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Abstruct-A knowledge-based approach and a reasoning system for 
multisensor data fusion (MSF) is presented. The scenario taken for 
the example is an air-land battlefield situation. A data fusion system 
obtains data from a variety of sensors. This is an essential step in 
a Command, Control, Communication and Intelligence (C31) system. 
Automatic processing of sensor data has become essential due to the 
volume of evidence available in real-time and to support higher level 
decision making processes. When several varieties of sensors are involved 
in the process of fusion, each contributing information at its own level 
of detail, we need to have a way to combine uncertain information 
from these disparate sensor sources at different levels of abstraction. 
Dempster-Shafer approach to represent and combine data is found 
appropriate for this, as this offers a way to combine uncertain information 
from several sources, each contributing in their own way. Evidential 
reasoning allows confidences to be assigned to sets of propositions rather 
than to just N mutually exclusive propositions. The software has been 
developed in LISP language and tested on the IBM personal computer. 
The results illustrate the advantages of using multiple sensors in terms of 
increase in detection probability, increased spatial and temporal coverage 
and increased reliability that are very important in a battle-field/air- 
defenseinaval-warfare situation. 

I. INTRODUCTION 

Every Command and Control (C’) application employs a variety 
of sensors (e.g., radar, sonar, infrared (IR) detectors, seismometers) 
and sources (e.g., humint, photoint, data linked reports) to collect in- 
formation necessary to develop a perception of the military situation. 
With the C’ application, fusion requirements vary, this is because the 
sensors have unique characteristics [2] ,  [5] ,  [7]. The parameters that 
characterize individual application are 

1) Target quantities and categories that influence the size of the 
target data base and processing requirements. 

2) Detection and decision rate requirements. 
3) Number of sensors in the net and variety of sensors greatly 

influence the architecture and processing requirements on the 
data fusion algorithm. 

A. C-’I Systems 

The phrase Command, Control and Communications evolved in 
the U S .  Department of Defense. In a military context, the phrase en- 
compasses a range of operations and equipment: surveillance against 
suspicious or hostile acts; wartime and peacetime communications; 
all military satellites; radio and radar; jammers and countermeasures; 
and navigation equipment. Therefore, a military command and control 
system is a decision making network that reflects a hierarchical 
organization of command and control nodes. Within a C2 system, 
both command and control decision making occurs at every level of 
the hierarchy. Referring to Fig. 1, the basic elements of a C3 system 
are: 
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Fig. 1. Schematic representation of a complex air-defense system 

1) Sensor subsystems-to gather information about the location, 
movement and activities of enemy and friendly assets, 

2) Navigation subsystems, 
3) Command and fusion centers, and 
4) Communication links. 
Data fusion uses a combination of geographically distributed 

sensors of several types and multiple intelligent sources to collect 
information from these sensors and to develop the best possible 
perception of the military situation. The information processing 
includes: 

Associating events of target detection to creating/ 
confirming target tracks or starting a new track corresponding 
to a different target, and 
Detecting the presence and location of threat emissions. Iden- 
tity of the targets as friend or foe can be achieved by a 
combination of the sensor outputs. Behavior of the targets 
are temporal (velocity, acceleration, course, etc.) and tactical 
activities (hostile acts such as jamming and other deceptive 
or engagement actions and friendly acts such as responding to 
IFF interrogation). 

Benefits of multiple sensor data fusion in this scenario [l]. 
Robust Operational Performance: One sensor can contribute 
information while others are unavailable, denied or jammed or 
lack coverage of a target. 
Extended Spatial Coverage: One sensor can look where another 
cannot. 
Extended Temporal Coverage: One sensor can detect a target 
when others cannot. 
Increased Confidence: More than one sensor to confirm the 
same target. 
Reduced Ambiguity: Joint information from multiple sensors 
reduces the set of hypotheses about the target. 
Improved Detection: Integration of multiple measurements of 
the target increases the assurance of the detection. 
Enhanced Spatial Resolution: Multiple sensors can geometri- 
cally form a synthetic aperture capable of greater resolution 
than a single sensor can achieve. 
Improved System Reliability: Multiple sensors suites have an 
inherent redundancy. 
Increased Dimensionality: A system employing different sen- 
sors to measure various portions of the electromagnetic spec- 
trum is less vulnerable to disruption by enemy action. 
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To get the best possible perception of the military situation, data 
from several sources can be combined either as a single shot or as a 
continuous operation. Data fusion is not usually the end in itself but 
it is often an essential step in a command and control system. The 
results produced by data fusion can be used directly for control or to 
support situation assessment and decision making processes. 

