
0018-9162/00/$10.00 © 2000 IEEE62 Computer

The Garp
Architecture
and C Compiler

V
arious projects and products have been
built using off-the-shelf field-programma-
ble gate arrays (FPGAs) as compute accel-
erators for specific tasks. Such systems
typically connect one or more FPGAs to the

host computer via an I/O bus. Some have shown
remarkable speedups, albeit limited to specific appli-
cation domains.

Many factors limit the general usefulness of such sys-
tems. Long reconfiguration times prevent acceleration
of applications that spread their time over many differ-
ent tasks. Low-bandwidth paths for data transfer limit
the usefulness of such systems to tasks that have a high
compute-to-memory-bandwidth ratio. In addition, stan-
dard FPGA tools require hardware design expertise
beyond the knowledge of most programmers.

To address the bandwidth problems, some devel-
opers have proposed integrating specially designed
rapidly reconfigurable hardware more closely with the
processor. To help investigate this idea we designed
our own architecture in detail, called Garp,1 and exper-
imented with running applications on it. We are also
investigating whether Garp’s design enables automatic,
fast, effective compilation across a broad range of
applications. Our results so far have been promising.

GARP OVERVIEW
Garp combines a single-issue MIPS processor core

with reconfigurable hardware to be used as an accel-
erator. We designed both the reconfigurable hardware
and the interfaces among the system components, tai-
loring them for general-purpose computing. Garp is
designed to fit into an ordinary processing environment
that includes structured programs, subroutine libraries,
context switches, virtual memory, and multiple users.

The Garp chip does not exist as real silicon. We
have, however, completed critical parts of the inte-
grated circuit layout and performed circuit simulation
to give us good estimates of Garp’s clock speed, power
consumption, and silicon area for a sample imple-
mentation.

We designed Garp with the intent that its reconfig-
urable hardware would accelerate loops of general-
purpose programs. This goal led to the following deci-
sions about Garp:

• We decided that a few cycles of overhead for
transferring data between processor registers and
the reconfigurable hardware would be acceptable,
since this overhead would occur only at the
entrance and exit of loops.

• The reconfigurable hardware needed its own
direct path to the processor’s memory system,
since most nontrivial loops operate over memory
data structures. Relying on the main processor to
shuffle data between the reconfigurable hardware
and memory would be unacceptable; the proces-
sor would act as a bandwidth bottleneck and also
add cycles of latency to every access.

• The reconfigurable hardware needed to be rapidly
reconfigurable, since general-purpose applications
tend to have many short-running loops.

Garp’s reconfigurable hardware attaches to the main
MIPS processor as a coprocessor. Explicit processor
move instructions transfer data between the two parts.
Additional instructions give the main processor com-
plete control over the loading and execution of the
coprocessors’ configurations. We call Garp’s coproces-
sor “the reconfigurable array” or simply “the array.”

Garp’s on-chip, reconfigurable coprocessor was tailored specifically for
accelerating loops of general-purpose software applications. Its novel
features inspired a unique approach to automatic compilation from C.

Timothy J.
Callahan
John R.
Hauser
John
Wawrzynek
University of
California,
Berkeley

C O V E R F E A T U R E

The wide path between the array and memory is
useful not only for data transfer, but also for reduc-
ing configuration load times. Further, Garp’s dense
configuration encoding results in smaller configura-
tions that load quickly. For example, a medium-sized
configuration of 480 configurable logic blocks (CLBs)
occupies less than 4 Kbytes, which can be read from
main memory in only a couple thousand processor
cycles or, from the secondary cache, in only a few hun-
dred cycles. To reduce configuration times further, the
array has embedded in it a configuration cache, which
holds recently displaced configurations for rapid
reloading. Reloading an entire configuration from the
configuration cache requires approximately five cycles.
Our sample implementation’s configuration cache can
hold four full-sized configurations or a larger number
of smaller configurations.

Once a configuration loads and starts executing, the
array can continue executing independently until it
signals it is done. The processor can halt and resume
array execution at any time. Configurations can be
loaded only when the array is idle. The processor can
also examine or change any data in the array while
the array is idle. Attempting to load a configuration or
access array data while the array is active causes the
processor to stall on an interlock until the current
array computation completes. This interlock can be
interrupted. Array execution continues, and the stalled
instruction reexecutes when the interrupt returns.

