus” .combines ideas 
from many of the representations 
described above. It achieves 
programming-language independ- 
ence through the use of dataflow and 
control-flow notions from flowchart 
schemas. It uses aspects of logic 
and data abstractiosto represent 
data invariants and other diffuse 
aspects of cliches. It uses goals and 
plans to keep a record of the design 
decisions in a program. And, it 
includes the concept of language- 
independent, bidirectional program 
transformations, which link pairs of 
flowchart schemas. 

is completely satisfactory. If auto- 
matic programming systems are to 
continue to improve, representations 
must be developed that are both eas- 
ier to manipulate and capable of 
representing aspects of program- 
ming knowledge (such as efficiency 
information) that are not readily cap  
tured by any current formalism. 

None of the representations above 

Procedural 
encoding 

Macros 
I 

I A L T  
Goals plans & schemas F l o L A  transformations Program ’ /,action 

I 

. I  

8 . a  

ter file system and deadlock free are high 
level and diffuse. 

Representing and using such a wide vari- 
ety of clichCs in an automatic program- 
ming system is a major challenge. The 
following are the main desiderata for a 
suitable knowledge representation: 

Expressiveness-The representation 
must be able to express as many differ- 
ent kinds of cliches as possibIe. 
Convenient combination-The methods 
of combining cliches must be easy to 
implement, and the properties of com- 
binations should be evident from the 
properties of the parts. 
Semantic soundness-The representa- 
tion must be based on a mathematical 
foundation that allows correctness con- 
ditions to be stated. 
Machine manipulability-It must be 
possible to manipulate the representa- 
tion effectively using computer tools. 
Programming-language independence 
-The representation should not be tied 
to the syntax of any particular program- 
ming language. 
In light of this “wish list,” an accom- 

panying sidebar discusses the various 
representations developed to date for pro- 
gramming cliches. 

Commercially available 
systems 

Academic research in automatic pro- 
gramming has focused on developing tech- 
niques that can support broad-coverage, 
fully automatic programming. Unfor- 
tunately, while this research points toward 
long-term progress, it has not yet had very 
much impact on commercial systems. 

Work in the commercial arena has 
focused on more modest goals and has 
been able to make significant steps toward 
automatic programming based on proce- 
dural methods. In particular, development 
has quickened over the last few years with 
the introduction of so-called computer- 
aided software engineering, or CASE. 

Database query systems. Perhaps the 
greatest commercial automatic program- 
ming success story has been the develop- 
ment of database query systems (for 
example, Information Builders’ Focus). 
These systems have limited capabilities 
and are not suitable for complex applica- 
tions. However, they allow end users to 
retrieve information from a database and 
produce customized reports without the 
help of programmers. 
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Within their narrow domain of applica- 
bility, database query systems are both 
end-user oriented and fully automatic. In 
simple applications, these systems have 
taken over completely, making automatic 
programming an everyday reality. 

Fourth-generation languages. Follow- 
ing the bottom-up approach to automatic 
programming, a number of commercial 
systems have been introduced that achieve 
a broader range of coverage than database 
query systems. They do this by sacrificing 
end-user orientation. Most such systems 
offer a combination of special-purpose 
interfaces (such as screen painters and 
report generators) and a very high level 
language designed specifically for business 
data processing applications. Systems that 
execute their languages interpretively, such 
as Applied Data Research’s Ideal and 
Software A.G.’s Natural, are typically 
called fourth-generation languages. 

Fourth-generation languages are used to 
some extent at perhaps ten thousand sites. 
However, though there is great enthusiasm 
about their potential, fourth-generation 
languages are far from displacing Cobol. 
This is because they are relatively ineffi- 
cient and cannot be used conveniently in 
conjunction with preexisting applications. 

Program generators. Program genera- 
tors, such as Transform Logic’s Trans- 
form and Pansophic Systems’ Telon, are 
very similar to fourth-generation lan- 
guages except that instead of operating 
interpretively, they generate Cobol code. 
In exchange for this increase in efficiency, 
program generators must settle for sup- 
porting a narrower range of features. 

Program generators are used at approx- 
imately a thousand sites. Although more 
efficient than fourth-generation lan- 
guages, their acceptance is limited by their 
narrower focus and by the difficulty of 
using them in conjunction with preexisting 
code. 

High-level design aids. Graphical tools, 
such as Index Technology’s Excelerator, 
that support high-level software design 
methodologies take a different tack. These 
systems support the manipulation of high- 
level designs without being able to gener- 
ate executable code. High-level design 
aids, therefore, exemplify the assistant 
approach to automatic programming 
rather than the bottom-up approach. 

Tools of this general type are used at 
several thousand sites and are rapidly 
becoming a standard part of the program- 

ming process. However, their acceptance 
is slow because they lack integration with 
other tools and they leave code generation 
to the user. 

