
I612 IEEE TRANSACTIONS ON SYSTEMS, MAN,  AND CYBERNETICS, VOL. 23, NO. 6. NOVEMBERIDECEMBER 1993 

A Self-organizing Network for Computing A 
Posteriori Conditional Class Probability 

George W. Rogers, Jeffrey Solka, D. Stephen Malyevac, and Carey E .  Priebe 

Abstract-This paper describes a neural network architecture 
whose goal is the computation of a posteriori conditional class 
probabilities for input vectors that belong to one of two input 
classes. The network architecture has been designed to adap- 
tively produce Voronoi tessellation partitions of the input vec- 
tors in R" based on the Euclidean distance metric, without re- 
gard to the actual aprion'class probabilities of the input vectors. 
These prior probabilities are then used by the network to adap- 
tively compute the a posteriori conditional class probability for 
the two classes for each tessellation partition. The network pre- 
sented is thus a connectionist model for vector quantization 
clustering and includes the process of automatic node creation 
necessary for many unsupervised learning applications. 

class 1 

X 

class 0 

Fig. I .  Example training patterns as a function of observable x for a two 
class problem. 

I. INTRODUCTION 
ISCRIMINANT analysis is a major focus of the gen- D eral field of pattern recognition, and specifically of 

current neural network research. In particular, multilayer 
perceptrons [ 11, (21 and other neural network paradigms 
[3]-[8] have been developed and used for probabilistic 
classification and discrimination. Such neural networks 
are typically used in one of two ways. One use is to con- 
struct discriminant surfaces in some (higher dimensional) 
space in which the input data is represented and thereby 
form decision regions or output classes. It has been shown 
191, [lo] that such networks approximate the posterior 
probabilities for the output classes. One problem with this 
approach is that it makes it difficult to change the loss 
function associated with the discrimination problem after 
learning. In particular, it can be difficult to dynamically 
adjust the probability of misclassification. 

The other primary use of networks in discrimination is 
to estimate the values of a continuous function such as a 
density. In this estimation case the data often occurs as 
discrete samples of continuous distributions. In this case, 
the data consists of input vectors with associated class 
memberships. It is often the case that no linear discrimi- 
nant will separate the classes in the input space. The clas- 
sical technique for dealing with this problem is to recover 
an approximation to the original continuous distribution 
and is depicted in Figs. 1-4 for a one-dimensional input 
space. Fig. 1 depicts sampling results for two populations 
in  one dimension. Each vertical bar corresponds to a pat- 

Fig. 2. Example joint probability histogram for a two-class problem 

1 

c1 . co 

Fig. 3 .  Example joint probability distributions for a two-class problem. 

Manuscript received September 8, 1991; revised May 26. 1992 and Sep- 

The authors are with the Naval Surface Warfare Center, Dahlgren Di- 
ternber 20, 1992. 

\ision, Dahlgren, VA 22448. 

tern of that class appearing with a feature value corre- 
sponding to its x-coordinate. Fig. 2 depicts the results of 
counting all the patterns of each class within a number of IEEE Log Number 9207562. 

0018-9472/93$03.00 0 1993 IEEE 



1673 ROGERS el a/ .  : COMPUTING A POSTERIORI CONDITIONAL CLASS PROBABILITY 

L 
c1 

Fig. 4 .  Example posterior probability plot for a two-class problem 

small regions or boxes. This results in a pair of histo- 
grams that are approximations to the continuous distri- 
bution functions shown in Fig. 3 .  The continuous distri- 
bution functions are joint probability distributions 
normalized with respect to the entire set of observations. 
Discrimination can then be performed based on these es- 
timated densities. A theoretical basis for using density es- 
timates in discrimination is the asymptotic optimality of 
the procedure under reasonable conditions [ 113. 

The usual problem encountered in developing training 
sets for estimation networks is that of finding a grid of 
input vectors spanning the region of interest of the input 
space with conditional probability values used as the an- 
swers for the back propagation supervised learning. These 
conditional probability values correspond to the probabil- 
ity of class membership given the input vector. The con- 
ditional class probability distributions for the example are 
depicted in Fig. 4. 

This paper describes a serial algorithm and equivalent 
neural network architecture that takes feature vectors and 
class membership as input and computes the a posteriori 
conditional class probability distributions depicted in Fig. 
4. The architecture is an unsupervised, self-organizing one 
that has proven useful in practice. 