Array use typically involves four steps each time the
program reaches an accelerated loop or kernel:

1. Load a configuration. If the configuration is
already in the configuration cache, this step takes
minimal time.

2. Copy any initial register data to the array with
coprocessor move instructions.

3. Start array execution, then issue a wait instruc-
tion that interlocks while the array is active.

4. At kernel completion, copy result live registers
back from the array.

Steps 1, 2, and 4 represent the overhead cost for
using the array. For a net performance benefit, the
speedup gained by array execution must outweigh this
overhead.

THE ARRAY AS A RECONFIGURABLE DATA PATH
Like an FPGA, the Garp array is a two-dimensional

array of CLBs interconnected by programmable
wiring. Like the processor, the array has a fixed global
clock synchronizing all array operations. Unlike most
uses of FPGAs, the speed of this clock remains con-
stant for an implementation and cannot be adjusted by
an array configuration.

It is natural, although not required, that 32-bit inte-

ger data paths in the array be oriented so that opera-
tions such as addition span the central CLBs of each
row and are stacked, connected to each other by ver-
tical buses. The CLBs each contain individual 1-bit
registers; the collection of these across the datapath
portion of a row is often treated as a composite 32-bit
array register. The extra CLBs on each side of the
data-path area are often useful for implementing con-
trollers and computing Boolean data, as shown in
Figure 1.

Memory buses provide the path into and out of the
reconfigurable array. Garp’s array has four 32-bit data
buses and one 32-bit address bus. While the array is
idle, the processor can use the memory buses to load
configurations or to transfer data between processor
registers and array registers. While the array is active,
it is master of the memory buses and uses them to
access memory.

During execution, the reconfigurable array has
access to the same memory system as the main proces-
sor, including all caches. To perform a random mem-
ory write, one row initiates the write and supplies the
address, and another row provides the data. Random
reads work similarly: Once a row has initiated the
read and supplied the address, the data loads into

April 2000 63

MIPS
Cache

Q Q Q

Crossbar

Memory queues

Four 32-bit
 data buses,

one 32-bit
 address bus

Control blocks
(interface to

memory,
processor)

Configuration
caches

32-bit data path

Depending
on its functionality,

each module can interact
with any or all zones.

Boolean values
Sequencer

Figure 1. The Garp
array, which func-
tions as a reconfig-
urable data path,
consists of a two-
dimensional array of
configurable logic
blocks interconnected
by programmable
wiring. Memory
buses provide a high-
bandwidth reconfigu-
ration and data trans-
fer path between the
array and memory.

64 Computer

another row after a number of read latency cycles
explicitly specified by the configuration. If the mem-
ory system cannot respond that quickly, the array
stalls automatically, just as a regular processor instruc-
tion would interlock on a delayed load. At most, one
row can initiate a random access each cycle since there
is just one address bus. But the array can overlap
accesses, initiating a new one every cycle.

Control blocks reside in the array’s leftmost column,
one per row, providing the row’s control interface to
the memory or processor. For example, depending on
how a control block is configured, asserting one of its
inputs might initiate a memory access, sending 32 bits
of data from that row as the address. With an alterna-

tive configuration, asserting its input will halt array
execution, thus acting as a loop exit.

Along each row of CLBs, built-in carry chain hard-
ware supports efficient additions, subtractions, and
comparisons. Horizontal wiring channels between adja-
cent rows support shifts. These features together make
multiplication and division by small constants fairly
efficient as well. For example, multiplying a 32-bit vari-
able by any 8-bit constant requires at most two rows
and two cycles latency. Because of the flexibility of the
CLBs, a single row can often implement a compound
group of simple operations. For example, the C integer
expressions (a<<10)|(b&c) and (a −2*b + c) can
each be implemented in one array row with a latency
of one cycle. We use the term module to describe such
an implementation of one or more operations.

