
0018-9162/00/$10.00 © 2000 IEEE30 Computer

Coping with Java
Programming Stress

M
any developers view Java as the lan-
guage solution to complex software
engineering problems. They expect
Java programs to resist system crashes,
to be written once and run everywhere,

and to withstand malicious attacks. For the most part,
these expectations are reasonable. Java has many
attributes that promote reliable, bug-free software:
memory management to prevent memory leaks,
strong type checking to prevent the misuse of objects,
and built-in support for exception handling. Java’s
virtual machine model increases portability and its
security model provides a degree of safety when
importing externally developed code. All these fea-
tures are a great improvement over C++, Java’s nom-
inal predecessor. Indeed, initial experimental results
show greater programmer productivity and fewer pro-
gram bugs for development with Java versus C++.1

Unfortunately, however, no language is ideal, and
some features of Java contribute to rather than allevi-
ate programmer stress because they create obscure
places for bugs to hide. We have identified seven fea-
tures that can lead to particularly resistant bugs. Our
goal is not to indict Java—we are strong supporters,
and our own organizations have adopted Java as their
primary programming language. Rather, we want pro-
grammers to better understand Java’s weaknesses and
know how to cope with them. In some cases, the strate-
gies we suggest can prevent the weakness from affect-
ing implementation. In other cases, they can minimize
the damage. By being aware of these pitfalls and cop-

ing mechanisms, programmers can make sure that
Java’s design flaws don’t make implementation more
painful than it has to be.

ILLUSORY PROTECTION
The term “protected” implies support for encapsu-

lation. When you see it before a program component,
such as a variable or method, you naturally assume
that visibility to other components is restricted. That
is the purpose of encapsulation—to guard the integrity
of the protected component or the entity that owns it.
Once components outside that visibility border have
access to the protected member, that integrity cannot
be guaranteed. This is the case in Java: The visibility
hole for members specified as having protected access
is so large that protection is merely an illusion. A sim-
ilar problem occurs for class members not specified as
having a particular access (protected, public, or pri-
vate).

Like C++, in Java “protected” means access to other
members of the same enclosing class and to members
of its descendants via inheritance. Such access increases
the coupling between class definitions, but when an
object references a superclass’s variable, it is really just
referencing part of its own state. Java supports encap-
sulation, but it also grants the same access to members
of any class in the same package as the class having the
protected member. Thus, any class with the same pack-
age designator can read and write to protected fields
in any other class with the same package designator.

This creates two kinds of undesirable coupling: com-

Roger T.
Alexander
George
Mason
University

James M.
Bieman
Colorado
State
University

John Viega
Reliable
Software
Technologies

C O M P U T I N G P R A C T I C E S

Programmers who use Java know that it’s a
good language, but it isn’t ideal. Being aware
of Java’s weaknesses, like its protected access
and constructor confusion, will help you deal
with them more intelligently.

mon coupling between all objects in the same package
that reference a protected instance, and content cou-
pling when objects reference a protected method that
implements representation-dependent behavior.

The result is that any change to a protected mem-
ber can ripple across to an unlimited (and possibly
expanding) number of classes with the same package
designator. And any component with the same pack-
age designator can modify a protected variable and
force objects into invalid states.

Figure 1 shows how Java’s access rules fail to sup-
port encapsulation when a new class is added. In the
Vehicle class, the protected instance variable VIN rep-
resents a Vehicle instance or object’s vehicle identifi-
cation number. VIN should be unique for each Vehicle
object and should not change during that object’s life.
These conditions are the Vehicle object’s implied vari-
ants.

However, because the RegisteredVehicle class is in
the Rogue Class File and is a member of the autos
package, it can access the protected variable VIN and
possibly modify it, which in turn can violate the
implied invariants of the Vehicle object described ear-

lier. This object’s behavior is now quite unpredictable.
Certainly, if used with care, a package can define a

collection of closely related abstractions that honor
each other’s semantics and consistency rules. The point
is that Java cannot enforce such practices. You must
rely on local honored conventions, such as coding stan-
dards, which may fail to prevent inappropriate access.