The scenario under consideration is an air-land battlefield situation. 
The targets include friendly and enemy aircraft, including fighters and 
bombers. Detection and identification of these targets are achieved by 
RF/IR emissions, and radar echoes reflected from them. The sensors 
employed are as follows. 

1) Radars located on the ground, which detect and locate air 
targets at slant ranges extending well beyond the forward line 
of own troops (FLOT). 

2) Ground-based radar warning receivers (RWR) to detect the 
hostile emissions from air targets. 

3) Infrared search and track sensor (IRST). 
4) Information friend or foe sensor (IFF). 

B. Problem Formation 

Consider the sensor set S given by 

Each element in the set is a group of sensors of a different type. Each 
group can be considered as a set, that is: 

SI = { s , I . s , 2 . " . . S , , , } .  

s I /  = ( 5  111. s \/L. ' ' ' . s \/?L}. ( 2 )  

There are AI locations of the sensors and there are I )  sensors 
in each group. Here s, refers to the sensor group at location /, 

I = 1 ,2 , . . . .Lb1and5 , ,  referstothesensoroftype,/, ,~ = 1 . 2 . ' . . . ~  
at location / .  

Consider the target set 

The unknown target is assumed to belong to a set of .Y (known) 
targets belonging to this set, Target t, denotes the ith target type. 
Each sensor output is processed at a sensor location to extract some 
characteristic features of the target and this data is sent to a fusion 
center to perform target detection and target parameter estimztion 
[9]. Three general schemes exist for fusing information from sensors 
[lo]. They are fusion of observations, fusion of decisions and fusion 
of probabilities. In this correspondence, we use the third scheme. 
Each sensor output is then a probability referring to the amount by 
which we believe in the proposition "Target t ,  detected by sensor 
sZJ  at range R, moving with a velocity T -." We fuse this information 
with our belief in a similar proposition with detection by sensor S j f J , ,  
i # i' and j # j'. We use Dempster-Shafer reasoning to perform this 
fusion [3],  [SI. Let z be an indicator function with ( 2  = 1) denoting 
the presence of a target and ( 2  = 0 )  denoting its absence. 

Each sensor sLJ  is coupled with its own processor that maps an 
observation vector gt, into the detection probability p z J  given by 

A local fusion rule H ,  at a given location i fuses the detection 
probabilities as given by 

A global fusion rule H gives the final detection probabilities as 

p = P ( z  = 1 I H I .  H L  :... H I / )  = H ( H 1 .  Hz:" .  H.\J). ( 6 )  

11. DECISION SUPPORT SYSTEMS FOR 
MULTISENSOR DATA FUSION 

The various types of factual or procedural knowledge can be 
combined to aid in target identification and parameter estimation. 
Expert system methods can be applied to fuse multisensor data 
by applying sets of rules directly to the measurements or derived 
parameters, as an alternative to classical statistical methods. Expert 
system methods may also find utility in optimally coupling the 
classification process with the positional estimation process. 

A. Why a Knowledge-Based Approach? 
Automatic processing of sensor data has become essential in order 

to cope with the volume of evidence available in real-time and to 
support higher level decision making. Battle management systems 
or combat decision aids require the interaction of data fusion and 
decision support functions. The challenge for the fusion system is to 
capture the knowledge of human experts in the machine's knowledge 
base. 

Knowledge Representation by Rules: A set of facts can be orga- 
nized and a set of rules can be stated such that if all of these facts 
represent true state, then the result is a conclusion that should be 
flashed to the operator. Expert or knowledge-based systems have 
dominated the use of AI technologies for military purposes. But still 
there are lot of unresolved issues in exploiting this technology fully. 
Automated fusion processing exhibits the following characteristics, 
not generally associated with first generation expert systems: 

1)  Time varying dynamic input states, 
2) Real-time operational requirements, 
3) Diverse data and knowledge classes, 
4) Processing and message passing delays, 
5 )  Spatial distribution of sensors, 
6 )  Lack of human expertise in certain subproblem domains, 
7) Multiple levels of abstraction in the decision process, 
8) Large distributed knowledge bases. 
Evidential Reasoning: This has recently received attention as an 

alternative to Bayes reasoning. This was originally conceived by 
Dempster and further developed by Shafer. By using this approach 
to represent and combine data, each sensor is allowed to contribute 
information at its own level of detail. Shafer-Dempster reasoning is 
a generalization of Bayes reasoning that offers a way to combine 
uncertain information from disparate sensor sources with different 
levels of abstraction. 