AUTOMATIC COMPILATION
Our compiler’s input is standard ANSI C; the pro-

grammer is not required to insert any hints or direc-
tives in the source code. Therefore we can use the SUIF
C compiler2 for the front-end phase of compilation—
parsing and standard optimizations—with no modi-
fication. The compiler breaks up the program into
basic blocks, which are instruction sequences with no
branches into or out of the middle. At the end of each
basic block is a branch that controls which block exe-
cutes next. These branches connect all the basic blocks
of a subroutine into one control flow graph, as shown
in Figure 2’s section b.

Challenges
The first Garp-specific compilation task identifies

the kernels that should be accelerated using the Garp
array. One obvious approach is to put every loop that
is small enough onto the array, and to execute every-
thing else on the main processor.

Unfortunately this “whole loop” approach does not
lead to very good results when compiling typical C
source code. Many loops in C programs are large
because they include code for exceptional cases that
rarely if ever occur. Such loops often will not fit on the
array or, if they do, run slowly because of the longer
interconnects needed with larger circuits. Also, many
loops whether small or large contain operations that
cannot be directly implemented on the array, such as
printf calls.

The C language’s inherently sequential nature pre-
sents another challenge. Typically, little parallelism
exists within each basic block—a drawback consid-
ering that to fully exploit the reconfigurable array we
must find—and execute in parallel—as many inde-
pendent operations as possible.

Thus, we face two challenges: excess code in loop
bodies, and sequential code from which we must
extract instruction-level parallelism (ILP). Fortunately,

while((val = *++p) != NULL) {
 if (val > THRESHOLD)
 count++;
 if (val == INVALID)
 printf("Invalid!/n");
}

(a)

(b)

(c)

++p;
val = *p;
if (val != NULL)

exit2

exit1

(after loop)
if (val > THRESHOLD)

if (val == INVALID)

count++;

printf ()

!=

load

exit2

==

exit1

+

+>

Figure 2. Garp com-
piler’s inner workings.
The compiler takes (a)
the original source
code, processes it into
a (b) control flow
graph, then for each
kernel selects basic
blocks included in the
hyperblock (gray
region). Only compu-
tation in the hyper-
block is performed in
the array. Next, the
compiler uses predi-
cation to bring to-
gether operations
from the selected
basic blocks into a (c)
single large dataflow
graph. Comparisons
that previously con-
trolled conditional
branches now control
multiplexors or loop
exit nodes. Loop-car-
ried (feedback) edges
are shown in blue.

researchers tackled similar challenges when building
compilers for very-long-instruction-word (VLIW)
machines. With slight adaptations, we can use very
much the same solutions,3 even though the Garp
array’s means of execution differs significantly from
a VLIW processor’s. The main construct we borrow
from VLIW compilation is the hyperblock.4

For a more detailed description of how Garp com-
pares with other high-performance architectures, see
the “Comparing Garp to Other Architectures” sidebar.

The hyperblock
As we use it, a hyperblock is formed by joining all

the basic blocks along the frequently executed control
paths of the loop body, excluding all uncommon paths
and problematic code, as shown in Figure 2b. The key
idea is that only the hyperblock—containing the com-
mon paths—is implemented in the array. When exe-
cution takes an excluded path, an exceptional exit
from the array occurs, and execution continues in soft-
ware on the main processor. Computation can resume
on the array at the start of the next loop iteration. For
this approach to be effective, exceptional exits must
occur only a small fraction of the time. We use profil-
ing and execution time estimates to intelligently
exclude paths from the hyperblock, and also to com-
pletely reject loops that do not execute long enough on
average to make up for the overhead costs of using
the array.

The hyperblock’s other key feature is that it in-

creases ILP by merging all the included basic blocks,
allowing operations from different basic blocks to be
brought together into a single large dataflow graph
(DFG) and scheduled in parallel, as shown in Figure
2c. In the DFG, nodes represent simple operations,
and data edges between nodes indicate data producer-
consumer relationships. Basic blocks are merged using
predication, which eliminates the need for conditional
branches. The array performs computation along all
included paths, and predicates—Boolean values cal-
culated from the conditions that originally controlled
the conditional branches—control multiplexors to
select the appropriate values at control merge points.
Operations that have side effects external to the array,
such as memory stores, have a direct predicate input
that enables them only when the particular control
path is valid.