The paper is arranged as follows. In Section 11, back- 
ground in vector quantization is presented, followed by a 
review of conditional probability in Section 111. Section 
IV presents a serial algorithm that is useful on serial or 
coarsely parallel digital computers and is equivalent to the 
neural network described in the following sections. Sec- 
tion V develops in detail the building blocks that go into 
the network, including the various node or neuron types. 
Section VI presents our network architecture in detail. An 
analysis of the network for several two-dimensional ex- 
ample problems, including comparison with a classical 
box counting approach, is presented in Section VII. We 
conclude with a discussion of the results presented. 

11. VECTOR QUANTIZATION 
Vector quantization can be defined as a mapping M from 

an n-dimensional vector space R" into a finite subset V of 

51- 

Fig. 5 .  Voronoi tessellation partitions in a two-dimensional (11, x 2 )  pat- 
tern space about a set of reference vectors. The reference vectors are rep- 
resented as points. All vectors in the same partition have the same reference 
vector as a nearest neighbor and are placed in that reference vector's 
"class. " 

R" 

where V = { u , :  i = 1, 2, , N }  is the set of N quan- 
tization vectors in V defined by the mapping M .  Each 
quantization vector u, is often called a codeword and V 
the codebook for the vector quantization scheme [12], 
[ 131. We will follow the convention of calling u, a refer- 
ence vector or exemplar and V the set of reference vec- 
tors. 

A useful concept for visualizing the effects of vector 
quantization in both classical pattern recognition and 
neural networks is Voronoi tessellation 1141. Fig. 5 gives 
an example of the Voronoi tessellation that results for the 
reference vectors or codewords illustrated in R 2  with a 
Euclidian distance metric. The effect is to partition the 
vector space into a number of quantization regions, bor- 
dered by hyperplanes (line segments in two dimensions) 
that are defined as the set of points that are equidistant 
from the two nearest reference vectors. The tessellation 
partitions may also be defined in terms of other metrics. 
In particular, the method of normal mixture models [15] 
can be considered a generalization of these ideas using 
Mahalonobis distance and the associated Gaussian distri- 
butions. This idea will be explored further in Section IV. 

The usual use of this approach is to match or classify 
an input vector with one of the reference vectors or code- 
words. Once this has been done, all the characteristics of 
the reference vector are ascribed to the input vector, that 



1674 IEEE TRANSACTIONS ON SYSTEMS, M A N ,  AND CYBERNETICS, VOL. 23. NO. 6. NOVEMBERIDECEMBER 1993 

is, the input vector is replaced with the reference vector 
in  any subsequent computation or use. 

The procedure presented below, in both its serial and 
connectionist manifestations, can be considered as a 
method for adaptively developing Voronoi partitions and 
using these partitions probabilistically in assigning class 
membership to unknown input vectors. 

111. A posteriori CONDITIONAL CLASS MEMBERSHIP 
PROBABILITY 

The a posteriori conditional class membership proba- 
bility P ( c , J x )  can be written in terms of probability dis- 
tributions involving the continuous variable x as 

P(c1Ix) = p(xlcl>P(cl>/P(x) (1) 
where P ( c l )  is the a priori probability for membership in 
class e l ,  p(x )  is the probability density function for the 
continuous variable x, and p ( x l c I )  is the probability den- 
sity function for x, given that x belongs to the class e l .  
This is just a statement of Bayes' relation for distribu- 
tions. The probability density function p (x) can be written 

p ( 4  = p(xlc,)P(c,) + P(x lcdP(c2)  (2) 

p (c  1 1x1 = P (x I c I 1 p (c  I ) / p (x I c I 1 p (c  I ) + P (x I ('2) P (c2) 1 
( 3 )  

where now both p(xlcI)  and p ( x l c 2 )  can be independently 
normalized as 

which lets us write P ( c l  Ix) as 

p(xIc , )  dr = 1. (4) s 
This result is useful for both understanding the operation 
of the neural network that builds an estimate of P ( c l ( x )  
and in generating test cases for the network. Equation 
12.3) can be written equivalently as 

( 5 )  
Here p (x, e , )  is the joint probability density that the pat- 
tern is x and that its class membership is e,. From ( 5 )  we 
see that P(c l Ix )  can be interpreted as a fractional joint 
probability density. 

P(c1Ix) = p ( x ,  C l ) / [ P ( X ,  c1) + p ( x ,  c2)I. 