It is, of course, convenient to be able to add a new
class into a package simply by using the package des-
ignator in the class code. Unfortunately, this conve-
nience comes at the cost of encapsulation and safety.
An arbitrary third party unaware of any established
convention or policy could add a class just as easily.
New classes added to the same package thus gain
complete access to all protected members of every
other class in the named package. And these new
classes can subsequently violate (inadvertently or
deliberately) any conventions or policies.

How to cope. Regrettably, the only way to protect a
member from undesired access is to avoid using pro-
tected access. Even though you often want descen-
dant classes to access protected members, there is just
no way to restrict access to the descendants only.

April 2000 31

/* A class with a protected VIN Field */

package autos;

public class Vehicle{
private double speed;
private double direction;
private String ownerName;
protected int VIN;
private static int highestVIN = 0;

public Vehicle(){highestVIN++ ; VIN = highestVIN;}
public Vehicle(String name) {this(); ownerName = name;}

public void setSpeed(double s) {speed = s;}
public double getSpeed() { return speed;}

public void setDirection(double d) {direction = d;}
public double getDirection() { return direction;}

}

/* A Rogue Class File */

package autos; /*** gains access to VIN fields by declaring itself in the
targeted package ***/

import autos.Vehicle;

public class RegisteredVehicle {

static public void main(String[] args) {
Vehicle v1 = new Vehicle(“George”);
v1.setSpeed(49.5);
v1.setDirection(45.0);
v1.VIN = v1.VIN * 10; /**** We multiply and change a VIN ****/

}
}

Figure 1. Why protection is weak with Java’s protected access. The term “protected” implies support for encapsulation, but in
this example, the RegisteredVehicle class breaks the encapsulation of the protected instance variable VIN in the Vehicle class.
As a result, the RegisteredVehicle class can circumvent any constraints imposed in VIN by Vehicle and possibly make the state
of a Vehicle instance inconsistent. [Example from The Java Programming Language, 2nd ed., K. Arnold and J. Gosling, Addi-
son-Wesley, Reading, Mass., 1997]

32 Computer

Until the nature of protected access in Java changes,
we suggest treating protected access as if it reads
“unprotected.” Make no assumptions about the
integrity of any class with protected members.

CONSTRUCTOR CONFUSION
One of Java’s advertised strengths is that it initial-

izes all variables before the program uses them. Thus,
in principle, a program will invoke a class’s methods
only after it has initialized all class instance variables.
However, the semantics of initialization and con-
struction in Java are not that simple. For example, a
program can use instance variables before it builds the
object that owns them.

The confusion results in part from the distinction
between variable initialization and class construction
and the order in which they can occur. When it cre-
ates a new class instance, the program first initializes
variables local to that class. It then executes superclass
constructors and explicitly initializes any local vari-
ables. Finally, it executes the local constructor, if it is
present. A constructor can call methods, which the
program can override in a descendant class. When a
superclass constructor calls an overriding method
while the program is building a descendant class
object, the overriding method will execute before the
program finishes initializing the descendant class
instance. Because the construction process has not set
the local variables that the overriding method can use,
strange and unanticipated behavior can result.

Figure 2 demonstrates the complex order of initial-
ization and construction and the ensuing confusion.
The first statement in the method main of the Test class
creates a new Test object. The program then initial-

izes the instance variable indiana to the default value
0, deferring the explicit initialization to the value of
Math.PI. The program continues by invoking the con-
structor of the superclass, Super(), which in turn
invokes the PrintThree() method. The method invoked
is not the PrintThree() method within Super, however,
but the PrintThree() method in the Test class.

The program invokes the method even though it
has not completely initialized indiana. Thus,
PrintThree() prints a 0, which is indiana’s current
value. The program then regains control from Super’s
constructor and initializes indiana to the explicit value
Math.PI (the floating-point value of π becomes the
integer 3). If the Test class has a constructor, the pro-
gram would run it now and complete the building of
the Test object (t). The program then invokes
printThree() of the Test object, which prints out the
current value of indiana, now 3.

Methods that execute before initialization or con-
struction are dangerous at best. Their behavior is likely
to invalidate assumptions made by the authors of both
the parent and descendant classes. When a base class
constructor calls a method, unless the constructor
invokes only final methods, the method defined in the
base class may not be the one that actually executes.
When this happens, the assumptions about the called
method aren’t likely to hold.