The compiler adds precedence edges to preserve the
original program ordering between each pair of mem-
ory operations that might access the same location,
unless both are loads. We use array subscript analysis
and interprocedural pointer analysis to avoid adding
unnecessary precedence edges, which are undesirable
because they reduce the amount of parallelism in the
dataflow graph.

Unlike the original VLIW hyperblock, our hyper-
block contains the loop back edge(s), reflecting that
the entire loop executes within the array with no inter-
vention from the main processor. Our hyperblock
dataflow graph correspondingly contains cycles

April 2000 65

The Garp architecture offers several
advantages and a few disadvantages when
compared to other architectures.

VLIW
As we use it, the Garp array resembles

a very-long-instruction-word (VLIW)
processor in that the compiler is respon-
sible for scheduling parallel operations.
However, Garp does not have VLIW’s
per-cycle limits on instruction issue, func-
tional unit availability, or register-file
bandwidth. Instead, it must limit the size
of the entire kernel to be accelerated, a
constraint not encountered when compil-
ing for VLIW machines. Garp’s array
allows the merging of multiple dependent
operations into a single module, reducing
the critical path. Pipelining on Garp is
actually more straightforward than soft-
ware pipelining on VLIW machines: The
overlapping iterations on Garp don’t
compete for function units, making the
scheduling problem much simpler.

Because the Garp array remains sepa-
rate from the main processor, the proces-
sor can run at a higher clock rate. This

permits Garp to give the best performance
on sequential code that has little instruc-
tion-level parallelism (ILP).

The VLIW architecture’s main relative
advantage is that it can exploit ILP out-
side of loops.

Vector
When the Garp compiler synthesizes a

vectorizable loop, the resulting configured
array resembles a memory-to-memory
vector processor with chained functional
units. In Garp, the memory queues stream
data into the pipelined data path, and
results return directly to memory. The
main differences are as follows:

• While vector units can typically
chain only two or three operations,
the Garp array can “chain” the
entire loop body.

• In Garp, feedback loops can be con-
structed arbitrarily, while vector
units can handle only very special-
ized recurrences—such as sum reduc-
tion—if they handle any at all.

• Garp can easily handle data-depen-

dent loop exits, which are are a prob-
lem on many vector architectures.

Garp and vector architectures share
similarities as well. Both can exploit a
great deal of parallelism in loops, while
keeping a small and fast scalar processor
to handle sequential code.

Superscalar
Superscalar processors can exploit par-

allelism in code that has been compiled
for a sequential processor, and they can
adjust their execution dynamically for
operations with variable latency. How-
ever, the hardware complexity of dynam-
ically determining dependencies between
instructions prevents superscalar proces-
sors from scaling well beyond a modest
number of instruction issue slots. Thus
these processors cannot compete with the
Garp array in cases with a large amount
of exploitable ILP. A Garp-like architec-
ture could use a two- or four-way super-
scalar processor as its main processor to
exploit modest ILP in code not accelera-
ble by its coprocessor.

Comparing Garp to Other Architectures

66 Computer

caused by loop-carried edges. There can be loop-car-
ried data edges—indicating that a value written in one
iteration is read during the next iteration—and loop-
carried precedence edges—indicating that an opera-
tion in one iteration must execute before another
operation in the subsequent iteration.

CONFIGURATION SYNTHESIS
We use a simple and straightforward synthesis

approach, performing a direct mapping of nodes in
the DFG to modules on the array.

Module mapping and placement
Recall that a single Garp array module can often

implement a group of operations from the DFG, usu-
ally with just one cycle of latency. It is important that
the compiler exploit this capability to make the con-
figuration both smaller and faster.

Module mapping is the task of mapping groups of
nodes in the dataflow graph to compound modules in
the configuration in a way that minimizes the config-
uration’s size, its critical path, or both. An analogous
problem is instruction selection for CISC (complex
instruction-set computer) processors: mapping the
compiler intermediate representation to complex
instructions. Fortunately, an efficient dynamic pro-
gramming algorithm for CISC instruction selection
already exists.5 We developed a variant of that algo-
rithm to produce efficient data-path modules quickly
without resorting to gate-level logic optimization.6

The speed of this approach is important since a single
program compilation may require synthesizing dozens
of different kernels.