IV. A SERIAL IMPLEMENTATION FOR THE SELF- 
ORGANIZING PROCESS 

The serial algorithm for digital implementations can be 
logically broken into two parts; a training mode, in which 
the Voronoi partitions described in Section I are devel- 
oped, and an exercise mode where tessellation learning 
has been disabled. In each case, the input pattern is as- 
sumed to be of the same format as in the previous section. 
The training mode algorithm is given below, followed by 
the exercise mode algorithm. The input vector is assumed 
to be encoded so that xo is the binary valued class mem- 
bership of the input vector while x; is the i th component 

based on the Euclidian metric. The components of the 
clusters centers or exemplars are denoted by b,,(n,), where 
b,, (n,) denotes the i th component of exemplar j when n, 
patterns have been clustered with j. The output or class 
membership fractions for each exemplar are denoted by 
zJ(n,) where nJ patterns have been clustered with j .  

A .  Training Mode 

1) Present the new pattern {x,}  to the program. 
2) Compute the Euclidean distance between {x, ; i = 

l ; . .  , n> and each stored exemplar or reference vector 
@,I 1 by 

Y, = (b,, - x A 2 .  

3 )  Find the minimum y,. This is the closest exemplar. 
4) Verify that {x, ] truly belongs to clusterj by testing 

to see of y, < p where p is a user-defined vigilance pa- 
rameter. If y,, < p ,  go to step 5 ) ,  otherwise go to step 6). 

5 )  Update b,, for n o d e j  by the following update rule: 

b,l(nj + ') = b,l(n,)[n,/(nJ + '11 + x l [ ( l / ( n ,  + '11 
where n, is the number of patterns previously clustered 
with exemplarj. Update the output value z, for nodej  by 
the following update rule: 

z,(n, + '> = z,(n,)[nJ/(n,  + '11 + x o [ l / ( n J  + '11. 
Start over at 1). 

n, = 0 
6) Create a new exemplar node (reference vector) with 

and 
b;;(l) = X; 

z ; ( l )  = xo. 

Start over at 1 ) .  

B. Exercise Mode 

The exercise or static mode algorithm is as follows. 
1 )  Present the new pattern {x,} to the program. 
2) Compute the Euclidian distance between {x, ; i = 1, 

. . .  , n }  and each stored exemplar or reference vector 
@,I 1 by 

y, = ' (bJI  - ' 1  12' 

3) Find the minimum y,. This is the closest exemplar. 
4) Update the output value z, for nodej  by the follow- 

ing update rule: 

z , ( l )  = x,,, for n, = 0 

and 

where ni is the number of patterns previously clustered 
of the-n-dimensional input vector that is to be classified with exemplarj. Start over at 1 )  



ROGERS et a / . :  COMPUTING A POSTERIORI CONDITIONAL CLASS PROBABILITY 1675 

C:. Discussion 

In the training mode, the clusters adaptively change the 
locations of their centers while the number of (active) 
clusters is increased in a dynamic manner based on the 
results of a vigilance test. The recursive update formulas 
used give mean values based on the observations clustered 
with each individual cluster center. This results in a pro- 
cedure that is suitable for unsupervised clustering as well 
as a posteriori estimation. In the former case, the centers 
will migrate toward local cluster centers. In the case where 
the observations are drawn from continuous distributions, 
we have observed a diffusion phenomena. 

For continuous distributions with a well-defined gra- 
dient, there is a marked tendency for the cluster centers 
to slowly migrate from regions of lower density toward 
the higher density regions. This leads to a greater concen- 
tration of cluster centers at the regions of higher density 
and the occasional creation of new centers at the region 
of lowest density. In practice, the rate of creation of new 
clusters falls off very rapidly. This diffusion phenomena 
has both desirable and undesirable qualities. First, the 
tendency to make the cluster density a function of the 
probability density has the desirable effect of providing 
higher resolution of the vector quantization where the ob- 
servation density is higher and estimation accuracy can be 
maintained. The undesirable qualities consist of both the 
small resultant estimation bias that is introduced along 
with the failure of the algorithm to necessarily reach a 
maximum number of clusters in the limit. 

The exercise mode keeps the number of clusters fixed 
as well as the cluster centers fixed. It does not employ the 
vigilance test. It can either update the class membership 
fraction for the clusters as the patterns are presented as a 
restricted training mode, or hold them fixed for pure test- 
ing. In the restricted training mode, the diffusion prob- 
lems associated with the training mode can be circum- 
vented. 

The optimal method of using the algorithm consists of 
the following steps. First, train on a data set with the net- 
work in training mode until the only node creation is due 
to the diffusion phenomena. Then, using the cluster cen- 
ters from the first step, repeat the training in the restricted 
training mode where only the class membership fractions 
are updated. This results in an stable estimate based on a 
fixed number of cluster or quantization centers. Addition- 
ally, it takes advantage of the diffusion phenomena pres- 
ent in the first step to achieve higher resolution in the re- 
gions where there are adequate observations to support it. 
Finally, observations of unknown class can be processed 
with no updating to produce a posteriori estimates. Anal- 
ysis of convergence properties based on simulation results 
is presented in Section VII. This procedure behaves in 
tnuch the same way as the adaptive resonance theory [ 161. 

