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Learning Optimal Conjunctive Concepts through a 
Team of Stochastic Automata 

P. S. Sastry, K. Rajaraman, and S. R. Ranjan 

Absfract-The problem of learning coaunctive concepts from a series of 
positive and negative examples of the concept is considered. Employing a 
probabilistic structure on the domain, the goal of such inductive learning 
is precisely characterized. A parallel distributed stochastic algorithm is 
presented. It is proved that the algorithm will converge to the concept 
description with maximum probability of correct classification in the pres- 
ence of up to 50% unbiased noise. A novel neural network structure that 
implements the learning algorithm is proposed. Through empirical studies 
it is seen that the algorithm is quite efficient for learning conjunctive 
concepts. 

I. INTRODUCTION 
This correspondence is concerned with a new class of algorithms 

for concept leaming. Concept learning involves learning to classify 
objects belonging to a domain. To achieve this, the learning system 
will be supplied with preclassified examples (objects) from the 
domain. Any object of the domain characterizing the concept (that 
is, satisfying the “ideal” concept description) is called a positive 
example. All other objects from the domain are called negative 
examples. The goal of the learning system is a concept description 
that can be used in a decision procedure to decide whether or not 
a given domain object (positively) exemplifies the concept. The 
problem of learning to classify objects into different classes has 
been studied extensively in pattern recognition literature [ 141 as well. 
The main difference in concept learning is that the attributes used to 
describe different objects of the domain can take values in arbitrary 
sets and specifically attributes need not be numerical valued. Also, 
in concept learning, one is interested in obtaining concepts in a more 
human-comprehensible form (e.g., logic expressions that can be used 
in a rule for a decision) rather than in the form of values of parameters 
of an equation as in traditional statistical pattern recognition [6], (141. 

This problem of inductive learning is studied extensively by 
psychologists (11 and computer scientists [2]-[4]. It is of interest 
in artificial intelligence (AI) due to the possibilities it offers in 
automating the knowledge acquisition process for expert systems (see 
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[3, ch. 41). The problem of learning from examples is also of interest 
in the field of neural networks [4]. 

For the concept learning problem considered in this correspondence 
the domain is specified by giving a set of characteristic features called 
attributes. Each object of the domain, and hence in particular, each of 
the examples provided to the system is described by specific values 
assumed by the attributes. These attributes take values in arbitrary sets 
on which there may or may not be any structure. By experiencing a 
subset of such domain objects that are preclassified by a teacher, the 
system is to learn the “right” concept description. 

In this correspondence, we view the concept learning problem in 
a probabilistic setting. Valiant is one of the first to realize the utility 
of such a point of view [5]. We see that in this formulation, we 
can objectively characterize what is meant by the “correct” concept 
description. We propose a stochastic algorithm based on a cooperating 
team of learning automata. This algorithm is shown to converge to 
the “correct” concept description for the class of problems where the 
correct concept can be expressed as a conjunctive concept (see [18] 
and [3, ch. 41). The algorithm is very robust, and it is proved that it 
can tackle up to 50% of unbiased noise in examples. It is a parallel 
algorithm that learns incrementally and can be implemented on a 
parallel distributed network of simple processing elements with only 
local computation and hence can be viewed as a neural network, but 
in contrast with standard neural network models, here, the weights 
remain fixed, and the input-output functions of the neurons get 
adapted through the course of learning. It can possibly be called 
a dual neural network model. 

11. CONCEPT LEARNING 
In this correspondence, we assume that the objects of the domain 

are described by a set of features or attributes. Once the attributes 
are fixed, the form chosen for representing the concept will define 
the space of all possible concepts; the concept space. Some of the 
representations used in AI include logic expressions or rules and de- 
cision trees. In this correspondence, we use logic expressions. We can 
distinguish between at least two types of such rules (see [3, ch. 41). 

Let the attributes chosen for the domain by E: that take values 
from sets 1;. I = 1,. . . . AV. 

Definition 1: A concept description (logic expression) given by 

[I; E t l ] A . . . A [ Y h  E 1 ~ x 1  

where r ,  is a subset of 1;. I = 1.. . . . .V. is said to be a Conjunctive 
expression. 

Definition 2: A concept description of the form 

CI v c2 v . . ‘ v c,, 
where each C, is a conjunctive expression is said to be in disjunctive 
normal form (DNF). We will refer to DNF concepts also as disjunctive 
expressions. 

When we use conjunctive or disjunctive expressions to represent 
concepts, learning involves searching the space of all such rules to 
find the “best” rule given a set of examples. A rule from the concept 
space is said to be consistent with respect to a set of examples if it 
is satisfied by all the positive examples and is not satisfied by any 
negative example. 

The goal of a concept learning algorithm is to identify the correct 
concept using a sequence of examples given to it. Hence, it is 
desirable to specify how one can be sure of correctness of such 
an algorithm. In general, this is a philosophical question of whether 

0018-9472/93$03.00 0 1993 IEEE 



1176 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 4, JULYIAUGUST 1993 

induction based on a finite set of examples can ever be said to lead to 
provably correct generalizations. At a more mundane level, in the con- 
text of concept learning problems, two types of identification methods 
are distinguished in the literature: identification by enumeration and 
identification in the limit [2]. 

A n  algorithm that considers only those concepts that are consistent 
with all examples seen so far is employing identification by enumer- 
ation. Many AI algorithms achieve this identification. This method 
forces one to view any new example in the complete context of all 
examples seen so far. Since after seeing a finite set of examples the 
set of consistent concepts can still be very large, heuristic preferences 
for certain concept descriptions are made use of to reduce the search 
effort. If we do this pruning after seeing only some of the examples, 
then when more examples are presented, we may not be able to 
locate a consistent concept within the search space. This is one of 
the reasons why many AI algorithms tend to be nonincremental. 

Identification in the limit views learning as an infinite process of 
making a series of guesses about the correct concept. Here, it is 
not required that all the guesses in the sequence be consistent. The 
eventual or limiting behavior of this sequence is what is used as a 
criterion of success. An algorithm is said to identify concept in the 
limit if after a finite (but not a priori bounded) number of examples 
are processed, the algorithm never changes its guess and that guess 
is consistent with all examples. 

