
Automatic Programming:
Myths and Prospects

Charles Rich and Richard C. Waters
Massachusetts Institute of Technology

A utomatic programming has been
a goal of computer science and
artificial intelligence since the

first programmer came face to face with
the difficulties of programming. As befits
such a long-term goal, it has been a mov-
ing target-constantly shifting to reflect
increasing expectations.

Much of what was originally conceived
of as automatic programming was
achieved long ago (see the sidebar on its
status in 1958). On theother hand, current
expectations regarding its potential are
often based on an idealized view of reality
and are probably unachievable. Neverthe-
less, a number of important developments
are appearing in research efforts and in
commercially available systems.

Automatic programming
myths and realities

The “cocktail party” description of the
potential of automatic programming runs
something like this:

There will be no more program-
ming. The end user, who only
needs to know about the ipplica-
tion domain, will write a brief
requirement for what is wanted.
The automatic programming sys-
tem, which only needs to know
about programming, will produce
an efficient program satisfying the

The “cocktail party”
description of

automatic
programming is

unachievable because
it is based on faulty

assumptions;
nevertheless, we will

see continued
evolutionary progress.

requirement. Automatic pro-
gramming systems will have three
key features: They will be end-user
oriented, communicating directly
with end users; they will be general
purpose, working as well in one
domain as in another; and they
will be fully automatic, requiring
no human assistance.

Although this description is attractive, it
is based on a number of faulty
assumptions.

Myth: End-user-oriented automatic
programming systems do not need domain
knowledge. It is no more possible for end
users to communicate effectively with an
automatic programming system that
knows nothing about the application
domain than it is for them to communicate
effectively with a human programmer who
knows nothing about the application
domain. Rather, the path from an end
user’s needs to a program involves a
bradual progression from a description
that can be understood only in the context
of the domain to a description that can be
understood without relying on auxiliary
knowledge (see the sidebar on agents in the
programming process). There is no point
at which someone who knows nothing
about programming communicates
directly with someone who knows nothing
about the application domain.

Reality: End-user-oriented automatic
programming systems must be domain
experts. In particular, it is not possible to
describe something briefly unless the
hearer knows at least as much about the
domain as the speaker does and can there-
fore understand the words and fill in what
is left out. (For a detailed discussion of the
necessity of domain knowledge in auto-
matic programming, see Barstow.’)

I .

40 oOI8-9l6Z/88/08oO-o040$Ol .OO PI988 IEEE COMPUTER

Myth: End-user-oriented, general-
purpose, fully automatic programming is
possible. A corollary of the need for
domain knowledge is that such an auto-
matic programming system would have to
be expert in every application domain.
Unfortunately, artificial intelligence is
nowhere near supporting this superhuman
level of performance.

Reality: Given the pragmatic impossi-
bility of simultaneously supporting all
three features, it is not surprising that all
current approaches to automatic program-
ming focus on two of the features at the
expense of the third. This has given rise to
the following three approaches to auto-
matic programming, typified by the fea-
ture given up:

(1) Bottom up. This approach sacrifices
end-user orientation. It starts at the
programmer’s level and tries to push
the threshold of automation
upward. In the past, the threshold
was raised from machine-level to
high-level languages. The current
goal is to raise the threshold further
to so-called very high level lan-
guages.

(2) Narrow domain. This approach
sacrifices being general purpose.
Focusing on a narrow enough
domain makes it feasible right now
to construct a fully automatic pro-
gram generator that communicates
directly with end users. This
approach is advancing to cover
wider domains.

(3) Assistant. This approach sacrifices
full automation. Instead, it seeks to
assist in various aspects of program-
ming. With current technology, this
approach is represented by pro-
gramming environments consisting
of collections of tools such as intel-
ligent editors, on-line documenta-
tion aids, and program analyzers.
The goal here is to improve the inte-
gration between tools and the level
of assistance provided by individual
tools.

Myth: Requirements can be complete.
Since the cocktail party description of
automatic programming assumes that the
only point of contact between the end user
and the system is a requirement, this
requirement must be complete. In the
interest of producing an efficient program,
the automatic programming system is
expected to take full advantage of every
degree of freedom allowed by the require-
ment. The completeness of the require-

August 1988

ment guarantees that anything the by likening requirements to legal con-
automatic programming system produces tracts. However, any lawyer will tell you
will be acceDtable to the end user. that contracts do not work that way. Con-

ing in 19
“automatic programming systems” known to ACM’s

cifies the computer each system runs on and indi-

AUTOMATIC PROGRAMMING SYSTEMS

Computer

704

701

705

702

1103-
1103~

MIDAC

In library

AFAC
CAGE
FORTRAN
NYAP
PACP U
REGSYbfBOLIC
SAP

DUAL-607
FLOP
JCS-13
KO-R 2
QmcK
SHACO
SPEEDCODING 3

ACOM
AUTOCODER
ELl
PRINT I
SOHIO
SYMB. ASSEMBLY

AUTOCODER
ASSEMBLY
SCRIPT

CHIP
FAP
FLIP-SPUR
MISHAP
RAWOOP-SNAP
UNICODE
USE

EASIAC
MAGIC

Do not have

ADES
FORC
KOMPILER 3

BACAIC
DOUGLAS
GEPURS
LT-2
PACT I
QuEasy
SEESAW
S O 2
SPEEDEX

This point of view is commonly justified tracts work only when both parties make

41

FAIR

COMFTLER I
TRANS-USE

Computer

650

? C

UNIVAC
I. I1

~

D’TRON
201
204
205

rnEC 111

c 1 5

WHIRL-
WIND

FERUT

JOANNIAC

In library

ADES I1
BECL
BELL a,
DRUCO I
EASE I1
ELI
FOR TRANSIT
IT
RELATNE
SIR
SOAP I
SOAP U

A2
ARITHMATIC (A3)
GP
MATHMATIC (AT3)
NW. 0 m A X

UGLUC

COMPREHENSIVE
SUMMER SESSION

TRANSCODE

EASY FOX

Do not have

BACAIC
BALITAC
ESCAPE
FLAIR
KlTlIAC
OMNICODE
SPEEDCODING
SPUR

Ao, A1
FLOWMATIC (B 4)
BIOR
&IS
RELCODE
SHORTCODE
x-1

APS
DATACODE I
DUMB0
IT
SAC
STAR

UDECIN-I
U D E C O M ~
INTERCOM

ALGEBRAIC

Agents in the programming process

Suppose a large company needs a
new accounting system. This figure
shows the principal agents that typi-
cally would be involved. The bars on
the right indicate that near the top of
the figure, accounting knowledge
plays the crucial role, while program-
ming knowledge dominates toward
the bottom.