The learning rules described should be compared to a 
rnaximum likelihood development [ 151, [ 171. Consider- 
ing the extension to Gaussian-based tessellation leads to 
the development of the recognizably similar maximum 

likelihood update procedures of mixture models, and the 
data-driven increasing of the total number of partitions is 
analogous to the method of adaptive mixtures [ 171. 

V. NEURAL NETWORK BUILDING BLOCKS 

A .  Basic Neural Types 

There are three basic artificial neuron types that are used 
as building blocks in the network described below. The 
simplest is the most familiar “sigma” neuron that forms 
a weighted sum of its inputs xi and pipes the result through 
a transfer function that varies with the application 

y = f c wjxj + o 0 
wheref(-  a )  is the transfer function, y is the output, o 
is an offset, and the sum is over i .  Common transfer func- 
tions in the neural network literature include threshold step 
functions, sigmoidal functions, linear mappings, and ker- 
nel functions. A generalization of this is the “sigma-pi” 
neuron [ 2 ]  that involves not only a weighted sum but 
products as well: 

( 7 )  

One highly useful variant of ( 7 )  is the simplified version: 
y = x jxk ,  where it is seen that the input x i  functions to 
to gate the analog value xk. Thus we have a simple analog 
pass function neuron as a special case of the more general 
“sigma-pi” neuron. The third neuron type applies when 
there is dynamic feedback between neurons in the same 
layer or of a neuron to itself [ 181 

f ( c  W j X i ) ] .  

B. Specialized Neuron Types 

The primary purpose of the first layer is to form Euclid- 
ean distances between the active nodes and the input fea- 
ture vector. Each node in this layer forms the Euclidean 
distance based on the feature vectors inputs and its stored 
offset weights w j j :  

y l j ( r k+  I )  = ~2j( tk)  C [w;i(tk) - x i ( t k > ~ ~  

(9) 

where y l j ( t k  + is the output produced by node j in this 
layer at time t k +  and y;lax is a constant with y;lax > p .  
This can be viewed as either a relatively complex artificial 
neuron or as a composite processor made up of a number 
of components. Fig. 6 shows a composite processor that 
computes the Euclidean distance portion of the computa- 
tion contained in ( lo)-(  12) below. In this latter case, the 
first sublayer merely takes differences for each input com- 
ponent: 

Y , ‘ I . .  ,, = wji(fk)  - x j ( t k ) ,  j = 1 ,  N ,  i = 1, n (10) 



1676 IEEE TRANSACTIONS ON SYSTEMS MAN,  AND CYBERNETICS, VOL. 23, NO. 6. NOVEMBERIDECEMBER 1993 

x i  x2 

INPUT 
LAYER 

FIRST SUBLAYER 
f(X1) 1 (XI - 01) 

SECOND 
SUBLAYER 
f(Z1) = (21) 2 

SUBLAYER 
OUTPUT 
f(21) = 421)’ = ~ X l - O l ) 2  

Xk 

! 
Fig. 6.  Architecture for the computation of Euclidian distance based on 

sigma and pi units. 

while the second sublayer gates (multiplies) the first sub- 
layer results with themselves: 

Ylrz,, = ( Y P , J 2 .  (1 1) 

YI’?, = c (YI\?,l) (12) 

The third sublayer forms the sum 

while the final value is given by the product and sum 

Y I , ( Q + I )  = Y2,( fk)YI \ ;  + ( 1  - Y 2 , ( f k ) I  YYX. (13) 

While this expression shows little superficial resemblance 
to the “sigma-pi’’ neuron expression (7), a closer inspec- 
tion reveals that it is of the form 

y = Wl2XlX2 + W?X2 + 0 

which is just the form of a simple higher order neuron 
with a linear transfer function. 

The primary result of this exercise is simply that a non- 
biological computation such as Euclidean distance in R“ 
can be broken down into a series of simple steps that are 
appropriate for biologically inspired artificial neurons. It 
IS  necessary to include not only “sigma”-type neurons 
but also “sigma-pi”-type neurons, as discussed in 
Rumelhart and McClelland [ 2 ] .  Although many of the 
connections weights have the value one, the computation 
is embodied in the weight or connection structure along 
with the transfer functions (in this case linear), making 
this a “connectionist” or, equivalently a “parallel dis- 

tributed processing” formulation as opposed to the equiv- 
alent algorithmic description of Section IV. The point of 
greatest departure from more conventional “connection- 
ist” architectures such as the multilayer perceptron [2], 
is that the weights are fixed by virtue of the a priori struc- 
ture based on theory and only the offsets are subject to 
learning. 