The identification criteria discussed above are useful only in noise- 
free environments. In a noisy environment, one cannot demand 
consistency with all the examples. In the presence of noise, the 
environment may present the leaming system with two examples both 
described by same values for all attributes but one of them classified 
as positive and the other as negative by the teacher. There are three 
possible sources for such noise. First, the classes to be distinguished 
by the concept description may inherently be nonseparable under 
the chosen set of attributes. This would be the case, for example, 
in learning to diagnose a disease using a specific set of clinical 
tests. (The examples for learning in such a case can be generated 
by the respective physical processes to be distinguished.) Second, the 
measurement process that assigns values for attributes could introduce 
noise. Finally, the teacher who classifies the training examples may 
not be infallible. In any case, in the presence of noise, a positive 
example given to the algorithm may not, in fact, be a positive example 
in the sense that the “right” concept description should satisfy it. This 
is similar for negative examples. Such wrongly classified examples 
will be termed noisy examples, and they cannot be spotted a priori 
(Le., before learning the right concept). While defining the criterion 
for “correct” concept, we need to make sure that the definition makes 
sense even in the presence of noise. 

For a concept learning algorithm to be useful, the learnt concept 
description should not only be applicable to the examples provided 
by the teacher but also to other objects in the domain. To tackle this 
issue of generalization one has to have a way of distinguishing rules 
not only based on their performance on the presented examples but 
also based on their likely performance on the unseen objects of the 
domain. In many AI algorithms, this is handled, in a rather ad hoc 
manner, by using heuristic evaluation of the syntactic generality and 
simplicity of concept descriptions. 

Both the issues of noise and generalization can be handled more 
rigorously if we assume a probabilistic structure on the domain, 
that is, if we assume the existence of probability distributions 
characterizing positive and negative examples. Valiant is the first to 
realize the utility of such a view point [SI. This idea is used in defining 
the notion of probably approximately correct (PAC) learning [18]. Our 
characterization of the objective of learning is similar to the concept 
of PAC leamability and is useful even in the presence of noise. 

A. Problem Definition 

For us, the concept learning problem is specified by the following. 
1) A finite set of characteristic attributes of the domain are 

specified. Each attribute assumes only finitely many values; if it 
takes values in a continuum, then the range will be split into finitely 
many intervals. All examples will be described as tuples of values 
for these attributes. Also, it is assumed that the right concept can 
be described as a conjunctive logic expression involving a subset 
of these attributes. Nothing is known regarding the independence or 
otherwise of these attributes. 

2) There exists a probability distribution (which is unknown) over 
the objects of the domain characterizing the concept. 

Thus, it makes sense to ask the following: What is the probability 
that a specific description correctly classifies a random object from 
the domain? It is also assumed that the examples given to the learning 
system are randomly drawn for this distribution, but the probability 
distribution is totally unknown to the learning system. Thus, all that 
this assumption of a probabilistic structure amounts to is saying, in 
a precise sense, that the examples are representative of the concept. 

Our algorithm makes a series of guesses about the right concept 
while performing a stochastic search over the concept space. As in 
identification in the limit, the criterion of success is the limiting 
behavior of the algorithm. 

Let J ( . )  be a functional defined on the concept space. For any rule 
2 in the concept space, we define 

J ( 2 )  = probability that 2 

correctly classifies a random 

example from the domain. (1) 

Let p+ and p -  be the probabilities that a random object from the 
domain is a positive and a negative example, respectively. 

Let us denote any object of the domain by z = (z~,....z~), 
where z2 E V,,  is the value set of i th attribute Y,. 

Let P+(z)  and P - ( x )  denote the probabilities that the object z is 
a positive example and a negative example, respectively. Then, (1) 
can be rewritten as 

where I , ( z )  is 1 if the object x satisfies the logic expression Z 
and 0 otherwise. p + ,  p - ,  p+ (.), and P- (.) together characterize the 
probabilistic structure of the domain. All these quantities are unknown 
(it may be noted that p+ + p -  = 1). 

We define the correct concept to be the rule Z that globally 
maximizes J ( . ) .  However, it may be noted that given an z, we 
cannot compute J ( r )  because the probability distributions in (2) are 
unknown. 

It is easy to see that in the terminology of statistical pattem 
recognition, p+ and p -  are prior probabilities, P f ( . )  and P- 
are class conditional densities, and J ( Z )  is probability of right 
classification with classifier 2. The main difference in concept 
learning is that elements of x (which is analogous to feature vector 
in pattern recognition) may not be numerical, and on the space to 
which z belongs, there may not be a meaningful distance measure. 
Thus, it would be difficult to use any standard pattern recognition 
algorithm for this problem. 

In the next section, we present an algorithm based on a cooperating 
team of learning automata for the concept leaming problem. Team 
of automata have been used for pattern recognition [15]. Though 
the model we use is different from that of [15], the main reason 
why automata can be used both for pattern recognition and concept 
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learning is that automata algorithms search in the space of probability 
distributions over the set of possible parameters rather than in the 
space of all parameters and, hence, do not need any distance measure 
on the space of parameters. 

As mentioned earlier, in this correspondence, we prove the con- 
vergence of the algorithm only in problems when the correct concept 
(i.e., global maximum of J ( . ) )  is a conjunctive expression. Hence, 
we give some more definitions useful for conjunctive concepts. 

From Definition 1, it is easy to see that a conjunctive concept can 
be represented by a tuple ( u l ,  v2 , .  . . , UN). where u t  is a subset of 
V,. which is the value set of i th  attribute. 

Definition 3: Let ( u ; ,  . . . w&) be the correct concept. Then, vt* is 
called the correct set of the attribute Y, ,  i = 1. . . . . N .  

It is easy to see that the value of any attribute in a positive example 
belongs to the correct set of that attribute and in any negative example 
the value of at least one attribute does not belong to the correct set. 
Also, it should be noted that this notion of correct set is meaningful 
only for conjunctive concepts. The problem of learning DNF concepts 
with our method is addressed in [16]. 

111. A STOCHASTIC ALGORITHM FOR LEARNING 
CONJUNCTIVE CONCEPTS 

In this section, we first introduce the concept of a cooperative game 
of automata. Then, we show how the model can be used for learning 
optimal conjunctive concepts in a noisy environment. Our treatment 
of learning automata will be brief. The reader is referred to [7] for 
further details. 