Bayes theory offers a highly formalized and rigorous way to assign 
and propagate confidences. But, with reference to the problem of data 
fusion, there are several limitations in the application of Bayes theory. 
Bayes theory forces each sensor to respond with a Bayesian family 
of beliefs over a common level of abstraction. An example on this 
is in [3]. If the evidences are conflicting then Dempster-Shafer rule 
cannot be applied straightaway, one has to adopt the modified form 
of Dempster-Shafer reasoning as suggested in [SI. 

B. Sensors 

The outputs of the sensors, described under introduction (scenario) 
and Section I-B are to be fused using Dempster-Shafer theory of 
evidential reasoning. The different stages of the work are described 
in the following. 
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Simulation of Track Knowledge Base: We need to simulate a track 
knowledge base, which is a dynamic input to the data fusion system 
and is diverse in nature. Alpha Beta tracking filter algorithm is used 
for smoothing and prediction. The outputs are tracks: the smoothed 
values of position, velocity and acceleration at a series of points in 
the trajectory, and the predicted values of position and velocity. 

Introduction to Filtering: Filtering and prediction are the funda- 
mental elements of any tracking system. Filtering and prediction 
methods are used to estimate present and future target kinematic 
quantities such as position, velocity and acceleration. Two com- 
monly used approaches to filtering and prediction are to use the 
fixed tracking coefficients and variable tracking coefficients that are 
determined by a priori models for the statistics of measurement noise 
and target dynamics. Kalman filtering is an example of this. Both 
of these types of filters are of fading memory type, which can be 
implemented recursively. Data received in the past are included in 
the present estimate, and hence all data are utilized, but forgotten at 
an exponential rate. The term “smoothed” as used in the literature 
of fixed coefficient filtering is synonymous with the term “filtered,” 
which is used in Kalman terminology. 

Fixed CoefFcient Filtering: Fixed coefficients have the advantage 
of simple implementation using fixed parameters for the filter gains. 
The most extensively applied fixed coefficient filter is the Alpha 
Beta tracker. This filter is used when only position measurements 
are available, and is defined by the following equations: 

where X , ( k )  is the observation received at k ,  S , ( k )  and I , , ( k )  are 
respectively the corresponding smoothed and predicted values, 1 -s ( k ) ,  
Vs(k  - 1) are the smoothed velocities at the instants k and ( k  - 1) 
respectively. T, is the sampling interval. A. $1 are fixed coefficient 
filter parameters. The quantity q is defined to be unity. 

There are four cases of acceleration of the target dealt with. 

1) LACC = 0. RACC = 0 (Both linear (LACC) and Radial 
(RACC) acceleration are 0). 

2) RACC = 0. LACC # 0 (Constant linear acceleration). 
3) RACC # 0. LACC = 0 (Constant radial acceleration-circular 

turn(]. 
4) RACC # 0, LliCC # 0 (Both linear and radial acceleration 

are nonzero). 
From the target course (CT), conventionally measured in degrees 

clockwise with respect to north, and LACC and RACC values taken 
from the input data base file, the accelerations in the S and I -  
directions XDDT and YDDT are computed. 

Target position and velocity updating are done using the starting 
position, scan time, LACC, RACC, course etc., values extracted 
from the input data files. In the simulation, radar data is corrupted 
with noise. The noise has Gaussian distribution with zero mean 
and standard deviation SXM, SYM in the -1- and 1- directions. 
The smoothed position, velocity and acceleration in the -1- and 1- 
directions are then determined. The algorithm chooses the input 
values from the data input file. The trajectory can be divided into 
segments, and for each segment, linear, radial accelerations, time of 
dwell are taken from the input file. 

Outputs of this filtering program are a series of smoothed position, 
velocity and acceleration values in 9 and Ir directions, and a series 
of predicted position, velocity values in the S and the I- directions, 
for the tracks. This information is stored in a text file. This forms the 
simulated track knowledge base. 

For each of the radar sensors, a few tracks are generated through 
simulation and stored in the frame structure that is used in correlation. 

For simulation, the input data are chosen from the data base file 
through uniform random number generation. A typical example is 
the following, which is a frame structure implemented as nested 
association list in LISP. 