How to cope. One approach is to require that all
method calls in constructors invoke only local meth-
ods designated as final. This will not solve the prob-
lem, however, unless all local method calls made from
a constructor result in the execution of only methods
that are also defined to be final. This makes it
extremely difficult to ensure correctness if you are
designing a descendant class. You must have a detailed
understanding of the semantics of the implementation
of all ancestor classes—particularly how an overrid-
ing method affects the parent class’s state-space and
which methods could possible execute in the uncon-
structed descendant class object.

This constructor confusion is likely to be the source
of many faults, particularly if you have a C++ back-
ground, since how C++ constructors deal with local
method calls is nearly the opposite of how Java con-
structors deal with them. For example, suppose the
program is constructing an instance of a derived class
in C++. A call from a base-class constructor to a poly-
morphic (virtual) method defined in the base class
always results in the execution of the base-class
method, even when the derived class has an overrid-
ing definition of the called method. This C++ con-
struction behavior is in stark contrast to that in Java.

FINALIZATION FOLLIES
Because of Java’s mandated garbage collection, you

can ignore the details of memory management.

class Super {
Super() { printThree(); }
void printThree() { System.out.println(“three”);

}

class Test extends Super {
int indiana = (int)Math.PI; // That is, pi=3 in

// Indiana.
public static void main(String[] args) {

Test t = new Test();
t.printThree();

}
void printThree() { System.out.println(indiana); }

}
Produces the following output:

0
3

Figure 2. An example of the complex order of initialization and construction that causes
constructor confusion. A constructor, Super(), causes an uninitialized variable,
indiana, to be used, when the program initializes a subclass, Test. [Example from The
Java Language Specification, J. Gosling, B. Joy, and G. Steele, Addison-Wesley, Read-
ing, Mass., 1996, p. 231.]

Unfortunately, you must still manage the ownership of
other resources. Thus, you must deal with many of
the complex issues that C++ programmers address
using destructors. Although memory leaks will not
occur, scheduling the execution of Java class finaliz-
ers,2 Java’s form of destructor, can cause other
resource leaks.

Java finalizer methods run when the program is
through with an object and must release resources the
object still holds. However, unless explicitly invoked,
a finalizer runs only during garbage collection, rather
than when the object loses its last reference. Thus,
finalizers run at unpredictable times, just like garbage
collection. The uncertainty about the time that the
finalizer runs can lead to trouble. Suppose a class has
a constructor that allocates a network connection and
a finalizer that closes down the connection. Many sys-
tems map each network connection to a file pointer
in the operating system. Generally, relatively few file
pointers can be open at once. If a program instanti-
ates and then discards a large number of these objects
before the garbage collector calls any finalizers, any
attempt to create a new file or network connection
will fail.

How to cope. Don’t count on finalizers executing in
a timely manner. In fact, there is no guarantee that
finalizers will ever run at all. For example, when the
program exits, no finalizers will run for any objects
that have become garbage since the last collection,
unless the programmer explicitly ensured that the
program called System.runFinalizersOnExit(true).
Even that is no guarantee that the finalizer will run.
For example, the current version of Sun’s Java virtual
machine will not run the finalizer if an outside signal
terminates it.

Also, don’t expect finalizers to execute in a deter-
ministic order. For example, finalizers will not neces-
sarily run in the order that the objects became garbage;
the actual order is unspecified.2

The best strategy is to avoid finalization if possible.
If you must use it, and your finalizers must be called
in a timely manner, explicitly call the garbage collec-
tor that will invoke the finalizers. For this to work,
you must know beforehand that a given object will be
available for finalization, which means that you must
track all references to that object. An explicit call to
the garbage collector will not invoke an object’s final-
izer if any references to the object remain.

An alternative is to add public methods that the
program can call to release resources an object is hold-
ing even though it no longer needs them. However,
again, you must track all references to the object hold-
ing the resources and assign the responsibility for call-
ing the methods. This isn’t trivial, and an error can be
costly: A resource could be deleted when clients are
still using it.