A.  Learning Automata 

The learning automaton has a finite set of actions A = 
(a1. cy2,. . . ,a ,}  from which it chooses an action at each instant. 
This choice is made randomly based on the so-called action 
probability distribution. Let p = [p,(k) ,  . . . , p,(k)] denote this 
distribution. For the choice of action, the automaton gets a 
reaction (which is also called response or reinforcement) from the 
environment. This reaction is also stochastic whose expected value 
is d ,  if the automaton has chosen at .  d,. i = 1,. . . , T are called 
reward probabilities of the environment and these are unknown to 
the automaton. The objective is for the automaton to learn the action 
with highest expected value of reinforcement. Let d, = max {&}. 
Then, om is called the optimal action, and we want p , ( k )  to go to 
unity asymptotically. For this, the automaton makes use of a learning 
algorithm (denoted by T), which updates the action probability 
distribution. Formally, p ( k  + 1) = T(p(k ) ,  a ( k ) ,  D ( k ) ) ,  where ~ ( k )  
is the action chosen at instant k ,  and / 3 ( k )  is the resulting reaction. 

A learning algorithm we use later on, which is called the linear 
reward-inaction ( LR=I)  algorithm [7], is described below. 

1) LR-I Algorithm: Let a ( k )  = a ,  and let J ( k )  be the response 
obtained at k .  Then, p ( k )  is updated as follows: 

where p E ( 0 , l )  is a parameter of the algorithm. 
2) Games ofAutomata: Games with incomplete information played 

by learning automata have been used as models for adaptive de- 
centralized decision making [7].  In such a model, the automata 
correspond to the players and the actions of the automata to the 
various pure strategies available to the players. A play of the game 
consists of a choice of action by each automaton. The response to the 
automaton is the payoff to the corresponding player that is assumed 
to be stochastic. For the purposes of this correspondence, our interest 
is in cooperative games with common payoff. 

Consider N automata in a cooperative game with common payoff. 
Let the i th automaton have T ,  actions to choose from (i = 1 , .  . . , N ) .  
In each play, all the team members choose actions independently and 
randomly, depending on their current action probability vectors. The 
overall action selection gets a response from the environment that is 
the common reaction to all the automata. The reward structure of the 
game can be represented by a r1 x rz x . . . x T N  dimensional hyper- 
matrix, D = [dZlt2 ,,] defined by d,,,, 2 N  = E[Responseljth 
player uses strategy L,]. 

D is called the reward matrix of the game. 
If the choice of the strategies m, by ith player ( i  = l;.. . N )  

such that 

then m t  is called the optimal strategy of player i ,  (i = 1,. . . , N )  and 
the overall strategy selection (ml ,  . . . , m N )  is called the optimal set 
of strategies of the team. 

Definition 4: Any entry, d,,,, 2 N .  of the N-dimensional matrix 
D is called a mode if 

d z l 1 2  *, = max dJIZ2 ZN 

= max d,,,, Z N  

31 

12 

= max dZIZ2 3 N .  
J N  

Theorem 1: Let D be the reward matrix of a cooperative game 
with common payoff played by N automata. Let all the automata use 
identical LR-I algorithms. Then asymptotically as p + 0, the team 
converges weakly to one of the modes of the matrix D. 

For unimodal game matrix, the above theorem is proved in [8]. 
Using weak convergence techniques, the result may be proved for 
multimodal matrices also (see, e.g., [17]). 

B. Algorithm for Concept Learning: 

We formulate the problem of concept learning as a cooperative 
game with common payoff played by a team of learning automata. 

Our notation is as follows. The problem has N attributes 
1'1, Y2, . . . , 1 ' ~ .  The attribute Y, takes values in the set V,  and 
1', = { s ~ I , z ~ ~ , . . . . x , ~ , } , ~  = 1;'. .Ar. Wedenotearbitrarysubset 
of T i  by either u,  or A, .  

Our model consists of a team of n l  x n2 x ... x n~ automata, 
X , , ( J  = 1;..,nt;i = l,.-..N) involved in a game with 
common payoff. Each automaton has two actions: YES and NO. 
The automaton X, ,  is concerned with the decision of whether X, ,  
(the j t h  possible value of the zth attribute) is in the correct set 
of Y,. At each instant, each of the automata chooses an action 
independently and at random based on its action probabilities. It 
is easy to see that this choice of actions results in the selection 
of a conjunctive concept by the team. Let the actions chosen by 
X,,  be a,,, (3 = 1 , .  . . , nz ;  z = 1,. . . , N ) .  Then, the conjunctive 
concept selected is (VI,..., WN), where X, ,  E v,  iff c y 2 ,  = YES 
(J  = 1,. . . , nt:  z = 1,. . . , N) .  The team will then classify the next 
example with the selected concept. The teacher supplies the team with 
a response of 1 if the classification agrees with that of the teacher 
and 0 otherwise. This will be the common payoff or the reaction to 
all the automata. The automata then update the action probabilities 
using the LR-I algorithm (see (3)). 

Let p , , ( k )  denote the probability with which X , ,  will choose 
action YES at instant k .  Then, the algorithm can be described as 
below. Initially, we set p 2 , ( 0 )  = 1 /2  for all z , j .  At each instant 
each of the automata, X , ,  simultaneously and independently chooses 
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actions at random based on its current action 
response to the team is 

p = 1, if the classification done 
by the automata team 

probabilities. The 

matches with the teacher’s 
classification 

= 0 otherwise. (4) 

Then, each automaton X, ,  updates its p,, as follows: 

P * , ( k  + 1) =pv(k )  + PPI1 - Pt,(k)I 
if X,, chooses action YES at k 

= P,, (k) - PLPPZ, (IC) 
if X,,  chooses action NO at k (5) 

where p E (0 , l )  is the learning parameter. 
If all the action probability vectors converge to unit vectors, then 

we say that the team has converged to the corresponding concept. The 
next subsection presents the convergence analysis of the algorithm. 

Before proceeding with the analysis, it may be noted that our 
formulation of the concept learning problem includes possibility of 
noisy samples or noisy teacher. The response to the automata team 
is determined by whether or not the classification by the team agrees 
with that of the teacher and not on whether the classification is correct. 