Next, the compiler decides on a linear placement of
the modules in the Garp array, attempting to position
connected modules close to one another to reduce the
average length of buses and thus make better use of
the available intermodule routing resources.

Generating the configuration
After mapping and placement, the compiler must

actually construct each module in detail: specify the

exact function of each CLB and perform routing inter-
nal to the module. The array can implement such a rich
variety of functions that it is infeasible to simply instan-
tiate each module by copying it from a static library, as
the necessary library would contain tens of thousands
of possible modules. Thus our synthesis tool generates
all modules on demand. The generator, given a pattern
of DFG nodes, the values of constant inputs, input
sources, and other data, creates the module.

A simple sequencer is synthesized within the con-
figuration. Its duty is to keep track of the current cycle
within the iteration and activate via their control
blocks the modules scheduled for that cycle. In par-
ticular, a memory operation must execute during the
correct cycle. We implement the sequencer in a dis-
tributed fashion, with part of it generated inside each
module that uses it.

Last, the compiler finalizes the routing between dif-
ferent modules, then generates the configuration bit
stream. This bit stream ultimately links in as constant
data within the final, complete program’s executable
file.

ADVANCED TECHNIQUES
The following techniques can enhance Garp’s per-

formance.

Speculative loads
One technique to increase effective ILP is to execute

loads speculatively, before it is known whether they
would have been executed in the original sequential
program. Because of this speculation, such loads
sometimes execute with invalid virtual addresses. The
Garp hardware supports speculative execution of
loads in that case by simply ignoring invalid virtual
address exceptions and returning arbitrary data.
Ignoring these exceptions can make debugging more
difficult but cannot cause a correct program to fail. In
contrast, speculative loads from virtual addresses that
are valid but not currently resident still cause a trap to
the operating system so that it can service the page
fault.

Pipelining
The pipelining process overlaps the execution of dif-

ferent iterations, as shown in Figure 3, reducing the
total time for all iterations to complete. The smaller
the iteration interval—the delay between successive
iterations—the more overlap and the greater the per-
formance gain. Loop-carried dependencies can limit
the amount of overlap, since an iteration must wait
for the loop-carried value produced by the preceding
iteration. Also, care must be taken that memory
accesses from overlapping iterations do not attempt
to use the address bus simultaneously; these conflicts
may limit the amount of overlap as well.

Iteration x + 1

Iteration x

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Iteration
interval

Figure 3. Module-
mapped and pipelined
DFG. The purple
regions indicate the
grouping of DFG
nodes into modules.
Loop-carried edges
(blue) limit how
closely iterations can
follow each other;
here, the iteration
interval is two cycles.
A register (red rectan-
gle) is inserted at
every cycle; extra reg-
isters are inserted as
necessary so that
parallel paths have
matching delay.

Garp’s support for speculative loads is crucial for
pipelining because an iteration will begin execution
before it is known whether the previous iteration
causes a loop exit. If Garp did not have speculative
loads, a kernel would have to evaluate the exit condi-
tion at the end of one iteration before a load at the
start of the next iteration could execute, greatly
inhibiting iteration overlap.

Memory queues
Many applications for reconfigurable computing

operate on contiguous data streams. The memory
accesses for such streams can often be fully overlapped
with computation by buffering and reading ahead,
writing behind, or both. We could have implemented
this buffering activity in Garp’s array, but we felt it
better to provide dedicated hardware for this common
task; doing so frees up more array resources for the
actual computation. Designers have considered simi-
lar mechanisms for standard processors.7

Garp has three memory queues supporting sequen-
tial streams. The main processor initializes the queues
with a starting address and data size before array exe-
cution begins. From the array’s perspective, queue
accesses resemble other memory accesses except that
the array does not provide the address. Read response
takes less time because the data is already waiting in
the queue buffer. Unlike random memory accesses, the
accesses to all three queues can occur every clock cycle
over three independent memory data buses. Each
queue can optionally be configured as non-cache-allo-
cating, so that streaming data used only once does not
pollute the cache.