INHERITANCE WITHOUT SPECIALIZATION
Subclasses are descendants of other defined

classes. Java and other object-oriented lan-
guages let you substitute a subclass object for a
superclass object. However, you must satisfy
certain properties to guarantee that your sub-
stitution is safe.3 One safe substitution is when
the subclass is a specialization of the superclass.
For example, a Cartesian point with color
attributes can be a specialization of a Cartesian
point without color. You can then substitute a
colored point for a plain point because any
behavior of plain points also applies to colored
points.

Problems can occur when a subclass is not a true
specialization of its superclass. Consider the
java.util.Stack class, which is part of the java.util
package. Class java.util.Stack is a subclass of
java.util.Vector. Stack defines common stack methods
such as push(), pop(), and peek(). However, because
Stack is a subclass of Vector, it inherits all the meth-
ods Vector defines. Thus, you can supply a Stack
object wherever the program specifies a Vector object.
A program can insert or delete elements at specified
locations in a Stack object using Vector’s insert-
ElementAt or removeElementAt methods. It can even
use Vector’s removeElement method to remove a spec-
ified element from a Stack object without regard to
the element’s position in the stack.

Consequently, the java.util.Stack can exhibit behav-
ior that is not consistent with the notion of a stack as
a last-in, first-out entity. In addition, a program can
access all the Vector operations on Stack objects
directly when the Stack objects are not being substi-
tuted for Vector operations.

A stack is not a specialized vector, and it should not
inherit vector operations. Instead, a vector should be
a hidden, private representation of a stack. Stack
objects cannot then export inappropriate vector oper-
ations. This preferred design uses aggregation, which
lets you use inheritance and polymorphism to replace
the vector representation with alternative implemen-
tations. If you use inheritance properly, the design will
be more flexible and efficient.

How to cope. In general, substitution will be safe if
you use a subclass when the derived class is a special-
ization of the superclass. In this “is-a” relationship,
subclass objects behave similarly to superclass objects
but have additional features, operations, or both. If
you are unsure how to use inheritance, Bertrand
Meyer offers a good taxonomy that classifies both
proper and improper uses.4 Improper use of subclasses
in Java can be an especially troublesome source of
bugs that are difficult to diagnose and correct. Java
does not provide the mechanisms that C++ does to
make improper subclasses a bit safer. In particular,

April 2000 33

Improper use of
subclasses in Java

can be an especially
troublesome source

of bugs that are
difficult to diagnose

and correct.

34 Computer

there is no mechanism to hide inherited members or
to break the type relationship with the subclass’s par-
ent. Thus, there is no way to prevent a client from see-
ing a descendant as an instance of its base class.

One approach is to provide overriding methods for
each inherited method and implement them by throw-
ing invalid method exceptions. Unfortunately, you can-
not override any methods that are declared as final in
a parent class. You must also declare the exception in
the parent class unless you throw an unchecked excep-
tion, such as those derived from RuntimeException.
Another possible solution is to use some sort of asser-
tion mechanism to restrict the use of inappropriate
inherited methods.

CONTAINER LIMITATIONS
Java provides little flexibility for creating special-

ized, homogeneous container classes. You must either
use containers that can hold anything or write special-
purpose classes that define containers for each kind
of element. Java does not yet support type-safe para-
meterized classes, as C++ does with templates or Ada
does with generics. Instead, it provides the universal
base class Object, a superclass to every class.

Suppose you want to create an object from the Java
Collections Framework class LinkedList, which is
meant to be a homogeneous list of String elements. In
C++, you can simply instantiate an object of type
LinkedList<String>, and the compiler will ensure that

import java.util.List;
import java.util.LinkedList;

/*
*From the Java Collections Framework:
interface List {

public void add(Object element);
public Object get(int index);

...
}

*/

class StringListExample{
public static void main(String[] args){

List l = new LinkedList();
for(int i=0;i<args.length;i++){

l.add(args[i]);
System.out.println((String)l.get(i));

} } }

(a)

class StringList{
private List my_list;
public StringList() {my_list = new LinkedList();}
public void add(String elem){my_list.add(elem);}
public String get(int index) {return (String)my_list.get(index);}
...