C. Analysis of the Learning Algorithm 

The action chosen by the team of automata will be a tuple of 
nl x n2 x . . .  x n~ elements (cy2, : 1 5 j 5 n z ,  1 5 i 5 N). Thus, 
the reward matrix of the games D will be a II;”=, n,-dimensional 
hyper-matrix of dimension 2 x 2 x . . . x 2. As a notation, let 
2311f ’ - - i 3 ~ i , ~ . . . i 3 m .  , Then, any element of D can be represented 
as dtt,,, izEZ . . . i~,,,..,, where each i , k  is either 1 or 0, corresponding 
to the two actions (YES and NO, respectively) of the automaton. 

It is clear that the first nl automata are learning correct set for 
attribute Y1 and so on. Hence, for the purpose of analysis, it would 
be convenient to talk of D as indexed by N subscripts, where each 
subscript is a set of attribute values. Therefore, we refer to the reward 
matrix entries as 

d A 1  . A,, 

which actually refers to the element 

dZlzl 2 2 ~ 2  

where i j k  = 1 iff Xjk E A,. 
In view of Theorem 1, we know that the team will converge to 

one of the modes of the matrix, and the goal of the analysis is to 
characterize the modes. Our analysis proceeds in two steps. First, we 
consider the effect of noise on the reward matrix. Since the reaction 
to the automata team depends on its classification agreeing with that 
of the teacher, the probability of the team getting a reward (Le., 
p = 1) depends not only on the probability of the chosen concept 
correctly classifying a random example (determined by the unknown 
probabilities p+, p - ,  P+ (.), P-( .)) but also on the probability of 
wrong classification by the teacher. Let D denote the reward matrix 
when there is no noise, and let D ( a )  be the reward matrix under 0% 

unbiased noise. Theorem 2 shows that an element of D( a )  is a mode 
if and only if the corresponding element of D is a mode, if a < 50. 
Thus, under the condition of less than 50% noise, to understand the 
asymptotic behavior of our algorithm, it is enough to consider the 
modes of D. Theorem 3 characterizes the modes of D ,  thus proving 
the convergence result for the algorithm. 

Remark 1: To prove some element is a mode, it must be shown to 
be greater than or equal to all the adjacent elements (see Definition 4). 
Two elements of D are adjacent if the corresponding action combina- 
tions differ in the choice of action for only one automaton. Therefore, 
we may talk of the adjacent entries as resulting from flipping the 
action of the one automaton. According to our terminology, the action 
combinations are represented by the tuple of sets ( A I , .  . . , A”) .  
Hence, the flipping of the action of an automaton refers to addition 
of one value to one A, or deletion of one value from one A,. 

Remark 2: Learning of a conjunctive concept is essentially leam- 
ing the correct sets of all attributes (see Definition 3). There are two 
important special cases of correct sets-the null set and the set of all 
possible value of an attribute. Assuming that there exists at least one 
positive example of the concept, the null set cannot be the correct set 
of any attribute. The correct set of an irrelevant attribute will be the 
set containing the entire range of the attribute. 

Theorem 2: The order relations between various entries in the 
reward matrix for the game do not change if 1) the teacher is unbiased, 
and 2) the probability of noisy classification by the teacher does not 
exceed 0.5. 

Proof: The expected reward to the team of automata for a set 
of actions chosen by the automata in the team resulting in subsets 
A, ( i  = 1,. . . , N) of the range of the attribute Y,  ( i  = 1,. . . , N) 
is given by 

d ~ ,  A,.., =p+ . Prob [on a random positive example 

the teacher’s classification agrees 

with that by the team] 

+ p -  . Prob [On a random negative example 

the teacher’s classification 

agrees with that by the team] 

If the probability of classification error by the teacher is a and 
the teacher is unbiased, then Prob (a random positive example is 
classified negative by the teacher) = Prob (a random negative example 
is classified positive by the teacher) = a ;  Prob (a random positive 
example is classified positive by the teacher) = Prob (a random 
negative example is classified negative by the teacher) = (1 - 0 ) .  

Therefore. 

where 2 is the reward probability under no noise. 

matrix is maintained as in the case of non-noisy environments if 
Therefore, the order relation between any two entries in the reward 

(1  - 2 0 )  > 0 

1.e.. 

a < 0.5. 

Thus, the theorem follows. 
Theorem 3: Consider the automata game for concept leaming with 

the reward structure as defined by (4) with no noise. 
Then, the following are true for the reward matrix. 
1) The element in the reward matrix corresponding to (A;, . . . , 

A ; ) ,  where A: is the correct set of Y,, is a mode of the matrix. 
2) In all other modes, the set of values selected for at least one 

attribute is null set. 
Proof: The proof is given in the Appendix. 

Theorem 3 together with Theorems 1 and 2 completes proof for 
the convergence of our learning algorithm. 
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Remark3: By Theorem 3, we know that the correct concept 
description is a mode. Further, all other possible modes of D assign 
null set as the correct set of at least one attribute. Since in a concept 
learning problem, the correct set for an attribute cannot be a null set, 
it is easy to check whether the automata team has converged to the 
correct description or not. If the correct set of any attribute is null 
in the converged concept, then we can rerun the algorithm with a 
different starting point (Le., a different seed to the random number 
generator). 

IV. DISCUSSION 

The learning algorithm presented in the previous section is a 
parallel stochastic scheme for learning conjunctive concepts. 

Here, learning proceeds through a stochastic search over the space 
of all concepts. The stochastic nature of the search makes the 
algorithm immune to noise and we have proved that the algorithm can 
handle up to 50% of unbiased noise. The algorithm is incremental, 
that is, it processes one example at a time and does not need to store 
all examples. 

In our concept learning model, we have assumed a probabilistic 
structure over the domain to precisely characterize the goal of 
learning. Since the underlying probability distributions are completely 
unknown to the automata team, the assumption of probablistic 
structure only amounts to saying, in a precise manner, that the 
presented examples are representative of the concept. This viewpoint 
has helped us charaterize the generalization properties and prove 
correctness of our algorithm. 

There are many algorithms proposed for concept learning in AI. 
Three of the widely studied algorithms are candidate elimination 
algorithm (see [3, ch. 6]), the Star methodology and the AQ and 
INDUCE series of algorithms (see [3], [ lo],  and [6, ch. 4]), and 
the ID3 algorithm (see [3, ch. 151). All the algorithms essentially 
achieve identification by enumeration. They can come out with the 
“best” concept that is consistent with all the examples. 