The manager at the top of the fig-
ure quite likely has only a rudimen-
tary knowledge of accounting. The
manager’s job is to identify a need
and initiate the programming pro-
cess by creating a brief, vague
requirement. Use of the term “vague”
here highlights the fact that the only
way this initial requirement can suc-
ceed in being brief is for it also to be
incomplete, ambiguous, and/or
inconsistent.

accounting expert, whose job is to
take the manager’s vague require-
ment and create a detailed require-
ment. A key feature of this
requirement is that it is couched in
the technical vocabulary of account-
ing and is intended for evaluation by
other accounting experts. The
accounting expert’s knowledge of
programming does not have to
extend much beyond basic notions
of feasibility.

The next agent in the process is an

The third agent in the process is
some sort of systems analyst, whose
job is to define the basic architecture
of the program and translate the
requirement into a detailed specifica-
tion. In contrast to the requirement,
the specification is couched in the
technical vocabulary of programming
rather than accounting. To perform
this transformation, the systems ana-
lyst must have a considerable under-
standing of accounting-in addition to
an extensive knowledge of pro-
gramming.

The final agent is a programmer,
n

L? Manager

Brief, vague I requirement
Accounting 0

expert

Detailed
requirement

(0 Systems
analyst

1 Specification

QJ Programmer

Code

who must produce code in a high-
level language on the basis of the
detailed specification. The program-
mer does not have to know very
much about accounting. However, it
is very unlikely that the accounting
system will actually work if the pro-
grammer knows nothing about
accounting.

Although not shown in the figure,
agents for validation, testing,
documentation, and modification are
required as well. To do their jobs,
these agents also need significant
domain knowledge.

Domain
knowledge

Programming
knowledge

a good-faith effort to work toward a com-
mon end. If good faith breaks down, the
parties can always cheat without violating
the “letter” of the contract.

The problem with requirements (and
contracts) is that they cannot be complete.
No matter how trivial the situation, there
is no practical limit to what must be said
when trying to pin down a potential
adversary.

Consider, for example, specifying a
controller for an automated teller
machine. When describing the withdrawal
operation, it is easy enough to say that
after inserting the bank card the customer
should enter a password, select an
account, and then select an amount of cash
which the machine then dispenses. How-
ever, this is nowhere near complete.

To start with, a lot of details are miss-
ing regarding the user interface: What
kinds of directions are displayed to the cus-
tomer? How is the customer to select

among various accounts? What kind of
acknowledgment is produced? To be com-
plete, these details must include the layout
of every screen and printout, or at least a
set of criteria for judging the acceptabil-
ity of these layouts.

Even after the interface details are all
specified, the requirement is still far from
complete. For example, consider just the
operation of checking the customer’s pass-
word. What are passwords to be compared
against? If this involves a central reposi-
tory of password information, how is this
to be protected against potential fraud
within the bank? What kind of response
time is required? Is anything to be done to
prevent possible tampering with bank
cards?

Looking deeper, a truly complete
requirement would have to list every pos-
sible error that could occur-in the CUS--

tomer’s input, the teller machine, the
central bank computer, the communica-

tion lines-and state exactly how each
error should be handled.
‘ . Beyond what is computed, the user
undoubtedly wants a reasonably efficient
program. This could be specified as max-
imum limits on space and time. However,
what is really desired is for the imple-
menter to make a good-faith effort to
make the program as efficient as possible.
Further, the code produced should be easy
to read and modify, and well documented.

Finally, the end user also cares about the
cost of implementing the program and
how long implementation will take. This
implies a need for trade-offs, particularly
when it comes to the last few issues men-
tioned above. Thus, it is very difficult-
if not impossible-to make complete state-
ments about these issues.

Reality: At best, requirements are only
approximations. Instead of serving as a
,defensive measure between adversaries,
requirements should serve as a tool for

42 COMPUTER

.

a good-f&h effort tocreate a reasonable
program, many of the points above can go Automatic
unsaid. programming systems Just like human programmers, an auto-
matic programming system must make a of the future will be
good-faith effort to satisfy the spirit of the
requirements. The system must be oriented
toward making reasonable assumptions
about unspecified properties, rather than
trying to minimally satisfy specified
properties. This observation reinforces the
need for domain knowledge as part of an
automatic programming system.

more like vacuum
cleanem than like

selfaleaning ovens.

Myth: Programming is a serial process.
In many ways, the worst aspect of the
cocktail party description of automatic
programming is that it perpetuates the
myth that creating a program is a two-step
process: First, an end user creates a
requirement; second, the automatic pro-
gramming system makes a program. This
view is just as impractical in the context of
an automatic programming system as it is
in human-based programming.

First of all, given the approximate
nature of requirements, a considerable
amount of back-and-forth communica-
tion is required to convey the end user’s
full intent. Second, users typically start the
programming process with only a vague
idea of what they want, and they need sig-
nificant feedback to flesh out their ideas
and determine the exact requirement.
Also, what end users want today is never
the same as what they want tomorrow.
Third, users do not want programmers to
follow requirements blindly. If problems
arise, they want advice. For example, the
programmer should tell the user if a slight
relaxation in the requirement would allow
a much more efficient algorithm to be
used.

Reality: Programming is an iterative
process featuring continual dialogue
between end user and programmer. The
desired requirement evolves on the basis of
prototypes and initial versions of the
system.

The inherently iterative nature of pro-
gramming has two important implications
for automatic programming. First, just as
in nonautomatic programming, the focus
of activity will be on changing require-
ments as much as on implementing them.
Thus, there will be no reduction in the need
for regression testing and other techniques
for managing evolution.

Second, to carry on a dialogue with the
user, automatic programming systems will

have to explain what they have done and
why. In particular, they will need to
explain the assumptions thty have intro-
duced into a requirement, so that users can
debug those assumptions.

Myth: There will be no more program-
ming. There will certainly be many differ-
ences between the input to future
automatic programming systems and what
is currently called a program. However,
programming is best typified not by what
programs are like but by what program-
ming tasks are like. Undoubtedly these
new inputs will still have to be carefully
crafted, debugged, and maintained
according to changing needs. Whether or
not one chooses to call these inputs pro-
grams, the tasks associated with them will
be strongly reminiscent of programming.

Reality: End users will become
programmers. As an example of this
phenomenon, consider spreadsheet pro-
grams. When spreadsheets first appeared,
they were heralded as a way to let users get
their work done without having to deal
with programmers or learn programming.
Spreadsheets have succeeded admirably in
letting users get results by themselves.
However, maintaining a spreadsheet over
time differs very little from maintaining a
program. The only real difference is that
a spreadsheet is a concise domain-specific
interface that makes it remarkably easy to
write certain kinds of programs and
startlingly hard to write other kinds of
programs.