Project management tools. While con- 
sidering the assistant approach to auto- 
matic programming, we should also point 
out the growing capabilities of project 
management tools. These tools provide 
relatively modest but significant support 
for managing the programming process. 
For example, products such as BIS 
Applied Systems’ BIS/IPSE and Imperial 
Software Technology’s ISTAR provide 
facilities for breaking down a project into 
tasks and tracking their progress, both for 
configuration and version control and for 
the generation of various kinds of 
documentation and management reports. 

If in-house tools are cou~@A, program- 
ming management aids are rapidly on the 
way to becoming the norm rather than the 
exception in large projects. Assuming that 
automatic programming is unlikely to 
make the problems of managing cooper- 
ative work disappear, the need for such 
tools will continue. 

Very high level prototyping languages. 
The one place where academic research 
has significantly affected commercial sys- 
tems is in very high level prototyping lan- 
guages. These languages represent a 
compromise between desires and reality; 
while researchers would like to create 
extremely high level languages that could 
be compiled into efficient code, it is not yet 
possible-even with significant sacrifices 
in the language-to create production- 
quality code. The current status of general- 
purpose, very high level prototyping lan- 
guages is typified by Reasoning Systems’ 
Refine,’ which is based on research 
initiated at Stanford University. P r ~ l o g , ~  
which is based on logic-programming 
research at Imperial College, is also being 
used as a very high level prototyping 
language. 

The exact extent of very high level pro- 
totyping language usage is not clear. How- 
ever, it probably does not exceed a 
hundred sites. Acceptance of this 
approach is currently limited by the fact 
that rapid prototyping as a methodology 
is far from universally accepted. 

On the horizon 
Over the next several years, progress 

toward automatic programming will 

almost certainly follow the course set by 
currently available systems. Although con- 
ditions point to relatively rapid progress in 
CASE tools, radical breakthroughs seem 
unlikely. Rapid progress is possible 
primarily in the ways in which currently 
available systems are used. 

Technological advances. The quality of 
commercially available programming 
tools should improve markedly in the next 
few years. In particular, high-level design 
aids (for example, Texas Instruments’ 
IEF) will be extended to generate executa- 
ble code in many situations. Fourth- 
generation languages and program gener- 
ators will add support for slightly higher 
level constructs and somewhat less narrow 
domains of applicability. In addition, 
there will be a general trend toward greater 
integration of programming tools. With 
any luck, these incremental improvements 
should be enough .to promote most of 
these tools from experimental use to full- 
scale acceptance. 

The developers of very high level pro- 
totyping languages, such as Refine, are 
strongly committed to increasing the effi- 
ciency of the code produced. Some ineffi- 
ciency is more or less incidental and will 
undoubtedly be eliminated. However, 
other problems are intrinsic to the 
approach: The whole point of very high 
level languages is to write a program using 
algorithms oriented toward clarity rather 
than efficiency, and since clear algorithms 
are often very inefficient, efficiency often 
requires radical changes. Unfortunately, 
no one knows how to identify such 
changes automatically or how to take 
advice on the subject effectively. 

TR date, essentially all commercializa- 
tion of automatic programming research 
has been via the very high level language 
approach. However, we will soon begin to 
see the first commercialization of research 
on the assistant approach. For example, 
Bachman Information Systems is develop- 
ing a programming assistant product 
based in part on research at MIT. 

Rapidly decreasing prices for worksta- 
tion and database hardware provide an 
important opportunity. Soon, a threshold 
will be reached where it will be practical to 
capture on line all the intermediate work- 
products of the programming process, 
whether produced manually or automati- 
cally. Besides being intrinsically beneficial, 
this will drive further automation. 

Basic research on automatic program- 
ming is very much like cancer research: A 
host of fundamental problems remain to 
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be solved. Therefore, it is highly unlikely 
that anyone will discover a “silver bullet” 
that will remove all obstacles to the rapid 
development of general-purpose auto- 
matic programming. However, research- 
ers will continue to chip away at the 
problem from many directions. 

Management changes. Progress in any 
kind of automation is always obstructed 
by management problems as much as by 
technological hurdles. At least four major 
changes must occur at the management 
level if the potential of automatic pro- 
gramming is to be realized. 

First, we must recognize that capitaliza- 
tion for programming needs to be 
increased. In most organizations, a dollar 
spent on additional computer hardware or 
programming tools will bring significantly 
more benefits than a dollar spent on addi- 
tional programmers. (Studies have shown 
that significant productivity gains can be 
obtained merely by giving programmers 
offices with doors!) 

Second, given that the heart of auto- 
matic programming is reuse, economic 
incentives in software development and 
acquisition need to be revised to foster 
reuse. Under current contracting practices, 
there is often an economic incentive 
against software reuse and the production 
of easily maintainable software.’* Policies 
whereby contractors would increase their 
profit by reusing software developed by 
others-or were paid extra if they 
produced something that someone else 
reused-would be steps in the right direc- 
tion. It would also be a good idea to tie 
some part of profit to the long-term costs 
of the delivered software. 