}

(b)

class RunTimeList{
private List my_list;
private Class thisClass;
RunTimeList() {my_list = new LinkedList();}
void add(Object elem) throws BadElement{

if (my_list.isEmpty()) thisClass = elem.getClass();
if (thisClass != elem.getClass())

throw new BadElement(thisClass, elem.getClass());
my_list.add(elem);

}
Object get(int index){

return my_list.get(index); // Java won’t let us cast back
// to “thisClass” here.

}
}

(c)

Figure 3. Three possible strategies for creating an object from the Java Collections Framework class LinkedList, which is
meant to be a homogeneous list of String elements. (a) Use a universal list, a list of Object elements, to hold Strings. (b)
Create a special-purpose StringList that can hold only String objects. (c) Use a list that sets the class of its contents when the
program inserts the first element at runtime. None of these approaches is ideal.

only String objects are inserted into the Linked-
List<String> object. In Java, on the other hand, you
must resort to one or a combination of the options in
Figure 3:

• Instantiate a LinkedList object that accepts any
object whatsoever (objects of class Object) and
place only objects of class String into it (Figure 3a).

• Write a special-purpose adapter class with the
functionality of a LinkedList class that operates
only on String objects (Figure 3b).

• Write a LinkedList class that, at runtime, sets the
type of inserted objects according to the class of
the first object inserted (Figure 3c).

How to cope. Unfortunately, there is no workaround.
Our best advice is to weigh the risks of each approach
and then proceed with caution. The first approach is
the most common, but provides no type safety. You
must ensure that the program inserts only objects of
the desired class into a list and explicitly puts objects
from the list back into the desired class. Because the
program must return the objects to the desired class—
perform casting—at runtime, a method might insert
non-String objects into the list. To prevent these kinds
of errors, you must track type information.

The second approach ensures that the program can
type-check calls to container operations properly at
compile time. In addition, the special-purpose class can
perform all casting. Of the three approaches, it offers
the most type safety, but it does so at the expense of pro-
liferating nearly identical classes. To minimize code repli-
cation, you can have the adapter provide the necessary
interface, but implement it in terms of LinkedList. This
approach imposes the required level of type safety while
reusing the existing available implementation.

The advantage of the third approach is that you can
implement it using only one class—the class that cap-
tures the type of the first object to be inserted into the
list. However, again, you must explicitly cast elements
retrieved from the list back into the desired class, so
the third approach has similar drawbacks to the first.

NOT-SO-FINAL PARAMETERS
In Java, a method can change the state of any object

of the class that the method is a member of. Thus, to
be safe, a client must assume that a method invoca-
tion on an object can modify that object’s state. If you
are programming that client, you must look at the
implementation of the called method to really know
if the object’s state has changed. Unfortunately,
because you generally won’t have access to the imple-
mentation, you must trust the documentation, which,
of course, imposes no guarantees or constraints on the
called method’s implementation.

Your only solution is to document all side effects

and ensure that method implementations
remain consistent with the documentation.
Even this will not work on Java components
obtained externally.

Java 1.1 lets you declare a method’s formal
arguments to be final, ensuring that the state of
the argument cannot change. Regrettably, the
guarantee applies only to the state of the para-
meter variable itself, not to the state of any class
it references. Java does not let you change the
value of a formal argument that is a reference to
an object even though that argument is declared
to be final, but it does let you change the state
of the object being referenced. You can use the
final parameter variable to invoke any method defined
in the object’s class. Thus, when a program supplies an
object reference as an argument to a method call, the
state of the referenced object argument can change,
even if the associated formal parameter is designated
as final. You are forced to trust the called method,
inspect the method if possible, or add code to verify
that no state changes have occurred and add error-
handling code.

The protection the final parameter designator pro-
vides has severe limitations that could cause a system
to enter an inconsistent state. Testing alone cannot
guarantee that all methods behave as expected.

How to cope. Your only protection is to make sure
that methods contain correct documentation that
explicitly describes the effects of a particular method
call. These effects include both those on a given
instance and those on any instances passed via object
references as actual arguments.

INITIALIZATION DIFFUSION
The JDK 1.1 Java Language Specification includes

code blocks that initialize the state of object instances,
which are similar to blocks that initialize class state.
You can write an instance initialization block simply
as an unlabeled block of code that appears at any loca-
tion in a class definition. There can be multiple
instance initialization blocks, possibly distributed at
various locations within a class. The program exe-
cutes initialization blocks in the order they appear in
a class.