Myth: There will be no more program-
ming in the large. Even if we accept that
programming will be around forever, we
might well hope that by continuing the
trend of writing programs more com-
pactly, automatic programming will con-

vert all programming into programming in
the small.

Unfortunately, this dream overlooks
software’s extreme elasticity of demand.
Most of the productivity improvements
introduced by automatic programming
will almost certainly be used to attack
applications that are enormous rather than
merely huge.

Reality: We are not likely to ever settle
for only those application systems that can
be created by a few people. As a result,
there will be no lessening of the need for
version control, management aids, and all
the other accoutrements of cooperative
work and programming in the large.

A down-to-earth perspective. The auto-
matic programming systems of the future
will be more like vacuum cleaners than like
self-cleaning ovens. With a self-cleaning
oven, all you have to do is decide that you
want the oven cleaned and push a button.
With vacuum cleaners, your productivity
is greatly enhanced, but you still have a lot
of work to do.

Our discussion of the fundamental tech-
nical issues in automatic programming will
be divided according to three questions
that must be addressed in the design of any
automatic programming system: What
does the user see? How does the system
work? What does the system know?

We will also review the most recent
trends in currently available automated
programming tools. Under the rubric of
computer-aided software engineering, or
CASE, these tools are following the
bottom-up, narrow-domain, and assistant
approaches to automatic programming.

Finally, we offer ideas on the kinds of
toobithat will soon be available. CASE
tools in particular are poised to emerge
from a somewhat rocky adolescence into
maturity. In this regard, we observe that
the path toward automatic programming
is impeded as much by the need for
managerial change as by the need for tech-
nical advances.

What does the user see?
From the user’s perspective, the most

prominent aspect of an automatic pro-
gramming system is the language used to
communicate with it. The range of possi-
bilities is illustrated in the accompanying
sidebar on input languages and is further
discussed below.

Natural language. Because they are
familiar, natural languages such as English

August 1988 43

Potential inputs to an automatic programming system
The figures in this sidebar illustrate the wide variety of inputs an automatic programming system might support. Each

example is a specification for a program that determines the value of an octal number represented in a string. A Pascal
implementation is included that illustrates what the output of an automatic programming system might look like. Note that
no single example can illustrate all of the important issues in selecting an input medium.

The function EvalOctal is a recog-
nizer that determines whether a
given string contains an octal num-
ber optionally surrounded by
blanks. If this is the case, the deci-
mal value of the number is returned.
Otherwise -1 is returned.

A natural language (English).

A special-purpose language
(state transition diagrams).

Examples (input/output pairs).

A logical formalism
(predicate calculus).

a = “ ‘0’ 5 a 5 ’7’
V := 8*V+Digit(a)

a = “

n n n

a = EOF

Other a
return -1

I
input: S

precondition : String(S)
output: v

postcondition : Integer(V) A (Valid(S) -* Value(S, V)) A (-Valid@) + V = -1 1

where:

Valid(S) = (Vi 1 si< IS1 - S(i)€{’ ’,’1’,’2’,’3’,’4’,’5’,’6’,’7’}) A
(3 ; 1 <is IS1 - S(i)+’ ’) A
(~ 3 i j k 1 s i < j < k s (S I A S(i)+’ ’ A S (j) = ’ ’ A S (k) + ’ ’)

Value(& V) = Vij(l~i<js[Sl A S(i)+ ’ ’ A S(j) ,+,’ ’ A (j = l S l v Sci+l)=’ 7) - (Digit(S(i)) =Div(Rem(V , 8’-‘-’), 8’-’-’)
A ((i = l VS(i -1)= ’ ’)- V<8’-’))

procedure EvalOctal(S);
if (forall C in S I C in { ’ ’,’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’}) and

(exists C in S I C / = ’ ’) and
(not exists Ci in S(i), Cj in S(j), Ck in S(k)

1 i < j a n d j < k a n d C i / = ’ ’ a n d C j = ’ ’ a n d C k / = ’ ’)
then Digits : = [abs C - abs ’0’: C in S I C/ = ’ ’I;

else return - 1 ;
return + /[D*8**(#Digits - i): D in Digits(i)];

end if;
end procedure EvalOctal;

A very high level language (SETL).

A high-level language (Pascal).

function EvalOctal (var S array [M..N: Integer] of Char):

{End of input string flagged with chr(O).}

begin

Integer ;

var J , V: Integer;

J := M;
v := -1;
while S[J]=’ ’ do J : = J + 1;
if S[J] < > chr(0) then begin

v := 0;
while (’0’ < = S[J]) and (S[J] < = ’7’) do begin

V : = 8*V + ord(S[J]) - ord(’0’);

end;
J := J + l

while S[J]=’ ’ do J := J + 1 ;
if S[J]< >chr(O) then V : = -1
end;

EvalOctal : = V
end

44 COMPUTER

are an attractive choice for communica-
tion between end users and an automatic
programming system. Three features that
make natural language attractive are
vocabulary, informality, and syntax. As
discussed later, the existing vocabulary of
thousands of predefined words contrib-
utes most to making natural language an
efficient communication medium.

Informality (for example, the possibil-
ity of a statement’s being ambiguous,
incomplete, contradictory, and/or inac-
curate) is also very important. In fact, it is
essential to a powerful strategy for dealing
with complexity: Start with an almost-
right description and incrementally
modify it until it is acceptable. An interest-
ing research direction is the design of arti-
ficial languages that intentionally allow
informality.

Syntax is the least important feature of
natural language. Natural syntax is con-
venient because it is familiar. However, it
is of relatively little value unless the other
features are supported as well.

Unfortunately, enabling machines to
converse in natural language is way
beyond the current capabilities of artificial
intelligence. As a result, natural language
input-although an active area of inquiry
in its own right-is not a major topic in
current automatic programming research.

Special-purpose languages. Even when
people communicate among themselves,
natural language is not always the lan-
guage of choice. For example, many appli-
cation areas have specialized symbolic or
graphical languages associated with them
(mathematical formulas and circuit dia-
grams, for instance) that experts routinely
use in preference to natural language.

Many kinds of special-purpose lan-
guages can be supported in straightfor-
ward ways, as long as their focus is
sufficiently narrow. A particularly suc-
cessful example is the so-called “what you
see is what you get” interfaces. Screen
painters allow end users to specify the lay-
out (and some of the semantics) of a data-
entry-and-retrieval program by simply
making a picture of how the screen should
look. Then a code generator automatically
writes the code to drive the terminal and
access the database.