The compiler tries to use the memory queues as
much as possible. The first necessary condition is unit
stride: The address increment must match the data size,
whether it is one, two, or four bytes. The increment
and access need not occur every iteration, but the two

operations must always occur together. Finally, it must
be legal to prefetch the load or delay the store.

SIMULATION RESULTS
We gathered results using a cycle-accurate simulator

of the entire Garp chip with a 32-row array and a mem-
ory system modeled after that of the Ultrasparc proces-
sor. The simulator models all stalls from cache misses
and interlocks, but does not attempt to model multi-
ple processes or to accurately time operating-system
activity.

Wavelet image compression
The first benchmark we consider, wavelet image

compression,8 stresses reconfigurability by splitting
execution time among several kernels. For each ker-
nel, Table 1 provides a comparison of its execution
on the MIPS processor versus on the array for pro-
cessing a 256 × 256 pixel image. The table gives results
for net speedup, factoring in configuration and data
transfer overhead. These kernels capture 87 percent of
the original software execution time. Overall speedup
is 2.9 versus MIPS only, compiled with gcc -O3.

Kernels that execute only once show a large over-
head per use because their single execution bears the
entire cost of loading the configuration. On the other
hand, kernels that execute hundreds or thousands of
times can amortize the configuration load cost across
all executions. Thanks to Garp’s configuration cache,
in most cases a configuration loads from the off-chip
secondary cache only once even though the applica-
tion switches among different kernels. For kernels that
executed many times, data transfer rather than con-
figuration contributed most to the overhead cost.

For many of these loops, the use of memory queues
boosts throughput significantly. The forward_wavelet
kernels each perform four memory accesses per iter-
ation. Without the memory queues, contention for the

April 2000 67

Table 1. Kernels from a wavelet image compression program.

Percentage Average no. of
of original ILP (average compute Average no.
software No. of operations cycles per of overhead Net speedup
execution Iteration queues per nonstall No. of execution cycles per over MIPS

Kernel time Interval used cycle) executions (including stalls) execution only

forward_wavelet_696 18.2 2 2 10.0 448 1,176 114 2.1
forward_wavelet_647 13.8 2 2 10.0 448 310 91 5.1
init_image_354 12.8 1 2 8.0 1 65,852 564 12.7
forward_wavelet_711 10.1 2 2 7.0 448 241 59 4.9
entropy_encode_544 10.0 1 1 5.0 1 65,538 989 9.9
forward_wavelet_674 9.3 1 3 13.0 448 128 76 6.6
block_quantize_411 5.5 2 0 5.5 320 353 56 2.8
entropy_encode_557 3.9 6 0 2.8 3,262 31 24 1.4
RLE_encode_509 3.8 1 1 11.0 774 22 48 4.6

68 Computer

address bus would limit the maximum throughput to
one iteration every four cycles. With the queues, mul-
tiple accesses can occur each cycle, reducing the iter-
ation interval to two or even one cycle.

The prefetching action of load queues is also sig-
nificant. The top two kernels are very similar except
that forward_wavelet_696 performs two random
loads while forward_wavelet_647 performs two
queue loads. Even though they both have nominal iter-
ation intervals of two cycles, forward_wavelet_696
experiences many data cache stalls, reducing its over-
all performance.

Gzip compression
We also studied compilation of the gzip compres-

sion program, which proved challenging due to its
irregular memory accesses. In many cases, these irreg-
ularities reduced the amount of parallelism and pre-
vented the use of pipelining or memory queues. Also,
typically each loop executed for fewer cycles each
time, making overhead costs more significant. Gzip
spent about half its execution time in the array. The
best kernel saw a net speedup of a factor of 2, but ran
only a small fraction of the execution time. Although
the array accelerated each kernel individually by some
amount, the use of the array interfered with global
optimization of the remaining software portion of the
program, negating the benefit of using the array.