Mitchell’s algorithm [3] learns conjunctive concepts in an incre- 
mental manner. By employing a partial order on the concept space, 
the algorithm can incrementally update the region in concept space 
that is consistent with all the examples seen so far, and in the 
absence of noise, the algorithm converges to the correct concept. It 
is not possible to handle noise in this framework. Also, the algorithm 
becomes inefficient if one cannot impose a good partial order on the 
concept space [18]. 

In general, if no structure is assumed on the concept space, then 
to search for a consistent concept one needs to remember all the 
examples. Thus, Michalski’s algorithm and Quinlan’s ID3 are both 
nonincremental. Both these methods can learn disjunctive normal 
form concepts. 

Under the Star methodology of Michalski, different types of 
attributes are distinguished based on the structure imposed on their 
value sets. If the value set has no structure, then the attribute is called 
nominal; if the value set is totally ordered, then it is called linear, 
and if the value set is partially ordered, then the attribute is called 
structural [18], [3]. Depending on the types of attributes, a number 
of syntactic rules for generalization and specialization of concepts 
are proposed. The learning proceeds by starting with some concept 
description and generalizing and specializing it using various rules 
and keeping the “best” among the consistent concepts so obtained. 
Selection of best concepts is done by heuristic evaluation functions 
that use some ad hoc measures such as simplicity of the concept 
descriptions, etc. Though this algorithm is found useful in many 
problems, unless good background knowledge is available about the 
domain, this process tends to be very inefficient, particularly when 

there are a large number of examples. Further, there is no effective 
way to handle noisy examples. 

Quinlan’s ID3 algorithm leams the concept in the form of a 
decision tree, which is equivalent to a DNF concept. This algorithm 
makes use of a heuristic based on information theoretic considerations 
and is efficient. The algorithm is nonincremental but can handle some 
amount of noise [9], but we do not know of any result that assures 
that correct generalizations are made even in the presence of noise. 

Our main contention is that for a useful analysis of the learning 
algorithm, one needs to be able to give some sort of guarantee for 
correctness of generalizations that are learned. While inductions in 
general may not be amenable for correctness proofs, as shown by 
Valiant [5], for concept learning, the idea of a probabilistic structure 
on the domain is very useful to be able to prove the correctness of 
the learned concept. 

There are other automata team models for concept learning [ l l ] ,  
[12]. An earlier automata model used N-automata for N-attribtue 
problem where actions of automata are susbsets of value sets [12]. 
While this algorithm also has a similar convergence proof, it is 
inefficient because each automaton will have 2N actions. For the 
algorithm presented in this correspondence, the attributes may not be 
statistically independent, but if the attributes are independent, then 
one can use a slightly different learning algorithm that gives faster 
convergence in simulations [ll]. 

Another important aspect of our algorithm is that unlike many of 
the AI algorithms, it is parallel. All automata independently choose 
their actions based on their respective probability distributions, get a 
common response from the envrionment (which can be broadcast to 
all of them), and then independently update their action probabilities. 
There need be no explicit communication between the automata. 
Hence, on an SIMD machine with one processor per automaton (or 
a group of automata), we can achieve almost linear speedup. 

Viewed as such a parallel network, this algorithm is somewhat 
similar to reinforcement learning in neural networks [13]. We explore 
this aspect of the algorithm in the next section. 

v. THE AUTOMATA TEAM AS A PARALLEL DISTRIBUTED 
NETWORK FOR CONCEPT LEARNING 

The learning problem we have considered here is also of interest 
in the field of artificial neural networks. Unlike the case of learning 
algorithms such as backpropagation [4], here the network is not told 
what the correct output should be. What is available is only a noisy 
response from the teacher as to the correctness of the classification 
by the system. This corresponds to a reinforcement learning problem 
[13]. Our automata model can be viewed as a network but with one 
significant difference. In a general neural network the connection 
weights are updated through the process of learning, but here, the 
weights remain fixed, and the activation functions of the units get 
adapted through learning. 

To concretise the details, we show in Fig. 1 a neural network 
that is equivalent to the automata team algorithm. The example 
(Z , ,  . . . . Z N )  is presented to the system, where Z1 is the value of 
ith attribute in the example. Layer 1 units (refer to Fig. 1) are input 
units that funnel the attribute values to units in layer 2. There are 
n1 + . . . + RN units (same as the number of automata in the team) 
in layer 2. (Recall that ith attribute can have n, possible values). 
Units in layer 2 are the only learning units in the network. Layer 3 
has N units with interconnections as shown in Fig. 1. (The weight 
of each connection is shown on the corresponding arc). The output 
of each layer 3 unit is a logical AND of all its inputs (all of which 
will be binary, Le., l/O). The single unit in layer 4, whose output 
is the logical AND of all the outputs of layer 3 units, produces the 
output of the network. If this unit’s output is 1, then the network 
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z1 Z N  

Fig. 1. Neural network implementation of the automata algorithm. 

has classified the example as positive; otherwise, it is classified as 
negative. In this network, it is easy to see that we do not need layer 3 
at all because the AND operation can be done by the layer 4 unit, but 
in the special case of this problem for independent attributes [ l l ] ,  
we need the outputs of layer 3 units separately. Also, it is easier to 
understand the correspondence with automata team by keeping the 
layer 3 units. This is the reason why we show layers 3 and 4 in one 
dashed box in the figure. 

All the connection weights (shown on the corresponding arcs in 
the figure) are fixed. The learning is effected by each of the layer 2 
units learning the correct activation functions. Each unit in this layer 
X,, ( j  = 1,. . . , n z ;  z = 1,. . . , N) has two inputs. One is connected 
to the constant X2,, which is the j t h  possible value of i th attribute, 
with weight +1, and the other is connected to Z,, which is the output 
of Ith unit in layer 1, with weight -1. Thus, the net input to unit 
X,, is nt, = X,, - 2,. The output of X,, will be yt, = h(n,,). 
where h(.)  is the chosen activation function of the unit. The unit X, ,  
has two possible activation functions to choose from at each instant. 
They are Ys(.) and N t ( . )  defined by 

Y s ( x )  =1 vx 
N t ( x )  = 1 if z # 0 

= O  i f z = O .  