The second-layer nodes are simply designed to flip from 
their initial values of 0 to their final permanent values of 
1 when an inhibitory signal from the third layer first 
ceases: 

y2 ;new = 6 { y2juld - y p d  + ( 1  - E ) }  (14) 

where 6 is the familiar Heaviside step function, e is a small 
positive constant, y2jncw is the new j th second-layer value, 
and Y2jold and y 3 p  are the former second- and third-layer 
values, respectively. 

The third-layer nodes are connected in a Maxnet [19] 
architecture, the output of which determines which of the 
third layer nodes cease sending out an inhibitory signal to 
the second layer. Maxnet architectures can be formulated 
either in terms of dynamically interacting neurons or as a 
purely feed-forward system [20]. The function of the 
module is to yield a value of one for the node that starts 
with the largest input value and a value of zero for all 
others. The fourth-layer nodes are also based on the Max- 
net architecture, while the fifth-, activation-, and output- 
layer nodes are based on the Sigma-Pi unit described 
above. The details and function of each are provided in 
the next section. 

VI. NEURAL NETWORK DESCRIPTION 

Overview: Before getting into the fine details of the 
network structure and operation, it is instructive to con- 
sider the basic structure of the network and the philosophy 
of its operation. This operation is depicted in Figs. 7 and 
8 ,  for adaptive computation and fixed computation, re- 
spectively. The connections for the first node in each layer 
are shown in detail. Connections for the other nodes in 
each layer are not generally shown. The input feature vec- 
tor components and class membership index are fed to the 
network input layer. The first layer then computes the Eu- 
clidean distance between the feature vector and the ref- 
erence vector stored at each active node. Whether a first- 
layer node is active or not is based on the value of its 
corresponding second-layer node. If a first-layer node is 
inactive, a maximum value is output. The active nodes in 
the fourth layer than compete to find the minimum Eu- 
clidean distance for the current feature vector. The fifth 
layer gates the Euclidean distances from layer one with 
the results of the competitive fourth layer so that only the 
winning distance survives to be passed to both the acti- 
vation node and the output layer. The activation node tests 
the Euclidean distance against a vigilance parameter. If 
the distance is less than the vigilance parameter value, the 
activation node sends no activation signal, which allows 
the output layer to update its estimates of the a posteriori 



ROGERS cr a[ . :  COMPUTING A POSTERIORI CONDITIONAL CLASS PROBABILITY 1677 

xo x1 x2 Xk 

INPUT 
LAYER ' 
FIRST 
LAYER 

SECOND 
LAYER 

THIRD 
LAYER 

FOURTH 
LAYER 

FIFTH 
LAYER 

ACTIVATION 
NODE 

OUTPUT 
LAYER 1 0 0  0 

1 2 3 N 

Fig. 7 .  Network architecture for adaptive computation of the conditional 
class probability function 

xo x1 x2 Xk 

INPUT 
LAYER 

FIRST 
LAYER 

SECOND 
LAYER 

THIRD 
LAYER 

FOURTH 
LAYER 

FIFTH 
LAYER 

ACTIVATION 
NODE 

OUTPUT 
LAYER 

1 2 3 N 

Fig. 8 .  Network architecture for fixed computation of the conditional class 
probability function. 

conditional class probability. If the minimum Euclidean 
distance exceeds the vigilance parameter, the activation 
node sends a signal back up to the third layer, which trig- 
gers a competitive process to determine which previously 
uncommitted node will be committed. The winning node 
causes the state of its corresponding node in the second 
layer to flip to the active state. The first-layer computation 
is now repeated, followed by the fourth through output 
layers. If there is a new node free to be committed, the 
activation node will remain inactive the second time 
through, so that the output layer will update its estimates. 
If all nodes have been committed, no update will occur 
for that input feature vector. In any event, after the second 
cycle, the network is ready for a new input vector. 

The detailed neural network description below is bro- 
ken down into description of the individual layers and the 
processing done in each layer. The network is assumed to 
be clocked so that each layer operates synchronously with 
the exception of the Maxnet modules, which are assumed 
to converge within one of the synchronizing clock cycles. 
The processing done in each layer is given as a function 
of the clock cycle. 