Unfortunately, special-purpose lan-
guages have a fundamental problem: They
are essentially useless outside their
domains of applicability. This brings up a
key unsolved problem-namely, how to
combine several special-purpose languages
or a special-purpose language with a

general-purpose one.
Almost every current system that sup-

ports a special-purpose language follows
the narrow-domain approach to auto-
matic programming, restricting itself to
situations where the special-purpose lan-
guage is appropriate. Even when multiple
special-purpose input languages are sup-
ported,* the user can only combine the
languages in simple ways. Much more
work is necessary before special-purpose
languages can reach their full potential as
part of the interface to general-purpose
systems.

Examples. An attractive idea, pursued
with some vigor in the early days of auto-
matic programming, is to specify a pro-
gram via examples of its behavior. The
appeal of this approach is that non-
programmers are familiar with examples
as a communication techni8ue, just as they
are with natural and special-purpose lan-
guages. Furthermore, collections of exam-
ples are easy to understand and modify.

Unfortunately, except for toy problems,
RO one has been able to make an example-
based automatic programming system
work, and there is reason to believe this
failure is fundamental. It is trivial, but use-
less, to construct a program that duplicates
a particular set of examples and does noth-
ing else. What is desired is a program that
operates on whole classes of input data in
a manner “analogous to” the examples.
However, experience has shown that no
matter how many examples are provided,
there is no way to ensure that the generali-
zation derived will be correct-without
placing severe constraints on the domain
of possible generalizations.

Logical formalisms. Logic is the most
powerful (and general) formal description
language known. As a result, it is reasona-
ble to suppose that it might make a good
communication medium between a user
and an automatic programming system.

Unfortunately, there are two fun-
damental barriers to the use of logical for-
malisms. First, most interesting tasks in
general logical systems (for example,
detecting contradictions) are computa-
tionally intractable (see the discussion of
deductive methods in the next section).
Second, complex logical formulas are
notoriously difficult for most people to
write and understand.

Research on logic as a communication
medium between man and machine is
being carried out primarily under the
topics of formal specification languages

and logic-programming languages. A key
issue in both of these areas is the introduc-
tion of extensions and restrictions that ren-
der logic more tractable to man and
machine. For example, Prolog3 guaran-
tees executability of logical descriptions by
placing strong restrictions on the form of
expressions.

Very high level languages. While speci-
fication languages and logic-programming
languages essentially extend downward
from logic, very high level languages build
upward from current high-level languages.
Typically, very high level languages add
powerful abstract data types, such as sets
and mappings (to allow programmers to
ignore the details of data structure imple-
mentation), and a few features of logical
notation, such as quantification over sets
(to allow programmers to ignore certain
kinds of algorithmic detail).

The archetype of very high level lan-
guages is SETL.4 More recent very high
level languages, such as Refine’ and Gist,6
have added other features-for example,
constraints and nondeterminism.

Other communication issues. Beyond
the topics discussed above, the following
three general issues apply to any commu-
nication medium.

First, a medium should be wide-
spectrum. The user should be able to
specify everything from very abstract
properties to low-level implementation
advice. This is necessary (at least for the
foreseeable future) because automatic pro-
gramming systems cannot operate without
getting a certain amount of advice at all
ley& It is desirable for wide-spectrum
codmunication to be supported in a sin-
gle coherent formalism. However, in addi-
tion to a general-purpose wide-spectrum
language, the ideal automatic program-
ming system would support a number of
special-purpose languages.

Second, because of programming’s
inherently iterative nature, a medium must
be able to support a dialogue between the
user and the automatic programming sys-
tem. Therefore, serious attention must be
paid to the language the system is going to
use when speaking to the user. In addition,
the input language must be capable of
expressing “metalevel” information, that
is. information about changes to the state
of knowledge. One can imagine how nat-
ural language would serve well as a dia-
logue medium; however, restricted
notations, such as very high level lan-

August 1988 45

guages, are clearly not sufficient by them-
selves.

Third, a medium should come with a
large vocabulary of predefined terms so
that the system can converse with the user
at a suitably high level. Given a choice,
most users would prefer to use an awk-
ward medium in which almost everything
they want is already defined, rather than
an otherwise convenient medium in which
everything needs to be defined from first
principles.

How does the system
work?

Automatic programming systems map
a configuration of domain-specific terms
(a requirement stated in terms of one of the
input mediums above) into a configuration
of implementation-specific terms (a pro-
gram). Four mechanisms currently being
pursued as a basis for such systems are
procedural methods, deductive methods,
transformational methods, and inspection
methods.

Procedural methods. To date, the most
successful approach has been to simply
write a special-purpose program that gets
the right results. For example, most cur-
rent compilers and program generators are
essentially procedural in nature, although
a few use transformations to some extent.

The big advantage of procedural
methods is that they let you get off the
ground fast. It is very seldom difficult to
support the first few desired features. Fur-
thermore, you can always (try to) modify
the code to support any additional feature.

Unfortunately, as more and more fea-
tures are added to a procedural system,
you reach a point of rapidly diminishing
returns, because the system becomes
progressively more difficult to modify. As
a result, it is unlikely that the procedural
approach can support the broad-coverage
end-user-oriented automatic program-
ming systems of the future.

Deductive methods. The problem of
synthesizing a program satisfying a given
specification is formally equivalent to
finding a constructive proof of the speci-
fication’s satisfiability . This fundamental
idea underlies the deductive approach to
automatic programming.’ In principle,
any method of automated deduction-
resolution, natural deduction, reasoning
about anonymous individuals-can be
used to support automatic programming.

Like engineers in
other disciplines,

programmers think
mostly in terms

of clichds.

Unfortunately, in practice none of these
methods is yet able to prove the kinds of
complex theorems required to synthesize
programs of realistic size.

Deduction is basitally a problem of
searching for an inference path from some
initial set of facts to a goal fact. The search
is exponential in nature because at every
step there are many ways for inference
rules to be applied to facts. Current deduc-
tive systems cannot discover complex
proofs because they are unable to effec-
tively control the search process.

To deal with this control problem,
deductive systems typically must adopt the
assistant approach-that is, they seek
advice from the user. Unfortunately, users
who want to avoid programming probably
want to avoid theorem proving as well.

An even more fundamental problem
with the deductive approaqh is that it is at
odds with the need for an automatic pro-
gramming system to make a good-faith
effort to satisfy the “spirit” of a require-
ment. For example, the theorem-proving

programming system is a program written
in a very high level language. A sequence
of transformations is applied to convert
this input into a low-level implementation.