Third, management must recognize that 
the only way to reduce the lifetime costs of 
software is to spend more supporting the 
early parts of the process-requirements 
definition, specification, and design. For 
example, people often talk about software 
reuse as if it were some miraculous way to 
reuse code that has already been written. 
In fact, there is no way to reuse software 
unless it is carefully designed to be reusa- 
ble. This pays big dividends, but it requires 
significant “up-front” expenditures. 

Finally, as with all automation, the real 
promise of automatic programming is not 
just in automating wh.at is done now but 
in completely changing the way things are 
done. In the case of office automation, for 
example, it pays to redesign the whole 
information flow in the office rather than 
put the same old paper forms into an elec- 
tronic medium. Withrprogramming, this 
means reexamining the traditional model 
of the software life cycle, which is begin- 
ning to happen with the increasing accep- 
tance of prototyping. It also means 
breaking down conventional distinctions 
between languages, environments, and 
interfaces, which is occurring in the form 
of graphical interfaces and object-oriented 
programming. 

utomatic programming in the 
form of compilers for high-level 
languages became available in 

the late 1950s. By the late 1960s, it was 
clear that the next logical step was to move 
up to very high level languages. However, 
this step turned out to be much more dif- 
ficult than expected, and progress on the 
bottom-up approach to automatic pro- 
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gramming was essentially stalled during 
the 1970s. 

The main focus of work on automatic 
programming in the 1970s switched to the 
narrow-domain approach. Since then, a 
variety of systems, such as database query 
languages, have been constructed that 
deliver end-user-oriented, fully automatic 
programming in small domains. 

In the 198Os, interest has returned to the 
bottom-up approach. This has led to the 
appearance of very high level prototyping 
languages. In addition, we have seen the 
arrival of fourth-generation languages and 
program generators that are more narrow 
in their focus as well as more efficient. The 
1980s have also seen increased interest in 
the assistant approach to automatic pro- 
gramming in the guise of high-level design 
aids and other adyanced programming 
tools. 

A further look into the future reveals no 
sign of the cocktail party version of auto- 
matic programming. However, there will 
be significant evolutionary progress. With 
luck, we will be saying much the same 
thing about automatic programming in 
1998 that we said in 1958-that it has 
improved programmer productivity dra- 
matically and has further reduced the dis- 
tinction between programmers and end 
users. 0 
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wgs Your Last 
s o ~ p r o j e c t  

Late? 
If your last sdhvare pmjectw late, you need Costa, asdhvare cost 
estimation tool that will help you plan and manage your nert pmject. 
costar is based on the COCOMO model described by Bany Boehm in 
so/twa*-g-. 

COCOMO is usedby hundredsofsdhvare managem to estimate the cost, 
staffing levels, and schedule required to complete a pmject-it’s reliable, 
repeatable, and accluate 

costar estimates are based on E factors that strongly influence the &rt 
q u i d  to complete a pmject, including: 

The Capability and Experience of your Pmgtammers & Analysts 
The Complexity of your project 
The Required Reliability of your pmject 

costar is a complete implementation ofthe COCOMO “detailed” model, 
soitcalculate-sestimatesforallphasesofyour~ject, h m  Requirements 
through Coding. Integration and Maintenance Costar puts you in control 
ofthe estimation and planning procesg ancl pmvides hll baceabiility for 
each estimate User definable cost driven and a wide variety of reports 
makes Costu flexible and powerful. 

costar also pmvides extensive support for “ a - i f ’  analyses You can 
explore alternative pmject plans, and compare them side-by-side 
Colhrnnr on the VAX and IEM PCS. 

Softstar Syderns. 
(603) 672-0987 
28 hemah Road, = m * R  
Amherst, NH 03031 
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olivetti research 

Software Technology 
Laboratory 

If you are interested in working with a small but 
expanding group of research-oriented people who 
influence the directihfi of their lab, then consider 
joining us at Olivetti Research/STL. Our primary 
interest is the research and development of technology 
that will increase the productivity of application 
developers. Current work includes: a graphical editor 
for user interfaces, a programming environment for 
object-oriented languages, support for persistent data 
and Rpc, and a window-based interface to a tele- 
phone PBX. In conjunction with the Olivetti research 
lab in England, we are conducting experiments in 
video-based electronic mail and video conferencing. 

If you’ are interested and have a PhD in Computer 
Science (or equivalent experience), send a resume and 
cover letter to 

Dr. Carl Dellar, Director 
Olivetti Software Technology Laboratory 
5 Palo Alto Sq., Suite 910 
Palo Alto, CA 94306 
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