Figure 4 demonstrates how initialization blocks dif-
fuse initialization across a class. When the program
creates a new Vehicle (or VehicleDiffusion) object, we
want to increment the static variable highestVIN so
that we can use a unique VIN for each new Vehicle
object. Class Vehicle updates highestVIN in the
expected place—within the constructor method
Vehicle(). Class VehicleDiffusion updates highestVIN
in an initialization block rather than in a constructor.
To further confuse code readers, the program places
the update in a location apart from the constructors.

April 2000 35

The protection the
final parameter

designator provides
has severe

limitations that
could cause a

system to enter an
inconsistent state.

36 Computer

The semantics of creating a new Vehicle or
VehicleDiffusion object are essentially identical.

Instance initialization blocks, introduced with Java
1.1 syntax and semantics,5 add two new sources of
program errors. First, initialization code is distributed
between constructors and initialization blocks, which
can be distributed throughout a class. Thus, to under-
stand the full instance initialization and construction
process, you must understand the semantics of con-
structors and instance initialization blocks. This
means scanning an entire class definition looking for
instance initializers, analyzing the semantics of each
initializer and its order of execution, and then ana-
lyzing the class construction methods’ semantics. This
process is tedious and error-prone when you have
many instance initializer blocks.

Second, the syntax of instance initializer blocks can
lead to errors. The only syntactic difference between an
instance initializer block and a static initializer is the
keyword “static.” If static appears immediately before
a class-level block, the block defines a static initializer.

If the static keyword is missing and no other lexi-
cal element appears in its place (such as a method sig-
nature), the block defines an instance initializer. In

addition, an instance initializer’s structure is identical
to a method definition that is missing its body. Unfort-
unately, it is easy to accidentally delete a single word
like “static” or a line that defines a method interface.
These simple editing errors turn a static initializer or
a method into an instance initializer, which might
compile without warning. Debugging these errors is
difficult.

How to cope. Avoid using instance initializer blocks
and put initialization code in constructor bodies. If
you must use an initializer block, use only one per class
and locate it close to the class’s constructors.

OTHER WORRIES
In addition to these seven design weaknesses, Java

has a number of syntax quirks and inherits many of
the syntax problems of C++ and C.6 Other sources of
programming stress include:

No separate class-specification. Java does not allow a
class specification to be separate from its implementa-
tion because both the public class interface and method
bodies must be in one file. Thus, anyone accessing the
public interface can view its implementation.
Knowledge of the implementation makes it possible to

/* “Normal” initialization in class Vehicle */
class Vehicle{

private double speed;
private double direction;
private String ownerName;
private int VIN;
private static int highestVIN = 0;

public Vehicle(){highestVIN++; /***increment highestVIN ***/
VIN = highestVIN;}

public Vehicle(String name) {this(); ownerName = name;}

public void setSpeed(double s) {speed = s;}
public double getSpeed() { return speed;}

public void setDirection(double d) {direction = d;}
public double getDirection() { return direction;}

}

/* Diffused initialization in class VehicleDiffusion */
class VehicleDiffusion{

private double speed;
private double direction;
private String ownerName;
private int VIN;
private static int highestVIN = 0;

public VehicleDiffusion() {VIN = highestVIN;}
public VehicleDiffusion(String name) {this(); ownerName = name;}

public void setSpeed(double s) {speed = s;}
public double getSpeed() { return speed;}

{highestVIN++;} /*** increment command moved here ***/

public void setDirection(double d) {direction = d;}
public double getDirection() { return direction;}

}

Figure 4. Initialization diffusion caused by instance initialization blocks. Vehicle and VehicleDiffusion objects exhibit identical
behavior although VehicleDiffusion moves the command highestVIN++ in the Vehicle constructor to an initialization block.
[Example from The Java Programming Language, 2nd ed., K. Arnold and J. Gosling, Addison-Wesley, Reading, Mass., 1997.]

write software components that depend on this imple-
mentation, which violates encapsulation principles.