(Setcl Track1 (List ’((Sposnx (Value (34083.4)))  

(Sposiiy (T’aliir (36833.6)))  
(S\c.los (Shlur ( -59.4)))  

(S\c,loy (\Taliies (-369.4)) j 

(Saclnu (\hliie ( 8 . 6 ) ) )  

(Sachiy (\bliie (-9.9)))  
(Pret ls  ( \ a l u c  (54072.3)))  

(Prrtlj (\Blue (3G763.2))) 

(Pretlxtl ( \hli ie ( -37.7)))  

( P r r d ~ t l  ( \hl i i r  ( -371 .3 ) ) ) ) ) ) .  (8) 

The smoothed values of position, velocity, acceleration and 
the predicted values of the position, velocity are stored as 
in the previous structure. No multiple target tracking is done 
here. 

In the simulation, only radar sensors on the platforms are consid- 
ered first. Correlation of the incoming radar returns with the existing 
tracks is tried. If the report does not correlate with any of the tracks, 
a new track is initiated based on 3/4 logic. That is, if out of four 
consecutive scans, three of the reports are from the same target, then 
the target is confirmed. After the track is confirmed, it is added to the 
existing track knowledge base. The evidences are then combined. 

As the next step, more sensors are considered. For any detection, 
if there is more than one sensor in a platform that can detect 
it, their evidences arc combined. The outputs of this stage are 
individual platform supports, which are combined at the central 
data fusion center to give the overall support and uncertainty val- 
ues. 

Referring to Fig. 2, the blocks designated plat 1, 2, and 3 are 
platforms. Data inputs to the system, which are the outputs of 
the various sensors are chosen randomly from data input files. 
For simulation, random number seeds are input at the time of 
program execution. Having chosen data inputs, it is verified whether 
the target can be detected at this range based on the location 
of the sensors, and the corrcsponding probability of detection 
is determincd in the case of radar sensors, from the stored 
knowledge about the probability of detection versus the signal to 
noise ratio for a fixed probability of false alarm. In the case 
of RWR and IRST sensors, the results of a simulation work 
of Bogler [3] are prestored as the sensor knowledge base in 
the form of look up tables. From this, the average confidence 
in detection is got. In the case of IFF sensor, it is assumed 
that, if an IFF interrogation elicits a response, then probability 
of the target being a friend ( P ( F )  = 1.0 ( F  = Friendly)). If the 
IFF does not respond, this means that chances are more for the 
target to be hostile, hence probability of the target being hostile 
( P ( H )  = 0.8. ( H  = Iiostile)) and we are uncertain to an extent of 
20%, which we would assign to ignorance. That is, the probability of 
uncertainty, P(ii1ic.<,rtaiiity) ) = 0.2.  Uncertainty is designated by 0 .  
We also perform the target tracking and data correlationiassociation 
in this step. 

Datu ComhinationiFusion: Evidential reasoning is used for data 
fusion. Here the evidences provided by each of the sensors on a 
single platform, are combined. If a target falls in the intersection of 
the coveragcs of two radars, the corresponding supports are combined 
at the central fusion center. 
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Fig. 2. System block diagram 

111. IMPLEMENTATION OF KNOWLEDGE-BASED DATA FUSION 

A. Sensor Knowledge Bases 
Sensor knowledge bases can be categorized into the following for 

the radar sensor: 
Parametric Knowledge: This is the knowledge about the radar 

sensor parameters such as transmitter power, antenna gain, maximum 
range detectable, and altitude maximum etc. Frame structure, which 
can be implemented as nested association lists in LISP is a convenient 
form to represent this knowledge. With this form of representation, 
it is easy to plug in the individual values of sensor characteristics or 
parameters in a frame using a simple function in LISP: 

’(Maxrange (value( 120)) 
(Height (value( 70))) 

(Tx-power (value ( - - - - ) ) ) ) .  (9) 

Also stored are the parameters such as the distance of one platform 
from the other, in both X and Y directions, and the receiver 
bandwidth. 

Performance Knowledge Base: The probability of detection ver- 
sus the signal to noise ratio, for a given probability of false alarm is 
the appropriate knowledge for describing the performance of a radar 
sensor. This is stored as association list. 

Simulated Knowledge Base: The knowledge about the targets al- 
ready detected and their tracks is included in this category. For 
simulation of tracks, Alpha Beta filtering algorithm is used. This 
knowledge base is stored in a frame structure. 