A .  Input Layer 
The input to the network is assumed to occur at time t ,  

and consists of two distinct parts, x0(t,) and x(t, )  = 

( x I ( t m ) ;  i = 1, n}, where xo(t,) has the encoded class 
membership, while {x,  (t,); i = 1 ,  n} is the feature vec- 
tor. The class membership is encoded in the xo node ac- 
cording to 

xo(t,) = 1, if x E class 1 

and 

xo(t,,) = 0, if x E class 2. 

It is assumed that there are only two a priori classes. Each 
of the components xi( t , )  of x(t,) represent an indepen- 
dent feature out of a total of n features yielding an 
n-dimensional feature space. Thus, the input to the net- 
work is a feature vector plus a priori class membership. 
The input layer does no active processing, it just passes 
the input values to the other layers. As described here, 
the network takes 11 time steps to complete its forward 
pass and node commitment cycle so that the next input 
can occur at t ,  + 12. 

B. First Layer 
The primary purpose of the first layer is to form Eu- 

clidean distances between the active nodes and the input 
feature vector, and to output the results to the fourth and 
fifth layers. 

Each active node in this layer forms the Euclidean dis- 
tance based on the feature vector inputs and its stored off- 
set weights w,, : 

Y I, (tm + /, + 1) = ~ 2 ,  ( t m  + k )  C [wji ( t m  + k )  - xi ( t m  + k>12 

+ ( 1  - ~ g ( t , + d ) ~ F ~  k = 0, 6 



I678 IEEE TRANSACTIONS ON SYSTEMS, MAN,  AND CYBERNETICS. VOL. 2 3 .  NO. 6, NOVEMBERIDECEMBER 1993 

where yI , ( tm  + k +  I) is the output produced by nodej  in this 
layer at time t m + k +  I and yp"" is a constant with y;lax > 
p .  This occurs on clock cycles k = 0, which corresponds 
to the downward pass and k = 6 ,  which corresponds to 
the node commitment cycle. This result for nodej  is sent 
via the connections to the j th  node in both the fourth and 
fifth layers. The node retains the feature vector compo- 
nent values until it receives a new input vector. Upon re- 
ceiving a signal from the fifth layer (clock cycle 2), the 
j t h  node updates its offsets by the following update rule: 

w,& + 1) = w,,(n,)b,/(n, + 1)1 + x,[l/(n, + 1)1 

and 

n, -+ n, + I 

Each node in this layer is inactive until its corresponding 
node in the second layer turns on. When this signal first 
changes, the offsets are set to wJI ( 1 )  = x, and n, = 1, and 
y v ( f m  + k  + I )  is recomputed. 

C. Second Layer 
The nodes in the second layer keep track of which nodes 

in the first, third, and fourth layers are active. All nodes 
start in the inactive state with an output value of zero. 

y2,(t = 0)  = 0. 

Each node activates when the inhibitory signal from its 
corresponding third layer node ceases. Starting at activa- 
tion, each node sends out an output value of one to the 
corresponding nodes in the first, third, and fourth layers. 
This is done according to the update law 

. y 2 y ( t k )  = e { Y 2 , ( t k - I )  + - Y 3 ~ ( ~ k - l )  - € 1 3  > f ~ n .  

This occurs on every clock cycle. 

D. T h i r d h y e r  
All third layer nodes start with offset biases of 

03; = (1 - jc) where E < 1 / N ,  

and N is the total number of nodes in each layer. The 
biases are updated according to 

0 3 j ( t k )  = (1  - Y2;(tk-1)1 [1  - jE1, k > 0. 

This occurs on every clock cycle. On a signal from the 
activation node (6, = l ) ,  a Maxnet process is initiated 
that determines the minimum (in j )  node that is active. 
The winning nodej '  has a value of 

Z 3 j ' ( t k )  = 1 

for Maxnet initiated and completed during time step tk and 
for all losing nodes 

Z 3 j ( t k )  = 0,  j z J ' .  

The output for the third layer is determined by 

y3;(t = 0) = 1 

~3j ( tk )  = e {  ~ 3 j ( t k - t )  - E - Z 3 j ( t k ) }  k > 0. 

This output is sent to the corresponding second-layer 
node. Once the j t h  node wins the Maxnet competition, 
z3,(tk) = 1 ,  the output y3,(tk) = 0, so that thej th  node has 
deactivated. The winning node has committed its corre- 
sponding nodes in layers 1, 2 ,4 ,  5 ,  and 6 to the formation 
of a new cluster. 