If X,, has chosen the function N t ( . ) ,  then its output is 0 if and 
only if X,,  = 2,. In all other cases yz3 = 1. It may be noted that 
2, = X,, for exactly one j. Thus the output of i th unit at layer 
3 is 1 if and only if the unit Xp,, where j is such that 2, = X z ,  
has chosen the activation function Y s ( . ) .  Each unit X, ,  functions 
as follows. At each instant k, it has an internal parameter p t J ( k )  
and p z , ( k )  E [0,1] for all k. The unit Xt, generates a random 
number uniformly distributed over [0, 11, and if this number is less 
than p t , ( k ) ,  then at instant k, it chooses activation function l r s ( . ) :  
otherwise, it chooses Nt(.) and produces its output accordingly. 

For the classification done by the network, the environment or 
teacher gives a response T ,  T E (0, l}, which is broadcast to all the 

layer 2 units. The learning algorithm for the network consists of all 
the layer 2 units updating their parameters p,,  by 

where a E (0, 1) is a parameter. 
Now, it is easy to see the correspondence between the automata 

team and the network. The unit X, ,  corresponds to automaton X,, of 
our team. The functions Y s ( . )  and N t ( . )  correspond, respectively, 
to the two actions of the automaton YES and NO. p , ,  corresponds 
to the probability of choosing YES for automaton Xt3. The learning 
algorithm given by (7) is same as the LR-I algorithm given by (5). 
It is also clear that the analysis given in Section I11 is a convergence 
proof for this neural network. However, it must be said that this 
convergence proof was obtained only because we viewed the model 
as a game of learning automata and thus were able to use standard 
results from learning automata theory. 

We can possibly term such neural network models as presented 
above dual neural networks because here the weights remain fixed, 
and the activation functions of units get adapted through learning. It 
is possible to view many leaming automata games [7] as dual neural 
network algorithms. Formalization of general dual neural network 
models and examining whether one can get better learning algorithms 
for such networks are open problems worth investigation. 

VI. SIMULATION RESULTS 
In this section, we present the results of computer simulations 

of our learning algorithm (henceforth called Algorithm 1) on few 
synthetic domains. In synthetic problems, we first define a domain by 
specifying the attributes and their ranges. Then, an arbitrary concept 
description in conjunctive form involving the chosen attributes is 
selected. The training set of fixed number of classified examples 
of the concept is generated randomly according to a predefined 
probability distribution (under which the attributes are not stochasti- 
cally independent). For each iteration of the automata algorithm, we 
select an example at random from this training set. In the example 
problems presented, both linear and nominal attributes have been 
considered. The performance of Algorithm 1 is studied under noise 
with probability of wrong classification by the teacher varied from 
0 to 0.15. 

A n  INDUCE type algorithm [lo] (henceforth called Algorithm 2) 
was also implemented to compare its performance with our learning 
algorithm. 

The results of the two algorithms on two synthetic problems are 
presented below. The results of algorithm 1 are given in Tables I-IV. 
In the tables, p refers to the value of the learning coefficient used. The 
acronym WC refers to the number of runs in which the algorithm did 
not converge to the correct concept. The column percentage errors 
refers to the number of examples misclassified by the learned concept 
when tested on a new set of 100 examples. In the simulations of 
Algorithm 2, a training set was first chosen using the same procedure 
as for Algorithm 1. With this same training set, three runs of the 
algorithm were performed, each time changing only the order of 
the examples. The performance of Algorithm 2 is given in form of 
number of disjuncts in the learnt concept, together with the CPU time 
taken and percentage errors. (It may be noted that Algorithm 2 will 
learn, in general, a DNF description.) Algorithm 2 was simulated 
with zero noise only. The simulations were done on the SUN-3/60 
Workstation. 
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TABLE I 

Noise % p Runs WC Avg. No. of CPU times Errors % 

0 0.01 20 0 12500 1.37 0 
2 0.01 20 0 17300 1.90 0 
5 0.01 20 0 14300 1.57 0 
8 0.01 20 2 14900 1.64 3 
15 0.01 20 3 18400 2.02 6 

Iterations (mins) 

TABLE I1 

Noise % p Runs. WC Avg. No. of CPU Time Errors % 

0 0.01 20 0 12800 1.40 0 
2 0.01 20 0 14400 1.58 0 
5 0.01 20 0 12300 1.35 0 
8 0.01 20 1 10500 1.15 1 
15 0.01 20 3 19800 2.17 2 

Iterations (mins.) 

TABLE Ill 

Noise % p Runs. WC Avg. no. of CPU Time Errors % 

0 0.008 20 2 24400 6.43 1 
2 0.008 20 2 20500 4.80 1 
5 0.008 20 1 25500 5.97 0 
8 0.008 20 3 36800 8.65 2 
15 0.008 20 3 43000 10.07 8 

Iterations (mins) 

Example 1: Number of attributes = 4. 
All attributes are nominal and assume values from { A ,  B. C. D}. 
Description chosen: 

{[ATTl E {A, B } ]  A [ATTP E {C. D}]  
A [.4TT3 E { A ,  B. C } ]  

A [ATT4 E {A, B. C. D } ] } .  

Performance ofAlgorithm 1: Case 1: No. of examples = 100; 

Case 2: Number of examples = 200; p+ = 0.05; See Table 11. 
Performance of Algorithm 2: Case a: No. of positive examples 

1) Number of disjuncts = 1; Cpu time = 0.5 min; Errors = 0%; 
2) Number of disjuncts = 4; Cpu time = 4.3 min; Errors = 2%; 
3) Number of disjuncts = 3; Cpu time = 3.0 min; Errors = 2%. 
Case b: No. of positive examples used = 100. No. of negative 

1) Number of disjuncts = 2; Cpu time = 2.2 mins; Errors = 0% 
2) Number of disjuncts = 3; Cpu time = 3.4 mins; Errors = 2% 
3) Number of disjuncts = 5; Cpu time = 5.5 mins; Errors = 4% 
Example 2: No. of attributes = 4. The first attribute ATTl is linear 

with range [O.O, 5.01. All the other attributes are nominal and assume 
values from { A ,  B ,  C, D}.  

p+ = 0.5; see Table I .  

used = 50. No. of negative examples used = 50 

examples used = 100. 