Compilation time and code expansion
Compilation time for Garp, including synthesis of

all array configurations, is typically much less than
double that of compiling to just the software proces-
sor using SUIF. This compilation speed, much faster
than traditional hardware synthesis techniques, results
from our adoption of software compilation algo-
rithms. The size of the compiled wavelet benchmark
grew by 16 percent after the addition of code and con-
figuration data for using the reconfigurable array.
Typical expansion ranges from 10 to 50 percent
although relatively small changes in the configuration
format could greatly reduce this factor. Specifically,
given the repetitive bit slice data paths, run length
encoding could often be effective.

Garp versus Ultrasparc
From an architectural point of view, we must ask if

the reconfigurable array is a wise use of transistors,
given other architectural alternatives. To help answer
this question, we compare Garp to a four-way super-
scalar Ultrasparc 170 processor. To enable direct com-
parisons, we modeled the simulated Garp memory
system after the Ultrasparc’s. If implemented using the
same VLSI process as the Ultrasparc, the Garp chip
would be roughly the same size: Garp has room for
the array because it has a smaller single-issue integer
unit and no floating-point unit. The reconfigurable
hardware and its memory interface fills 10.5 mm ×
9.5 mm in the Ultrasparc’s 0.5-µm process, approxi-
mately a third of the die. The Ultrasparc runs at 167
MHz, while we estimate that Garp’s implementation
would run at 133 MHz. We calculated relative per-
formance using execution time, not cycles.

We compiled and ran the benchmarks on Ultrasparc
to compare against our automatic compilation path
to Garp. We used identical source code for both tar-
gets. The Ultrasparc executable did not utilize Visual
Instruction Set (VIS) multimedia instructions because
the Ultrasparc compiler did not automatically gener-
ate them. In fact, automatic VIS compilation tech-
niques would benefit the Garp compilation path
equally since the array could implement segmented
modules. We excluded file I/O because of the difficulty
in accounting for its variability.

For the wavelet image compression benchmark,
Garp, using the array, ran 68 percent faster than the
Ultrasparc, which in turn ran 73 percent faster than
the Garp MIPS processor alone. Garp’s significant per-
formance increase, even with its lower clock rate, is
due to the amount of ILP it can exploit, sustaining
close to 10 or more operations per nonstalled cycle in
many cases, compared to Ultrasparc’s best-case max-
imum of four operations per cycle.

For the gzip benchmark, the superscalar Ultrasparc
ran just 14 percent faster than Garp using the array,
which performed the same as just the single-issue Garp
MIPS. For most loops the limiting factor was mem-
ory latency, so that neither the Ultrasparc’s nor the
Garp array’s ability to exploit ILP was very useful.

Hand-coded examples
In a production system, programmers would likely

use automatic compilation in conjunction with hand-
coded libraries of common and domain-specific func-
tions. Table 2 shows Garp’s speedups over the
Ultrasparc for some hand-mapped examples to give
an idea of Garp’s potential in this situation. In all
cases, we assume that the configuration cache already
holds the configuration. Although the Ultrasparc ver-
sions we compare against do not use VIS extensions,
we estimate that doing so would make a significant

Table 2. Garp’s speedups over Ultrasparc for hand-coded functions.

Function Data size Speedup Limiting factor

Image median filter 640 × 480 pixels 43 Compute throughput
DES (ECB mode) 1 Mbyte 18.7 Compute throughput
Image dithering 640 × 480 pixels 17.0 Compute throughput
strlen 1,024 chars 14.2 Memory bandwidth
strlen 16 chars 1.84 Overhead
Sort 2 Mbytes 2.2 Scattered memory accesses

difference only in dithering. In that one case, the dif-
ference would be less than a factor of two.

The Garp project shares similar goals with previous
projects, such as the Programmable Reduced
Instruction Set Computer (PRISC)9 and National

Adapative Processing Architecture (NAPA),10 but each
project has chosen a unique design and varying degrees
of automatic compilation. Our compiler’s predication
approach resembles that used in the PRISM compiler,11

an earlier project that investigated semiautomatic C
compilation to an off-chip reconfigurable coprocessor.
Finally, the Synopsys Nimble Compiler project,12 build-
ing on the Garp compiler presented here, is research-
ing retargetability and further optimizations for
embedded applications.