Making code easy to understand is key to mainte-
nance and reuse. Programmers writing a client must
now wade through an entire class body just to view
the public interface of a potential server class. The
solution to this problem would not require separate
interface and implementation files for each class, as
the .h and .cpp files in C++. Rather, Java could have a
separate syntactic mechanism within a class that spec-
ifies its interface. The corresponding implementation
might still appear in line within the class body.

The Javadoc facility can extract interface informa-
tion. However, Javadoc relies on a class’s author to
write appropriate Javadoc comments and keep them
current. Comments and code usually diverge over
time, however, which means that the Javadoc inter-
face information will eventually be inaccurate.

No support for assertions. Object-oriented languages,
such as Eiffel and Clu, support assertions.7,8 Properly
used, an assertion mechanism can increase a compo-
nent’s quality and correctness. Programmers can spec-
ify pre- and postconditions for methods and data
invariants for class state variables.

Java does not have a built-in assertion mechanism,
although tools are freely available for assertion sup-
port, such as Reliable Software Technologies’
AssertMate9 and Reliable Systems’ iContract.10 The
Java FAQ Web site 2 tells you how to construct a rudi-
mentary assertion mechanism. Eventually, we hope to
see Java support its own assertion mechanism.

Array type-checking failures. Static type-checking limi-
tations can allow programs with obscure array type
errors to compile. Although dynamically binding sub-
class objects is usually type-safe and flexible, it can lead
to a type clash or covariance problem if subclass objects
are bound with arrays. Generally, you can supply an
instance that is a subclass of the declared type of the
formal parameter as an argument in a method call.
However, sometimes dynamic binding conventions and
associated type-checking rules cannot detect type errors.

Figure 5 shows why. In this program, all actual
parameters are instances of the formal parameters’
subclasses. The program compiles even though it con-
tains a serious type error. No type errors are detected
during compilation because argument anArrayOfB is
an instance of a subclass of formal parameter x’s class,
A[], and the type of argument a exactly matches the
type of formal parameter y. Yet, the program fails at
runtime.

T he shortcomings we have identified are worri-
some because Java is intended for the develop-
ment of concurrent, distributed, and critical

systems. Our coping suggestions can remedy or soften
the effects of these problems or help you avoid them,

but changes to the language itself would offer a more
effective long-term solution. Here’s our wish list:

• Replace the package-level component of protected
access with a mechanism that lets a class specify
what other specific classes, or group of classes with
a particular characteristic, can access it.

• Make default access private.
• Change the semantics so that constructors cannot

invoke any methods, directly or indirectly, in sub-
classes.

• Support templates or generics.
• Make the final parameter designator ensure that

a method with a final parameter cannot modify
the state of objects the parameter references. Add

April 2000 37

class A { . . . }

class B extends A { . . . }

class ArrayConfusion {
static void proc(A[] x, A y) {

x[0] = y;
}
public static void main(String args[]) {

B[] anArrayOfB = new B[5];
A a = new A(5);
proc(anArrayOfB, a);

}
}

Figure 5. A sample array type-checking problem. ArrayConfusion.main calls
ArrayConfusion.proc with two arguments: anArrayOfB and a, an instance of class A. Array-
Confusion.proc has two formal parameters, x, an array of A objects, and x, an A object.
Java’s static type-checking does not catch the type error when the first argument to
ArrayConfusion.proc is an array of class B and the second argument is an object of class A.
The assignment x[0] = y raises a runtime exception. The assignment x[0] = y raises a
java.lang.ArrayStoreException because an array of class B objects cannot store an object of
class A. A is not a subclass of B. This program has an illegal assignment of a supertype to a
subtype variable and fails at runtime, yet it compiled with no detected errors.

A Coping Checklist
✔ Avoid using protected or package-level (default) access; declare all

members as either private or public.
✔ Take extra care in understanding the construction of new objects that

override superclass methods and instance variables.
✔ Use container classes with caution. Java type checking is not effec-

tive here.
✔ Use the subclassing mechanism only to define specializations of a

superclass.
✔ Explicitly force finalizers to run when you want them to.
✔ Use inheritance only to model is-a relationships.
✔ Document all side effects, and make sure that the documentation is

consistent with the code.
✔ Avoid using instance initializer blocks.