Eg. (Setq Rada r1  

B. RWR Sensor Knowledge Base 
This sensor is a passive sensor giving early warning about threats. 

Associated with this sensor, we need a threat library. Threat library 
is stored in the form of a frame. This contains the hostile frequencies, 
pulse width and pulse repetition frequencies for several values. 
The detected range versus the average confidence in the detection 
corresponding to this range obtained via simulation is stored in a 
nested association list form. 

An example is the following: 

(setq hostf ‘((freq (value (6.9)))  
(pw (value (200))) 

(prf (value (100)) ) ) ) .  (10) 

Here we have set hostile frequency (hostf) equal to 6.9 GHz, pulse 
width (pw) equal to 200 ns and pulse repetition frequency (prf) equal 
to 100 Hz. The range versus the corresponding average confidence 
are stored in association list format. Once a target detection occurs, 
the corresponding average confidence factor is plugged out from this 
knowledge base. 

C. IRST Sensor Knowledge Base 
Similar to the RWR, for this sensor, the average confidence values 

are stored. 

D. Data Bases 
For each of the sensors we need to simulate the inputs. These 

are stored in an appropriate form in files, and chosen randomly. The 
different data are: 

1) For Radar Sensor: The position, velocity of the target and the 
sensor identification that detects one target are stored. By choosing 
a corresponding index, these data can be accessed. This index is 
generated randomly through uniform random number generation. We 
choose the same index to represent the same target, which means 
that the same random number is chosen for selection of data input 
for various sensors. 

2) RWR and IRST Sensors: The inputs of these sensors are also 
stored in data file, in frame format. 

3) IFF Sensor: IFF interrogation elicits a response if the target is 
friendly, and no response implies that the target is hostile or IFF in the 
target is malfunctioning. We assume in this case that the probability 
of the target being hostile is high say 80%. 

E. Implementation of Data Fusion 
This is carried out in two stages. In the first stage, only radar 

sensors are considered on each of the platforms. In the second stage, 
all other sensors are also considered. 

Stage 1: When a target is detected, depending on its relative 
location with respect to the radar, we can determine which other 
radar can detect it. The coverage of the radar sensors on platforms 1 
and 2 can overlap, so also the coverage of the radars on platforms 2 
and 3. In other words, there is a common area where two of the 
radars can cover. If a target falls in the intersection of radars 1 and 
2 then a predicate FALL12 is set to true. If it falls in the intersection 
of 2 and 3 then predicate FALL23 is set to true. If neither FALL12 
or FALL23 is true, this case is treated differently. Now we have to 
deal with two cases: 

1) Single radar detecting a target and 
2) More than one radar detecting it. 
We determine the probability of detection and corrupt the data with 

Gaussian noise. Correlation of this with the existing track knowledge 
base is tried out. Finally, the data are fused, if more than one evidence 
is available. 

From the target position in the X and E’ direction, we get the slant 
range. Set FALL12 or FALL23 as appropriate. Then determine the 
signal to noise ratio for this range. Using the radar range equation 
and the radar sensor parameters from the knowledge base file, we get 
the signal to noise ratio for this range. Probability of detection can be 
treated as a confidence factor or evidence in the proposition “Target 
T, has been detected at range rZ.” 

Based on whether one or more than one radar is able to detect 
the target, we either fuse the evidences and display the support and 
uncertainty values or display only the single radar’s evidence as the 
support. Therefore, the outputs of this phase are the support and 
uncertainty values. 

2) Implementation of Data Fusion for a Multiple Sensor Scenario: 
The results and principles of stage 1, wherein we considered three 
radars on three individual platforms can be modified to accommodate 
more numbers of sensors. A few assumptions made are as follows: 

1) At any time, only one sensor in the net is jammed, 
2) The RWR, IRST, and IFF sensors can detect targets at the 

ranges that the radar sensor can detect, 



1228 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 5, SEPTEMBEWOCTOBER 1991 

INFO ABOUT TRACK 1 
XPOS I 58631, 292 
YPOS : 37608.127 
XVEL : - 1 2 4 . 4 2 8  
YVEL : -217.  443 
SENSORS : RADAR 1 

'?" 

"'..,, 2 

'L. 5 

h n n 
TARGET X PO51TlCN 140 km lo 95 h) 

Fig. 3. Target tracks and fused information. 