Description Chosen: 

{[ATTl E (0.5.1.5) U (2.0.3.5)] 

A [ATTZ E {A, B } ]  A [ATT3 E {C,  D } ]  

A (ATT4 E { A ,  B ,  C } ] } .  

Performance of Algorithm 1 
Case 1: No. of examples = 100; p+ = 0.5; see Table 111. 
Case 2: Number of examples = 200; p +  = 0.5; see Table IV. 

TABLE IV 

Noise % p Runs. WC Avg. no. of CPU Time Errors % 

0 0.008 20 0 25600 6.78 0 
2 0.008 20 0 32100 7.52 0 
5 0.008 20 1 30200 7.07 1 
8 0.008 20 1 38000 8.90 2 
15 0.008 20 2 42000 9.80 1 

Iterations (mins) 

Performance of Algorithm 2 

examples used = 50. 
Case a: No. of positive examples used = 50. No. of negative 

1) Number of disjuncts = 6; Cpu time = 11.1 mins; Errors = 15% 
2) Number of disjuncts = 5; Cpu time = 10.0 mins; Errors = 12% 
3) Number of disjuncts = 8; Cpu time = 13.5 mins; Errors = 

22%. 
Case b: 
Number of positive examples used = 100. No. of negative exam- 

1)  Number of disjuncts = 10; Cpu time = 20.5 mins; Errors = 

2) Number of disjuncts = 6; Cpu time = 12.0 mins; Errors = 20% 
3) Number of disjuncts = 9; Cpu time = 16.3 mins; Errors = 

It is observed that Algorithm 2 depended primarily on the sequence 
in which examples were presented from the training set. In the 
simulations, it learned different descriptions in different runs; the 
training set being the same. Also, most of the time it learned a big 
DNF expression even though the correct concept is a conjunctive 
expression. Therefore, just the availability of a representative set 
of examples does not guarantee correct convergence of Algorithm 
2 unless they are in proper sequence. This is because of the non- 
incremental nature of Algorithm 2. On the other hand, we can 
except Algorithm 1 to converge to the correct concept independent 
of the order of presentation of examples, as the learning parameter 
p .+ 0. This feature also makes our learning algorithm to exhibit 
generalization capabilities. In the simulations (see Table I and I1 
and 111 and IV), when the number of examples in the training set 
was increased from 100 to 200, significant reduction in classification 
errors was observed unlike the case of Algorithm 2. Another feature 
that can be observed from the simulation runs is that the time taken 
by the automata algorithm does not depend on how many examples 
are there in the training set. On the other hand, for the same problem 
with more training set examples, Algorithm 2 takes more time. 

ples used = 100. 

18% 

14%. 

VII. CONCLUSION 
In this correspondence, we have considered the problem of learning 

conjunctive concepts using a set of positive and negative examples 
of the concept. We have posed this problem as a game played 
by a team of learning automata. Based on this model, a parallel 
stochastic learning algorithm is presented. We have proved that 
the algorithm will converge to the concept description having the 
maximum probability of correct classification in the presence of up 
to 50% of unbiased noise. We have also proposed a novel neural 
network structure that implements this algorithm. From the simulation 
studies, it is observed that the algorithm is quite efficient for learning 
conjunctive concepts. 

One extension of the work outlined in this correspondence would 
be to study learning DNF concepts. This could be done by considering 
many teams of automata with each team learning a conjunctive 
expression [16]. Another extension would be to relax the condition 
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imposed in Section 11-A for leaming linear attributes so that "true" 
linear attributes could be learned. These two extensions form part of 
our future work. 

Ap P E N D I x 
We give here the proof of Theorem 3. 
The notation used is as follows. 

A, 

A: 
6d: 

the set ( X , ~ ~ X , ~  E x} and automaton x , ~  chooses 
YES} 
the correct set of zth attribute 
incremental reward when a correct set value is 
added to A,.  (Le., d A l  A: - dA1 A ~ ,  where 
A: is obtained by adding a correct set value not 
present in A, to A,.) 
incremental reward when a correct set value is 
removed from A,  
incremental reward when a wrong value (i.e., a 
value not present in the correct set) is added to A,  
incremental reward when a wrong value is removed 
from A, 
probability of getting a +ve example 
probability of getting a --ve example 
distribution from which the +ve examples are 
drawn 
distribution from which the -ve examples are 
drawn. 

6d: 

6dp 

6d: 

p+ 
p -  
P+(.) 

P-( . )  

Proof of Theorem 3: The expected reward to the team of au- 
tomata for a set of actions (which is chosen by automata in the team) 
resulting in subsets, A, ( z  = 1, . . , AT) of the range of the attributes 
is given by 

d A 1  n2 A~ =p+ . Prob 

(a  random + zie example is classified 

+ lie by the team) 

+ p -  . Prob (a random 

- v e  example is classified 

- ue by the team) 

the theorem. we have to show that 

I) (A; , . . . ,A>.) is  amode, 

11) (A1 . . . . ,  Av) i sno t  amode i fnoA, i snu l l , andA,  

does not equal A: at least for one i .  

Part I :  As explained earlier (Remark l), we need to show that 

where A: is different from A: in exactly one element, i.e, Ai either 
contains one extra element over At or all elements of A: except one. 

Case 1: Let A: = A: - {z,,} for some zzc belonging to A:. 

6d:  d A ;  . . . A :  . .A;; - d ~ ;  ... A;;, 

p-(.) will be zero unless there is at least one X&, not in its correct 
set. Since, A; ( j  = 1,. . . , i - 1, i + 1,. . . , N )  and A: contain only 
correct set values, Z A * ( z J k )  is zero if X , k  is not in its correct set 
and similarly for Z . A ; ( ~ J k ) .  Hence, the second term in the above 
expression goes to zero. 

Since, A: and A: differ only in x , ,  and ZA:  (zzc) = 1; ZA: (zzc) = 
0, we have 

Hence, 

dA; A;;, > d A ;  A :  A h  

if A: contains all but one element of A:. 
Cnse 2: Let A: = A: U {zt,} for some z,, not belonging to A: 
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The above two cases are all the ways of changing A: to A:.  This 
is because A: is a correct set, and the other two cases (6d t  ,6d: 
mentioned in the notation) corresponding to adding a correct set 
value and deleting a wrong value are inapplicable. Hence, the concept 
formed by the correct sets of all the attributes is a mode. 