38 Computer

a constant method designator to ensure that the
state of the object containing the method does
not change.

• Require a keyword to specify an instance initial-
izer and allow only one such initializer block per
class.

It would be unrealistic to expect future versions of
Java to incorporate all these changes. A language
many people use must satisfy myriad, often compet-
ing, interests. Some of our changes could be made with
little effort, but others will require major effort and
probably some research.

An immediate first step would be to use testing and
static program analysis to identify programs with the
problems we’ve described. For example, static analy-
sis can easily identify programs that use instance ini-
tializer blocks, protected and package (default) access,
or both. Another immediate goal is to develop tools
and techniques, through either static analysis or test-
ing, that can identify programs suffering from the Java
weaknesses we have identified. ❖

Acknowledgments
We thank Reliable Software Technologies, Sterling,

Va., and the University of Maryland at College Park
for their generous support during Jim Bieman’s sab-
batical when we prepared this article. We also thank
Jefi Ofiutt and Gary McGraw, whose comments on
earlier drafts greatly improved the presentation.
Finally, we thank the anonymous Computer review-
ers for their comments, which greatly improved both
content and presentation.

References
1. G. Phipps, “Comparing Observed Bug and Productiv-

ity Rates for Java and C++,” Software: Practice and
Experience, Apr. 1999, pp. 345-358.

2. P. van der Linden, “Frequently Asked Questions (with
Answers) for Programmers Using the Java Language,”
http://www.afu.com/ javafaq.html.

3. G. Leavens, “Modular Specification and Verification of
Object-Oriented Programs,” IEEE Software, Nov./Dec.,
1991, pp. 72-80.

4. B. Meyer, “The Many Faces of Inheritance: A Taxonomy
of Taxonomy,” Computer, May 1996, pp. 105-108.

5. K. Arnold and J. Gosling, The Java Programming Lan-
guage, 2nd ed., Addison-Wesley, Reading, Mass., 1997.

6. H. Thimbleby, “A Critique of Java,” Software: Practice
and Experience, May 1999, pp. 457-478.

7. B. Liskov and J. Guttag, Abstraction and Specification in
Program Development, MIT Press, Cambridge, Mass.,
1986.

8. B. Meyer, Eiffel: The Language, Prentice Hall, Upper
Saddle River, N.J., 1992.

9. J. Payne, M. Schatz, and M. Schmid, “Implementing
Assertions for Java,” Dr. Dobb’s J., Jan. 1998, http://
www.ddj.com/articles/1998/9801/9801d/9801d.htm#re1

10. R. Kramer, “iContract—The Java Design by Contract
Tool,” Proc.Technology of Object-Oriented Languages
and Systems, (TOOLS-28, 98), IEEE CS Press, Los
Alamitos, Calif., 1998, pp. 295-307.

Roger T. Alexander is a member of the research fac-
ulty at George Mason University and a principal mem-
ber of the technical staff at the Software Productivity
Consortium. His research interests include object-ori-
ented software testing, architecture testing, specifica-
tion-based testing, software reliability, and software
metrics. He received an MS in software engineering
from George Mason University, where he is a PhD
candidate in computer science. Alexander is a senior
member of the IEEE. Contact him at rtalexander@
computer.org or ralexand@gmu.edu.

James M. Bieman is an associate professor of com-
puter science at Colorado State University. His cur-
rent research interests are evaluating object-oriented
designs and developing ways to quantify design attrib-
utes in terms of architectural structures and patterns.
He is also studying the relationship between design
attributes and external quality attributes such as main-
tainability, testability, and reliability. Bieman received
a PhD in computer science from the University of
Southwestern Louisiana. He is a senior member of the
IEEE and is chair of the Steering Committee for the
IEEE-CS International Symposium on Software Met-
rics. Contact him at bieman@cs.colostate.edu.

John Viega is a senior research associate and consul-
tant at Reliable Software Technologies. He is the prin-
cipal investigator on a DARPA-sponsored grant for
developing security extensions for standard pro-
gramming languages. He also writes a bimonthly col-
umn on software security assurance for developers
(http://www.ibm.com/developer/security). Viega re-
ceived an MS in computer science from the University
of Virginia. Contact him at jviega@rst.com.