A transformation has three parts: a pat-
tern, a set of logical applicability condi-
tions, and an action procedure. When an
instance of the pattern is found, the logi-
cal applicability conditions are checked to
see whether the transformation should be
applied. If the applicability conditions are
satisfied, the action is evaluated to com-
pute a new section of code, which is used
to replace the code matched by the pattern.
Typically, transformations are correctness
preserving, meaning that the matched code
and its replacement represent logically
equivalent computations.

Two basic kinds of transformations
exist. Some transformations replace
specification-like constructs (for example,
quantification over a set) with conven-
tional constructs (for example, iteration
over a list). These transformations encode
knowledge of how t o implement
algorithms and data structures. Other
transformations perform rearrangements
and optimizations (for example, moving
an unchanging computation out of a
loop), which do not change the level of
abstraction. In practice, these two kinds of
transformations are interleaved in long
sequences, passing through multiple levels
of abstraction.

The central feature of transformational
methods is the transformational rewrite
cycle. The state of the transformation pro-
cess is represented as a program in a wide-
spectrum representation capable of
expressing both the user’s input and the
desired result. On each cycle, a transfor-

process contains no bias toward finding , :mational system selects a transformation
the proof corresponding to the most effi-
cient progran, or even a reasonably effi-
cient program.

Despite these limitations, deductive
methods have several advantages. In par-
ticular, they are very general and quite
effective, as long as they are limited to
proving simple theorems. As a result,
deductive methods are certain to play an
important role in the automatic program-
ming systems of the future. The challenge
is to combine automated deduction with
other methods so that its inherent limita-
tions can be avoided.

Transformational methods. Transfor-
mational implementation systems* (for
example, TI6 and PDS? dominate current
research in automatic programming. In
this approach, the input to the automatic

‘and applies it to some place in the pro-
gram. The cycle continues, accumulating
the results of longer and longer chains of
transformations, until some condition is
satisfied (for example, until there are no
more very high level constructs).

In many ways, sequences of transfor-
mation steps are not that different from
sequences of proof steps. Therefore, it is
not surprising that transformational
implementation systems suffer from essen-
tially the same control problem as auto-
matic theorem provers. As a consequence,
transformational systems must either seek
advice from the user or place strong res-
trictions on the kinds of transformations
that can be used. Unfortunately, advice-
taking transformational systems are not
much more satisfactory than advice-taking
deductive systems and have not yet made

46 COMPUTER

it out of the laboratory. However,
restricted transformational modules can
be found as components of various com-
pilers and other systems.

An interesting aspect of transformation
sequences is that they usually contain a
small percentage of key steps (typically
making decisions about how to implement
abstractions) interleaved with many small,
less intuitive steps that set things up and
move things around. Current research on
transformational methods is directed
toward automating the many small steps
while seeking user advice on the key steps.

A major strength of transformational
methods is that they provide a very clear
representation for certain kinds of pro-
gramming knowledge. For this reason,
transformational methods in some form
are certain to be part of all future auto-
matic programming systems.

Inspection methods. Human program-
mers seldom think only in terms of primi-
tive elements such as assignments and
tests. Rather, like engineers in other dis-
ciplines, they think mostly in terms of
cliched combinations of elements cor-
responding to familiar concepts. Succes-
sive approximation, interrupt-driven
architecture, and information system are
examples of cliches spanning the range
from low-level implementation ideas to
high-level specification concepts.

Given a knowledge of cliches, it is pos-
sible to perform many programming tasks
by inspection rather than by reasoning
from first principles. For example, in anal-
ysis by inspection, properties of a program
are deduced by recognizing occurrences of
cliches and referring to their known
properties. In synthesis by inspection,
implementation decisions are made by
recognizing cliches in specifications and
then choosing among various cliched
implementations. By using global under-
standing, inspection methods reduce the
search-control problems that arise with
other methods.

The central feature of inspection
methods is the codification and use of
cliches. A cliche has three parts: a skeleton
that is present in every occurrence of the
cliche, roles whose contents vary from one
Occurrence to the next, and constraints on
what can fill the roles. An essential prop-
erty of cliches is their interrelationships.
For example, a cliche may specialize or
extend another cliche. Algorithmic and
data structure cliches implement specifica-
tion cliches. These relationships are the
driving force behind analysis and synthe-

ically, transformationally, or in ~ some
other way, the benefits of automatic pro-

Benefits of automatic
programming can be

traced almost
exclusively to reuse.

sis by inspection.
As with deductive and transformational

methods, it has not yet been shown that
inspection methods can be automated
without advice from the user. However,
when used with the assistant approach to
automatic programming, inspection
methods have an important advantage: A
shared vocabulary of cliches is a natural
medium for communicating explanations
and advice between the system and the
user.

Following the assistant approach, the
Programmer's Apprentice project'0911 has
demonstrated several aspects of inspection
methods. For example, given a library of
cliches, the system can automatically ana-
lyze a program to identify the algorithms
used. In addition, programs can be con-
structed by combining user-selected
cliches. Current research is directed
toward automatic selection of some of the
cliches to use.

In human programming, inspection
methods are the most effective approach,
whenever applicable. However, since
inspection methods are ultimately based
on experience, they apply only to the rou-
tine parts of programming problems. As
a result, inspection methods must be used
as part of a hybrid strategy that falls back
on more general methods such as deduc-
tion and transformation when inspection
fails.

What does the system
know?

No matter what mechanism is used
inside an automatic programming system,
the system.must have at least an implicit
knowledge of domain cliches (so that it can
interpret the terms used by the user) and of
programming cliches (so that it can pro-
duce programs without endlessly "rein-
venting the wheel"). Whether knowledge
of cliches is represented procedurally, log-

gramming can be traced almost exclusively
to the productivity and reliability benefits
of reusing this knowledge. The following
examples of programming cliches illus-
trate the diversity of knowledge required:

Matrix add-the algorithm for adding
together two matrices. This cliche is
independent of the data representation
of the matrices and the type of number
stored in the matrices.
Stack-the data abstraction and its
associated operations. Both the repre-
sentation and the operations are
independent of the type of stack
element.
Filter positive-selecting the positive
elements of a temporal sequence of
quantities in a loop. For example, in the
code fragment below, the if statement
implements a filter positive.

do . . .
x : = . . . ;
ifX>Othen . . . X . . . ;

end;

This cliche is independent of the type of
number in the sequence and how the
sequence is generated.
Master file system-a cluster of pro-
grams (reports, updates, audits, etc.)
that operate on a single master file,
which is the sole repository for informa-
tion on some topic. This cliche is essen-
tially a set of constraints on the
programs and how they interact with the
file. It is independent of the kind of data
stored in the file and the details of the
computation performed by the
programs.
Deadlock free-the property of a set of
asynchronously interacting programs
that guarantees they will not reach a
state where each program is blocked
waiting for some other program to act.
This cliche restricts the ways in which
the programs can interact. However, it
is independent of the details of the com-
putations performed by the programs.