3) We choose the same seed for random selection of the data input, 
so that the same target is chosen for analysis and 

4) For the sensor that is jammed, the corresponding confidence it 
provides is zero. 

With these assumptions we proceed as follows: Choose randomly 
an input from the data input file. Based upon the sensors that can 
detect it, the corresponding evidences are computed. If the radar 
misses the target, we set a predicate RADARDET to N else to Y .  
Three different cases are considered: 

1) All four sensors involved in fusion. 
2) Three sensors involved: Radar, RWR and IFF, or Radar, IRST, 

3) Two sensors involved: Radar and IFF (random occurrence). 
Example 1: An example of fusing the evidences provided by the 

sensors is given in the following: Consider the sensors Radarl, 
Radar2, RWR, and IFF, the corresponding evidences being 

P l l ( d e t  by Rada r )  = 0.96 (probability of detection 

IFF, etc. (random occurrence). 

by R a d a r l )  

P11(B) = 0.04 

P12(de t  by Rada r )  = 0.56 (probability of detection 

by Radar2)  
P12(0) = 0.44 

P2(h  emit)  = 0.38 (This is t he  evidence provided 

by the RWR) 
P2(8) = 0.62 
P3(h)  = 0.8 (this is by IFF sensor) 

P3 (0 )  = 0.2 (11) 

where det  means detection, h emit means hostile emission. 
Now, let us combine these using Dempster's rule of com- 
bination. Combining P 2  and P3 we get fused values as in 
Table I. Therefore P (h  emit)  = 0.876 (= 0.304 + 0.496 + 0.076). 
That is the probability of target hostility has increased from 0.8 to 
0.876. In this case IFF is the major sensor and RWR is a supporting 
one. 

Consider now the detection probabilities of radars for combination. 
Combining P11 and P12 we get fused outputs as in Table 11. 
Therefore P (de t )  = 0.9824 and P (0 )  = 0.0176. 

TABLE I 
FUSION RESULTS FOR SENSORS P2 AND P3 

P2 (h emit) = 0.38 
P2  (8) = 0.62 

P(h  emit) = 0.304 
P(h)  = 0.496 

P(h emit) = 0.076 
P(8) = 0.124 

P3(h) = 0.8 P3(8) = 0.2 

TABLE I1 
FUSION RESULTS FOR SENSORS P11 AND P12 

P l l ( d e t )  = 0.96 P(det)  = 0.537'6 P(det)  = 0.4224 
P l l ( 8 )  = 0.04 P(det)  = 0.0224 P(8)  = 0.0176 

P12(det) = 0.56 €'12(8) = 0.44 

Thus, we see that the detection probability increases from 0.96 
to 0.9824, with the target being hostile, and uncertainty reduces to 
0.0176 from 0.04. 

If sensors situated in more than one platform, detect the target, then 
their evidences are in turn fused. First fuse the evidences provided 
by sensors in a particular platform, which gives the platform support. 
Next fuse the platform supports. A few test data and results are 
attached in Appendix A. Sample target tracking results are shown 
in Fig. 3. 

IV. CONCLUSION 

This correspondence presents an exploratory study of multisensor 
data fusion and the example illustrates the implementation of a system 
to fuse data. The real role of data fusion is that of converting data 
into meaningful and timely concept information that will enhance 
the process of human judgement while making a critical battlefield 
decision. The current concerns that such automated systems will 
be vulnerable to deception are based on the premises that counter- 
measures and tactics often rely on unpredictable behavior. The role 
of decision support system is to quantify this uncertainty to help 
the human commander to cope with these higher order reasoning 
processes in the hostile environment of a battlefield while facing an 
intelligent adversary. 

APPENDIX 
IMPLEMENTATION RESULTS 

There are two choices for the user and the system is initiated. A 
typical session of the program is as follows: 
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* (INITIATE) 
******I * * * **  * * * * * ********WELCOME TO DATA FUSION* **  * * * * * **  * * * * * **  * **  * * 
************************ENTER YOUR CHOICE***************************** 

- -  - 

1:NET OF RADAR SENSORS ALONE - 
2:NET OF ALL 4 TYPES OF SENSORS WITH AND WITHOUT JAMMING 
3:QUIT-TO-DOS 

Let us choose the Choice No. 1 
1 
PRESS Y KEY TO CONTINUE 
Y 
SL.NO.l 

0 0 0  
((XPOS (VALUE (80.0))) (YPOS (VALUE (90.0))) (VELO (VALUE (0.3))) 
(COURSE (VALUE (240.0))) (LINACC (VALUE (0))) (RADACC (VALUE (0))) 
(SNO (VALUE (1)))) 