Our results show that Garp’s features can be effec-
tively utilized through automatic compilation. Perhaps
most importantly, in many cases the compiler used
Garp’s memory queues to provide high-bandwidth,
low-latency data access for the array. Without this
capability, the compiler’s ability to produce high-
throughput, optimized configurations would often be
wasted.

The most important remaining work is the study of
Garp and its compiler across a broader range of
benchmark applications. Our future findings will
direct the development of new optimizations to the
Garp compiler and help us draw more conclusions
about the strengths and weaknesses of the Garp archi-
tecture. ❖

References
1. J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor

with a Reconfigurable Coprocessor,” Proc. IEEE Symp.
FPGAs for Custom Computing Machines, K.L. Pocek
and J.M. Arnold, eds., IEEE CS Press, Los Alamitos,
Calif., 1997, pp. 12-21.

2. R. Wilson et al., “SUIF: An Infrastructure for Research
on Parallelizing and Optimizing Compilers,” SIGPLAN
Notices, Dec. 1994, p. 31; also available online at
http://suif.stanford.edu.

3. T. Callahan and J. Wawrzynek, “Instruction-Level Par-
allelism for Reconfigurable Computing,” Proc. 8th Int’l
Workshop Field-Programmable Logic and Applications,
Springer-Verlag, Berlin, 1998, pp. 248-257.

4. S. Mahlke et al., “Effective Compiler Support for Pred-
icated Execution Using the Hyperblock,” Proc. 25th Int’l
Symp. Microarchitecture, IEEE CS Press, Los Alamitos,
Calif., 1992, pp. 45-54.

5. C. Fraser, D. Hanson, and T. Proebsting, “Engineering
a Simple, Efficient Code-Generator Generator,” ACM
Letters on Programming Languages and Systems, Sept.
1992, pp. 213-226.

6. T.J. Callahan et al., “Fast Module Mapping and Place-

ment for FPGAs,” Proc. ACM/SIGDA Int’l Symp. Field
Programmable Gate Arrays, ACM Press, New York,
1998, pp. 123-132.

7. S. McKee et al., “Smarter Memory: Improving Band-
width for Streamed References,” Computer, July 1998,
pp. 54-63.

8. S. Kumar, “Stressmark Adaptive Computing Systems
Benchmarks,” http://www.htc.honeywell.com/projects/
acsbench/.

9. R. Razdan and M.D. Smith, “A High-Performance
Microarchitecture with Hardware-Programmable Func-
tional Units,” Proc. 27th Ann. Int’l Symp. Microarchi-
tecture, IEEE CS Press, Los Alamitos, Calif., 1994, pp.
172-180.

10. C. Rupp et al., “The NAPA Adaptive Processing Archi-
tecture,” Proc. IEEE Symp. FPGAs for Custom Com-
puting Machines, IEEE CS Press, Los Alamitos, Calif.,
1998, pp. 28-37.

11. P.M. Athanas and H.F. Silverman, “Processor Recon-
figuration through Instruction-Set Metamorphosis,”
Computer, Mar. 1993, pp. 11-18.

12. Y. Li et al., “Hardware-Software Co-Design of Embed-
ded Reconfigurable Architectures,” Proc. 37th ACM/
IEEE Design Automation Conference, ACM Press, New
York, to appear June 2000.

Timothy J. Callahan is a PhD student in electrical engi-
neering and computer science at the University of Cal-
ifornia, Berkeley. His research interests include com-
piler and microarchitecture techniques for exploiting
instruction-level parallelism, electronic design automa-
tion, and hardware-software codesign. He received an
MS in computer science from UC Berkeley and is a
member of the IEEE Computer Society.

John R. Hauser is a PhD student in computer science
at the University of California, Berkeley. His research
interests include computer architecture, compilers, com-
puter arithmetic, and exception handling. He received
an MS in computer science from UC Berkeley.

John Wawrzynek is a professor of electrical engineer-
ing and computer science at the University of Califor-
nia, Berkeley. His research interests include recon-
figurable computing, VLSI systems design, computer
architecture, and computer music. He received a PhD
in computer science from the California Institute of
Technology and is a member of the IEEE.

Contact Callahan at timothyc@cs.berkeley.edu.

April 2000 69