The cliches above differ along many
dimensions. Matrix add is primarily com-
putational, while stack is data oriented.
Matrix add can be used in a program as a
module, while filter positive is fragmen-
tary and must be combined with other
fragments to be useful. Matrix add, stack,
and filter positive are all relatively low-
level, localized cliches. In contrast, mas-

August 1988 41

Programming-knowledge representations
This diagram traces the

inheritance of ideas among the
major approaches that have been
used to represent programming
knowledge. The two oldest
approaches are subroutines and the
encoding of knowledge in proce-
dures that “write the right code.”
Subroutines are very limited in
expressive power but are easy to
combine. In contrast, procedural
encoding has unlimited expressive
power but makes it very hard to com-
bine cliches.

Program schemas extend the
expressive power of subroutines,
while macros are essentially a
restricted and more tractable form of
procedural encoding. Flowcharts and
flowchart schemas (especially those
that include dataflow as well as con-
trol flow) introduce the idea of
programming-language inde-
pendence.

Logic can express even the most
diffuse cliches in a declarative fash-
ion. However, because of the weak-
ness and inefficiency of current
automatic theorem provers, pure
logic is not sufficiently machine
manipulable to serve as the sole rep
resentation for programming clichbs.
Data abstraction approaches com-
bine program schemas (to specify
abstract operations) with logic (to
specify data structure invariants).

Goal and plan representations are
used to explain the structure of p ro
grams at a deeper level than source

Subroutines

Program
Flowcharts schemas

I

text. This information is essential if
an automatic programming system is
to explain its actions.

Program transformations” incor-
porate ideas from program schemas,
macros, and logic. As discussed in
the subsection on transformational
methods, a transformation has three
parts: a pattern (which is essentially
a program schema), a set of logical
applicability conditions, and an
action (which is essentially a macro).

The Plan Calculus” .combines ideas
from many of the representations
described above. It achieves
programming-language independ-
ence through the use of dataflow and
control-flow notions from flowchart
schemas. It uses aspects of logic
and data abstractiosto represent
data invariants and other diffuse
aspects of cliches. It uses goals and
plans to keep a record of the design
decisions in a program. And, it
includes the concept of language-
independent, bidirectional program
transformations, which link pairs of
flowchart schemas.

is completely satisfactory. If auto-
matic programming systems are to
continue to improve, representations
must be developed that are both eas-
ier to manipulate and capable of
representing aspects of program-
ming knowledge (such as efficiency
information) that are not readily cap
tured by any current formalism.

None of the representations above

Procedural
encoding

Macros
I

I A L T
Goals plans & schemas F l o L A transformations Program ’ /,action

I

. I

8 . a

ter file system and deadlock free are high
level and diffuse.

Representing and using such a wide vari-
ety of clichCs in an automatic program-
ming system is a major challenge. The
following are the main desiderata for a
suitable knowledge representation:

Expressiveness-The representation
must be able to express as many differ-
ent kinds of cliches as possibIe.
Convenient combination-The methods
of combining cliches must be easy to
implement, and the properties of com-
binations should be evident from the
properties of the parts.
Semantic soundness-The representa-
tion must be based on a mathematical
foundation that allows correctness con-
ditions to be stated.
Machine manipulability-It must be
possible to manipulate the representa-
tion effectively using computer tools.
Programming-language independence
-The representation should not be tied
to the syntax of any particular program-
ming language.
In light of this “wish list,” an accom-

panying sidebar discusses the various
representations developed to date for pro-
gramming cliches.

Commercially available
systems

Academic research in automatic pro-
gramming has focused on developing tech-
niques that can support broad-coverage,
fully automatic programming. Unfor-
tunately, while this research points toward
long-term progress, it has not yet had very
much impact on commercial systems.

Work in the commercial arena has
focused on more modest goals and has
been able to make significant steps toward
automatic programming based on proce-
dural methods. In particular, development
has quickened over the last few years with
the introduction of so-called computer-
aided software engineering, or CASE.

Database query systems. Perhaps the
greatest commercial automatic program-
ming success story has been the develop-
ment of database query systems (for
example, Information Builders’ Focus).
These systems have limited capabilities
and are not suitable for complex applica-
tions. However, they allow end users to
retrieve information from a database and
produce customized reports without the
help of programmers.

48 COMPUTER

Within their narrow domain of applica-
bility, database query systems are both
end-user oriented and fully automatic. In
simple applications, these systems have
taken over completely, making automatic
programming an everyday reality.

Fourth-generation languages. Follow-
ing the bottom-up approach to automatic
programming, a number of commercial
systems have been introduced that achieve
a broader range of coverage than database
query systems. They do this by sacrificing
end-user orientation. Most such systems
offer a combination of special-purpose
interfaces (such as screen painters and
report generators) and a very high level
language designed specifically for business
data processing applications. Systems that
execute their languages interpretively, such
as Applied Data Research’s Ideal and
Software A.G.’s Natural, are typically
called fourth-generation languages.

Fourth-generation languages are used to
some extent at perhaps ten thousand sites.
However, though there is great enthusiasm
about their potential, fourth-generation
languages are far from displacing Cobol.
This is because they are relatively ineffi-
cient and cannot be used conveniently in
conjunction with preexisting applications.

Program generators. Program genera-
tors, such as Transform Logic’s Trans-
form and Pansophic Systems’ Telon, are
very similar to fourth-generation lan-
guages except that instead of operating
interpretively, they generate Cobol code.
In exchange for this increase in efficiency,
program generators must settle for sup-
porting a narrower range of features.

Program generators are used at approx-
imately a thousand sites. Although more
efficient than fourth-generation lan-
guages, their acceptance is limited by their
narrower focus and by the difficulty of
using them in conjunction with preexisting
code.

High-level design aids. Graphical tools,
such as Index Technology’s Excelerator,
that support high-level software design
methodologies take a different tack. These
systems support the manipulation of high-
level designs without being able to gener-
ate executable code. High-level design
aids, therefore, exemplify the assistant
approach to automatic programming
rather than the bottom-up approach.

Tools of this general type are used at
several thousand sites and are rapidly
becoming a standard part of the program-

ming process. However, their acceptance
is slow because they lack integration with
other tools and they leave code generation
to the user.