E.  Fourth Layer 
The fourth layer is a Maxnet layer that competitively 

finds the active node with the minimum Euclidean dis- 
tance between the input feature vector and the cluster cen- 
ter. The output of each node in this layer is given by 

Y4j ( t m  + k + 1 ) = Maxnet-Result { Y2, ( t m  + k )  / 
11 + ~ t j ( t m + k ) I )  k = 1, 7 

where { ~ ~ , ( t ~ + ~ ) / [ l  + ~ ~ ~ ( t ~ + ~ ) ] )  is the starting value 
of thej th  node in the Maxnet module. After the winning 
node has been found, the results (1 for the winning node, 
0 for all others) are output to the fifth layer. For the first 
pattern, no nodes are committed and y4,(tm + k +  I )  = 0 for 
all nodes. This occurs on clock cycles k = 1 ,  which cor- 
responds to the forward pass and k = 7, which corre- 
sponds to the node commitment cycle. 

F. Fifth Layer 
The results from layer four are used to gate the first- 

layer results. The result is one node with an activation 
equal to the minimum Euclidean distance. Each fifth-layer 
node performs the operation 

Y 5 ~ ( ~ m + k + l )  = Y 4 ; ( t n 1 + k ) ~ {  P - y l , ( t m + k ) )  = 2, 

which tests to see if the winning cluster is within a squared 
distance p of the input vector. If so, the output is one. If 
not, the activation node activates, triggering a new round 
of competition in the third layer. This occurs on clock 
cycles k = 2, which corresponds to the forward pass and 
k = 8, which corresponds to the node commitment cycle. 

G. The Activation Node 
The activation node forms the quantity 

1 6 o ( t m + k + l )  = 1 - y S j ( t m + k )  i 
where 

6, (t, + + I )  = 1 if a) no active nodes 

( ~ ~ ; ( t ~ + ~ )  = O f o r a l l j )  

orb)fory2,(tm+k) = 1; y I ,  > P 

6,(tm + k +  I )  = 0 otherwise. 

This occurs on clock cycles k = 3 ,  which corresponds to 
the forward pass and k = 9, which corresponds to the 
node commitment cycle. On all other clock cycles, 6, = 
0. 



ROGERS er d.: COMPUTING A POSTERIOR1 CONDITIONAL CLASS PROBABILITY 1679 

STD-ERROR ( f , f ’ )  = 

H .  Output Layer 
The output layer nodes are activated by the fifth-layer 

nodes and when activated, update offsets and compute 
output as 

Y s ( l m + k + l )  = { ( n , / [ n ,  + l l ) Y < y ( L + k )  

+ ( l / [ n ,  + 1l)xoCtm)} Y , ( 4 n + k - J  

+ Yo,(tm+k){l - Y 5 , ( t , , l + k - l ) 3 ;  

n, 2 0. 

n~ = n~ + YS, ( r n ~  + k - 1) 

This occurs on clock cycle k = 9, which gives the net- 
work ample time to commit a new node if necessary. On 
all other clock cycles 

Yo, ( t m  + L + I )  = Yo, ( G I 1  + d 
that is, yoJ retains its current value. 

( f  - f ’) ’ dx 

Clocking Summary 
Layer 
Input 
First 
Second 
Third 

Fourth 
Fifth 
Activation 
output 

Completion Time 
m 
m + l / m  + 7 
every clock cycle 
every clock cycle/Maxnet 

m + 2/m + 8 
m + 3/m + 9 
m + 4 /m + 10 
m + 1 1  

on signal from activation (m + 5 )  

where the sum ranges over a discrete two-dimensional 
grid. 

A uniform distribution pseudorandom number genera- 
tor is used for Case l to first generate the class member- 
ship with a 60 percent chance of membership in class 1. 
It is then used to successively generate the two coordi- 
nates of the point. The theoretical a posteriori probability 
for class 1 is easily found using the results of Section I11 
to be 0.6. In this case, the box counting histogram per- 
forms slightly better than the self-organizing neural net- 
work (SONN) approach in the standard error measure (see 
Table I). As this case is explicitly designed to allow for 
good performance from the box counting method, this is 
as expected. When analyzing these results, the slightly 
superior results for box counting in this simple case should 
be compared with the more significantly superior results 
of the SONN in cases 2 and 3. 

The second test case uses a Gaussian distribution for 
class 1 with apriori probability 0 .6 .  The distribution used 
is given by 

P(XICl)  = {k2/(2aa,a,.)3 exp {-0.5 [(x - PJ/Trl2  

- 0 . 5 [ ( Y  - p v ) / 0 J 2 }  

where p.r = py = a, = uv = 0.5, x = (x, y ) ,  and k is a 
normalization .constant used to normalize the distribution 
over the unit square instead of the normal real plane nor- 
malization. Class 2 in this case is again uniformly-distrib- 
uted. Applying the results of Section 111, we find the the- 
oretical a posteriori probability for class 1 to be 

P ( c l l x )  = 0 . 6 p ( x ~ c l ) / [ 0 . 6 p ( x ~ c l )  + 0.41. 