READ U1, U2, U3 REAL NUMBERS FOR CHOOSING INPUT DATA INDEX 

~ 

: TARGET POSITION IN X DIRECTION . . . . . . . . . . . = 80.0 km : 

: TARGET POSITION IN Y DIRECTION . . . . . . . . . . . = 90.0 km : 

: TARGET VELOCITY IN METRES PER . . . . , . . . , . . = 300 : 
SECOND 

: SENSOR WHICH DETECTED THE : 
TARGET 

(XPOS) 

(YPOS) 

. . . . . . . . . . . = 1 

HEIGHT = 90.0088 
GROUND RANGE = 79.99 
RANGE R1 IS 120.416 
RANGE R2 IS 83.8153 
RADAR SENSOR 2 HAS BETTER PROBABILITY 
RADAR SENSOR 2 IS THE MAJOR ONE & RADAR SENSOR 1 SUPPORTS IT 
READ UR1, UR2, UR : BETWEEN 0 AND 1 : SEEDS FOR UNIFORM RANDOM NUMBER 
GENERATION FOR CORRUPTING INPUT DATA WITH NOISE 

NO OF TIMES = 1 
0.2 0.3 0.4 

As the data has not correlated with any existing track control has 
entered the “TRACK-INITIATE’ function, for the first time. 
The evidential outputs are as follows. 

EVIDENCE BY RADAR 1 = 0.88 
EVIDENCE BY RADAR 2 = 1.0 
SUPPORT BY RADAR 1 OR 2 = 1.0 
CORRESPONDING UNCERTAINTY = 0.0 

All four types of sensors with and without jamming 
Let us choose two and test each input in the presence and absence of jamming. 

2 
PRESS Y KEY TO CONTINUE 

SL.NO.2 
READ U1, U2, U3 REAL NUMBERS FOR CHOOSING INPUT DATA INDEX 

3.3 3.3 3.5 
((XPOS (VALUE (90))) (YPOS (VALUE (YO))) (VELO (VALUE (0.5))) 
(COURSE (VALUE (300.0))) (LINACC (VALUE (5) ) )  (RADACC (VALUE (-5)))  
(SNO (VALUE (2)))) 

Y 

: TARGET POSITION IN X DIRECTION . . . . . . . . . . . = 90.0 km : 
(XPOS) 
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: TARGET POSITION IN Y DIRECTION . . . . . . . . . . .  = 90.0 km : 

: TARGET VELOCITY IN METRES PER . . . . . . . . . . .  = 500 : 
SECOND 

: SENSOR WHICH DETECTED THE . . . . . . . . . . .  = 2 : 
TARGET 

(YPOS) 

READ U1, U2, U3 REAL NUMBERS SAME AS YOU READ IN JUST NOW TO SELECT 
SAME INDEX 

3.3 3.3 3.5 
RWR HAS NOT DETECTED THE TARGET 

IRST IS NOT ABLE TO DETECT THE TARGET 
HEIGHT = 91.1172 

RADAR SENSOR 3 HAS BETTER PROBABILITY 
RADAR SENSOR 3 IS THE MAJOR ONE & RADAR SENSOR 2 SUPPORTS IT 

IFF RESPONSE IS : POSITIVE 

GROUND RANGE = 88.8687 

HOW MANY SENSORS HAVE BEEN JAMMED ? 
0 

GOOD LUCK ! NONE OF THE SENSORS HAVE BEEN JAMMED 
NONE OF THE SENSORS IN PLATFORM NO 2 IS JAMMED 

READ UR1, UR2, UR : BETWEEN 0 AND 1 : SEEDS FOR UNIFORM RANDOM NUMBER GENERATION 
FOR CORRUPTING INPUT DATA WITH NOISE 

NO OF TIMES = 1 
THIS IS THE CASE OF 2 SENSORS :RADAR & IFF NONE JAMMED 
IFF CONFIDENCE = 1.0 
EVIDENCE BY RADAR 2 = 0.11 
EVIDENCE BY RADAR 3 = 1 

SUPPORT BY RADAR SENSORS = 1.0 

0.3 0.4 0.6 

THIS IS CERTAINLY A FRIENDLY TARGET WITH 100 % SUREITY 

UNCERTAINTY = 0.0 
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