Project management tools. While con-
sidering the assistant approach to auto-
matic programming, we should also point
out the growing capabilities of project
management tools. These tools provide
relatively modest but significant support
for managing the programming process.
For example, products such as BIS
Applied Systems’ BIS/IPSE and Imperial
Software Technology’s ISTAR provide
facilities for breaking down a project into
tasks and tracking their progress, both for
configuration and version control and for
the generation of various kinds of
documentation and management reports.

If in-house tools are cou~@A, program-
ming management aids are rapidly on the
way to becoming the norm rather than the
exception in large projects. Assuming that
automatic programming is unlikely to
make the problems of managing cooper-
ative work disappear, the need for such
tools will continue.

Very high level prototyping languages.
The one place where academic research
has significantly affected commercial sys-
tems is in very high level prototyping lan-
guages. These languages represent a
compromise between desires and reality;
while researchers would like to create
extremely high level languages that could
be compiled into efficient code, it is not yet
possible-even with significant sacrifices
in the language-to create production-
quality code. The current status of general-
purpose, very high level prototyping lan-
guages is typified by Reasoning Systems’
Refine,’ which is based on research
initiated at Stanford University. P r ~ l o g , ~
which is based on logic-programming
research at Imperial College, is also being
used as a very high level prototyping
language.

The exact extent of very high level pro-
totyping language usage is not clear. How-
ever, it probably does not exceed a
hundred sites. Acceptance of this
approach is currently limited by the fact
that rapid prototyping as a methodology
is far from universally accepted.

On the horizon
Over the next several years, progress

toward automatic programming will

almost certainly follow the course set by
currently available systems. Although con-
ditions point to relatively rapid progress in
CASE tools, radical breakthroughs seem
unlikely. Rapid progress is possible
primarily in the ways in which currently
available systems are used.

Technological advances. The quality of
commercially available programming
tools should improve markedly in the next
few years. In particular, high-level design
aids (for example, Texas Instruments’
IEF) will be extended to generate executa-
ble code in many situations. Fourth-
generation languages and program gener-
ators will add support for slightly higher
level constructs and somewhat less narrow
domains of applicability. In addition,
there will be a general trend toward greater
integration of programming tools. With
any luck, these incremental improvements
should be enough .to promote most of
these tools from experimental use to full-
scale acceptance.

The developers of very high level pro-
totyping languages, such as Refine, are
strongly committed to increasing the effi-
ciency of the code produced. Some ineffi-
ciency is more or less incidental and will
undoubtedly be eliminated. However,
other problems are intrinsic to the
approach: The whole point of very high
level languages is to write a program using
algorithms oriented toward clarity rather
than efficiency, and since clear algorithms
are often very inefficient, efficiency often
requires radical changes. Unfortunately,
no one knows how to identify such
changes automatically or how to take
advice on the subject effectively.

TR date, essentially all commercializa-
tion of automatic programming research
has been via the very high level language
approach. However, we will soon begin to
see the first commercialization of research
on the assistant approach. For example,
Bachman Information Systems is develop-
ing a programming assistant product
based in part on research at MIT.

Rapidly decreasing prices for worksta-
tion and database hardware provide an
important opportunity. Soon, a threshold
will be reached where it will be practical to
capture on line all the intermediate work-
products of the programming process,
whether produced manually or automati-
cally. Besides being intrinsically beneficial,
this will drive further automation.

Basic research on automatic program-
ming is very much like cancer research: A
host of fundamental problems remain to

August 1988 49

be solved. Therefore, it is highly unlikely
that anyone will discover a “silver bullet”
that will remove all obstacles to the rapid
development of general-purpose auto-
matic programming. However, research-
ers will continue to chip away at the
problem from many directions.

Management changes. Progress in any
kind of automation is always obstructed
by management problems as much as by
technological hurdles. At least four major
changes must occur at the management
level if the potential of automatic pro-
gramming is to be realized.

First, we must recognize that capitaliza-
tion for programming needs to be
increased. In most organizations, a dollar
spent on additional computer hardware or
programming tools will bring significantly
more benefits than a dollar spent on addi-
tional programmers. (Studies have shown
that significant productivity gains can be
obtained merely by giving programmers
offices with doors!)

Second, given that the heart of auto-
matic programming is reuse, economic
incentives in software development and
acquisition need to be revised to foster
reuse. Under current contracting practices,
there is often an economic incentive
against software reuse and the production
of easily maintainable software.’* Policies
whereby contractors would increase their
profit by reusing software developed by
others-or were paid extra if they
produced something that someone else
reused-would be steps in the right direc-
tion. It would also be a good idea to tie
some part of profit to the long-term costs
of the delivered software.

Third, management must recognize that
the only way to reduce the lifetime costs of
software is to spend more supporting the
early parts of the process-requirements
definition, specification, and design. For
example, people often talk about software
reuse as if it were some miraculous way to
reuse code that has already been written.
In fact, there is no way to reuse software
unless it is carefully designed to be reusa-
ble. This pays big dividends, but it requires
significant “up-front” expenditures.

Finally, as with all automation, the real
promise of automatic programming is not
just in automating wh.at is done now but
in completely changing the way things are
done. In the case of office automation, for
example, it pays to redesign the whole
information flow in the office rather than
put the same old paper forms into an elec-
tronic medium. Withrprogramming, this
means reexamining the traditional model
of the software life cycle, which is begin-
ning to happen with the increasing accep-
tance of prototyping. It also means
breaking down conventional distinctions
between languages, environments, and
interfaces, which is occurring in the form
of graphical interfaces and object-oriented
programming.

utomatic programming in the
form of compilers for high-level
languages became available in

the late 1950s. By the late 1960s, it was
clear that the next logical step was to move
up to very high level languages. However,
this step turned out to be much more dif-
ficult than expected, and progress on the
bottom-up approach to automatic pro-

Moving?
PLEASE NOTIFY
US 4 WEEKS
IN ADVANCE

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

ATTACH
LABEL

This notice of address
change will apply to all
IEEE publications to
which you subscribe.

List new address below.

If you have a question
about your subscription,
place label here and clip
this form to your letter.

Name (Please Print) I New Address

City

Statelcountry Zip

50

gramming was essentially stalled during
the 1970s.

The main focus of work on automatic
programming in the 1970s switched to the
narrow-domain approach. Since then, a
variety of systems, such as database query
languages, have been constructed that
deliver end-user-oriented, fully automatic
programming in small domains.

In the 198Os, interest has returned to the
bottom-up approach. This has led to the
appearance of very high level prototyping
languages. In addition, we have seen the
arrival of fourth-generation languages and
program generators that are more narrow
in their focus as well as more efficient. The
1980s have also seen increased interest in
the assistant approach to automatic pro-
gramming in the guise of high-level design
aids and other adyanced programming
tools.