This completes the proof that (A:, . . . , A&)  is a mode. 
Part ZI: To show ( A I , .  . . , A N )  is not a mode when A,  are such 

that 1) A, # A: for at least one i and 2) A, # null , Vi .  
Choose an A, such that A, # A:. 
We know that A, # 0. Therefore, there are only two possibilities. 
1) There is an .czw,ztw E A, but z,, @ A:. 
2) There is an z z c , ~ z c  @ A,, but ztc E A: 
To show that ( A I , .  . . , Ah ) is not a mode, all we need is to show 

that there exists a A: differing from A,  in one element such that 

It may be noted that we need not have to show the above inequality 

Case 1: Let there be an zz,,zlK, E A, but xl, $Z A:. 
Construct A: by deleting z,,, from A,. As in Part I of the proof, 

d A l  A: A,, - dA1 AN > 0. 

for all possible A: but for at least one AI. 

the incremental reward in this case is given by 

1 J=l 
J f t  

Case 2: From Case 1, we see that whenever a wrong value is 
present in any of the A,, we can obtain an increment in reward by 
deleting that wrong value. Hence, we need to consider only those 
cases in which the A, are such that there is no zJW satisfying Case 1. 

Let there be an x,,, x,, @ A, but x Z c  E A:. Such an xlc exists, for 
otherwise, in view of the comments above, we must have A,  = A:. 

Construct A: by adding xzc  to A,. The incremental reward is given 
by 

6d,’ = p + .  [ 5 2 ... 
k l = l  k z = l  

n w  

. { I A ,  ( X t k , )  - I A I  ( x t k ,  )> 

1 N 

’ n l A , ( x J k J )  . 
J=1 
J # a  

The second term goes to zero by the same reason as given in Case 
1 of Part I of the proof because A: contains only correct set values. 
Hence 

This completes Part I1 of the proof. 
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Multiple Participant-Multiple Criteria Decision Making 

Keith W. Hipel, K. Jim Radford, and Liping Fang 

Abstract- Meaningful connections among different types of decision 
making situations are established in order to improve the development 
of useful decision technologies for application to real world problems. 
More specifically, an assertion is put forward that suggests that single 
participant-multiple criteria (SPMC) and multiple participant-single cri- 
terion (MPSC) decision making problems may be treated in essentially 
the same way. In this way, decision technologies that are already available 
can be suitably refined for use in studying both SPMC and MPSC decision 
situations. Another assertion is made that a multiple participant-multiple 
criteria (MPMC) decision situation can be converted to a MPSC decision 
situation. In order to simpilfy the explanation, illustrative applications are 
utilized throughout the paper. Finally, worthwhile directions for future 
research are summarized in the last section. 

I. TYPES OF DECISION SITUATIONS 

In decision making, a perceived solution to a given problem is 
selected from a set of possible alternatives. Moreover, every decision 
situation exists in an environment. This environment consists of a 
set of circumstances and conditions that affect the manner in which 
the decision making problem can be resolved. There are four major 
factors that determine the characteristics of this environment, namely: 

1) Whether or not uncertainty exists in the decision situation being 
considered, 

2) Whether or not the benefits and costs resulting from the im- 
plementation of available courses of action can be completely 
assessed in quantitative terms, 

3) If a single objective is involved or if multiple objectives must 
be taken into account, 
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4) Whether the power to make the decision lies in the hands of 
one organization, individual or group or whether more than one 
of the participants have power to influence the outcome of the 
situation. 

All possible combinations of these four factors lead to 16 categories 
of decisions. These 16 categories can be condensed into five, as shown 
in Table 1 [15, p. 71. 

The first category shown in the left-hand column of Table I consists 
of decision situations in which there is, or there is assumed to be, 
no uncertainty. A single decision maker having a single objective 
must make a choice among alternatives on the basis of an evaluation 
of these alternatives in quantitative terms. Examples of this type 
of decision occur in many routine operational and administrative 
processes. A wide range of mathematical models, including linear, 
nonlinear and dynamic programming, are available to assist managers 
faced with these kinds of decisions. 

In Category 2 in Table I, no quantitative measures of benefits and 
costs are available. In such circumstances, there is no well-defined 
and generally-accepted measure of the benefits for the altemative 
choices that could be made. Without such measures, no unequivocal 
basis of choice among the alternatives is available. For example, how 
can I choose between having five apples or four oranges when I am 
not sure what is the best way to compare them in order to make my 
selection? 

In Category 3, estimates of probability are used to deal with 
uncertainty. The decision required is between say 1) a 30% chance 
of winning $10 000 (with the corresponding 70% chance of winning 
nothing) and 2) a 60% chance of winning $6000 (and a 40% chance 
of no profit at all). If the opportunity described occurs many times, 
the decision can be made on the basis of the expected benefits of the 
two alternatives. In these circumstances, the altemative with a 60% 
chance of obtaining a $6000 profit is that which provides the greatest 
profit over many repetitions of the same situation. However, if the 
situation occurs only once, this basis for choice is not appropriate. 
The selection between alternatives in single-occurrence situations of 
this sort depends on the attitude of the decision maker toward risk, 
rather than on a comparison of expected values. 

Decision making in Category 4 is even more complicated by 
virtue of the existence of multiple objectives or multiple criteria for 
decisions. In the example shown in Table I, the decision maker must 
choose either a new set of golf clubs, an ocean cruise or a new suit of 
clothes. He can afford only one of the alternatives. Three objectives 
are involved; a) to improve performance in a recreational activity; 
b) to improve health and well-being; and c) to present an improved 
image to the world. Neither the benefits of adopting any one course of 
action nor the chance that the benefits envisaged will be attained are 
necessarily expressible in quantitative terms. The ultimate choice in 
such situations is made by individuals using judgement and intuition 
with respect to the information available at the time of decision. 

The decision situations in Category 5 constitute the most complex 
scenarios with which society is faced today. These situations involve 
two or more participants, each having his or her own objectives 
and intentions and each endeavouring to bring about his or her 
most preferred outcome. These situations are encountered in planning 
and policy making in corporations, in public policy development 
and in many other circumstances in modern-day life. They occur 
within organizations and communities and amongst them. Moreover, 
they are often inter-linked with other circumstances of the same 
sort, sometimes involving all or some of the same participants. The 
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