A further look into the future reveals no
sign of the cocktail party version of auto-
matic programming. However, there will
be significant evolutionary progress. With
luck, we will be saying much the same
thing about automatic programming in
1998 that we said in 1958-that it has
improved programmer productivity dra-
matically and has further reduced the dis-
tinction between programmers and end
users. 0

References . .- ’ I . D.R. Barstow, “A Perspective on Auto-
matic Programming,” AIMagazine, Vol.
5, No. I , Spring 1984, pp. 5-27.

2. J.M. Neighbors, “The Draco Approach to
Constructing Software from Reusable
Components,” IEEE Trans. Software
Eng., Vol. 10, No. 5, Sept. 1984, pp.
564-574.

3. J. Cohen, “Describing Prolog by Its
Interpretation and Compilation,” Comm.
ACM, Vol. 28, No. 12, Dec. 1985, pp.

4. J.T. Schwartz et al., Programming with
Sets: An Introduction to SETL, Springer-
Verlag, New York, 1986.

5. L.M. Abraido-Fandiiio, “AnOverview of
Refine 2.0,” Proc. Second Int’l Symp.
Knowledge Eng.-Software Eng., Madrid,
Apr. 1987.

6. R.M. Balzer, “A 15-Year Perspective on
Automatic Programming,” IEEE Trans.
Software Eng., Vol. 11, No. 1 I , Nov. 1985,
pp. 1257-1267 (special issue on artificial
intelligence and software engineering).

1311-1324.

COMPUTER

7. Z. Manna and R. Waldinger, “A Deductive
Approach to Program Synthesis,” ACM
Trans. Programming Languages and Sys-
tems, Vol. 2. No. 1, Jan. 1980, pp. 90-121.

8. H. Partsch andT. Steinbriiggen, “Program
Transformation Systems,” ACM Comput-
ing Surveys, Vol. 15, No. 3, Sept. 1983, pp.

9. T.E. Cheatham, “Reusability Through
Program Transformation, ” ZEEE Trans.
SoftwareEng., Vol. 19, No. 5, Sept. 1984,

10. R.C. Waters, “The Programmer’s Appren-
tice: A Session with KBEmacs.” ZEEE
Trans. Software Eng., Vol. 11, No. 11,
Nov. 1985, pp. 1296-1320 (special issue on
artificial intelligence and software
engineering).

11. C. Rich, “A Formal Representation for
Plans in the Programmer’s Apprentice,”
Proc. Seventh Int’l Joint Con$ Artificial
Intelligence, Morgan Kaufmann, Los
Altos, Calif., 1981, pp. 1044-1052.

12. G. Gruman, “Study Criticizes Defense
Dept. Development, Acquisition,” IEEE
Software, Vol. 5 , No. 1, Jan. 1988, p. 87.

(Editor’s note: References 1,2,7,9,10, and 11
are reprinted in Readings in Artificial Intelli-
genceand Software Engineering, C . Rich and
R.C. Waters, eds., Morgan Kaufmann, Los
Altos, Calif., 1986.)

199-236.

pp. 589-595.
Charles Rich is a principal research scientist at
the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology, where
he has worked since 1980. He and coauthor
Waters are the principal investigators of the
Programmer’s Apprentice project. Rich’s
research interests are knowledge representation
and the application of artificial iptelligence to
engineering problem solving, especially in soft-
ware engineering.

Rich received a bachelor’s degree in engineer-
ing science from the University of Toronto and
master’s and doctor’s degrees in artificial intel-
ligence from MIT. He is a member of the Assoc.
for Computing Machinery a n u h e American
Assoc. for Artificial Intelligence as well as the
Computer Society.

Richard C. Waters is a principal research scien-
tist at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology,
where he has worked since 1978. He and
coauthor Rich are the principal investigators of
the Programmer’s Apprentice project. Waters’
other interests include programming languages
and engineering problem solving.

Waters received a bachelor’s degree magna
cum laude in applied mathematics (computer
science) from Brown University, a master’s
degree in computer science from Harvard Uni-
versity, and a doctor’s degree in artificial intel-
ligence, with a minor in linguistics, from MIT.
He is a member of the Assoc. for Computing
Machinery and the American Assoc. for Arti-
ficial Intelligence and a senior member of the
Computer Society.

Readers may write to the authors at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology, 545 Technology Square, Cambridge, MA 02139.

wgs Your Last
s o ~ p r o j e c t

Late?
If your last sdhvare pmjectw late, you need Costa, asdhvare cost
estimation tool that will help you plan and manage your nert pmject.
costar is based on the COCOMO model described by Bany Boehm in
so/twa*-g-.

COCOMO is usedby hundredsofsdhvare managem to estimate the cost,
staffing levels, and schedule required to complete a pmject-it’s reliable,
repeatable, and accluate

costar estimates are based on E factors that strongly influence the &rt
q u i d to complete a pmject, including:

The Capability and Experience of your Pmgtammers & Analysts
The Complexity of your project
The Required Reliability of your pmject

costar is a complete implementation ofthe COCOMO “detailed” model,
soitcalculate-sestimatesforallphasesofyour~ject, h m Requirements
through Coding. Integration and Maintenance Costar puts you in control
ofthe estimation and planning procesg ancl pmvides hll baceabiility for
each estimate User definable cost driven and a wide variety of reports
makes Costu flexible and powerful.

costar also pmvides extensive support for “ a - i f ’ analyses You can
explore alternative pmject plans, and compare them side-by-side
Colhrnnr on the VAX and IEM PCS.

Softstar Syderns.
(603) 672-0987
28 hemah Road, = m * R
Amherst, NH 03031

Reader Service Number 6

olivetti research

Software Technology
Laboratory

If you are interested in working with a small but
expanding group of research-oriented people who
influence the directihfi of their lab, then consider
joining us at Olivetti Research/STL. Our primary
interest is the research and development of technology
that will increase the productivity of application
developers. Current work includes: a graphical editor
for user interfaces, a programming environment for
object-oriented languages, support for persistent data
and Rpc, and a window-based interface to a tele-
phone PBX. In conjunction with the Olivetti research
lab in England, we are conducting experiments in
video-based electronic mail and video conferencing.

If you’ are interested and have a PhD in Computer
Science (or equivalent experience), send a resume and
cover letter to

Dr. Carl Dellar, Director
Olivetti Software Technology Laboratory
5 Palo Alto Sq., Suite 910
Palo Alto, CA 94306

51