This expression is evaluated at the center of each node for 
the neural network at the center of each box for the clas- 
sical box counting and compared with the respective ex- 
perimental results. Table I shows that, for this slightly 
less ideal case, the SONN outperforms the box counting 
method in the standard error measure by more than an 
order of magnitude. 

Case 3 uses Gaussian distributions for both classes. The 
a priori probabilities of 0.6 and 0.4 are again used. The 
distribution used is the Gaussian distribution from the 
Case 2 with p,  = pv = = av = 0.5, and k = 1 /0.68268 
for class 1 and p., = p,. = 0, or = uv = 1.0, and k = 
1 /0.34134 for class 2. Applying the re-sults of Section 11, 
we find the theoretical a posteriori probability for class 1 
to be 

P(ci(x) = O . ~ P ( ~ ~ C I ) / [ O . ~ P ( X ~ C ~ )  + 0.4p(xlcJl. 

The two Gaussian expressions are evaluated at the center 
of each mode for the neural network and at the center of 
each box for the classical box counting and used in the 
above expression to obtain the theoretical a posteriori Val- 
ues for comparison with the respective experimental re- 
sults. Again, Table I indicates that the SONN approach 
outperforms the classical approach by more than an order 
of magnitude. 



I680 IEEE TRANSACTIONS ON SYSTEMS, MAN. AND CYBERNETICS, VOL. 23, NO. 6, NOVEMBERIDECEMBER 1993 

1 

0 9 -  

0 8 -  

0 7 -  

0 6 -  

0 5 -  

0 4 -  

0 3 -  

02- 

0 1 -  

TABLE I 
TRAINING A N D  TESTING RESULTS FOR THE NEURAL NETWORK VERSUS BOX 

COUNTING" 

I 4 

o--, , , , , , , 

CASE 2 

TRAIN .000164 ,002146 
~ TEST I ,000145 I ,002135 

"Case 1:  Uniform versus uniform, p (class 1) = 0.6 Case 2:  Gaussian 
versus uniform, p (class 1) = 0.6. Case 3:  Gaussian versus Gaussian p 
(class I )  = 0.6. SO"= =self-organizing neural network. 
BOX = =classical box counting method. STD-ERROR = =estimate of 
standard root-integrated-square error. Separate sets of IOe7 two-dimen- 
sional variates used for training and testing. Errors are in comparison with 
known theoretical values for class 1 posterior probabilities. 

ISE, SO Trials. I-D SONN 
2 ,  , I , , I , , I , I 

1.5 L: 

0 1000 2000 3000 4000 SO00 6000 7000 8000 9ooo loo00 
-0.5' ' '  " " " ' 1 

Further simulations are now presented to elucidate the 
network's development of posterior probability estimates. 
In the following we compare the performance of the 
SONN, versus the true optimal performance. Fig. 9(a) and 
(b) indicate the performance of the network on a one- 
dimensional input in which P(cl) = P ( c 2 )  = 0.5 and cI 

1 
I 

0.5 I 1 5  1 2.5 
051 3 

Number of Observations 

(a) 
x i 0 4  

(b) 
Fig. I O .  (a) Mean integrated square error as a function of number of ob- 
servations for the case of two-dimensional, normal distributions. (b) Ex- 
ample estimated posterior probability (bottom) versus true posterior prob- 
ability for the case of two-dimensional, normal distributions. 

is normally distributed with mean zero and unit variance, 
while c2 is normal with unit mean and unit variance. Fig. 
9(a) shows the mean integrated square error and its stan- 
dard deviation (based on 50 trials) as a function of the 
number of observations, and Fig. 9(b) compares the typ- 
ical posterior estimate produced by the network with the 
true posterior probability function. Fig. lO(a) and (b) in- 
dicate performance on an analogous two-dimensional 
problem. Again, P(cl) = P(c,) = 0.5 and each class is 
normally distributed with a covariance matrix equal to the 
2 X 2 identity matrix 12.  c1 has a mean vector of (0, O)T 
while c2 has a mean vector of (1, l)T. 

Figs. 11 and 12 indicate one- and two-dimensional per- 
formance in which the individual classes are distributed 
uniformly. In each case we have P(cl) = 0.3 and P(c , )  
= 0.7. For the one-dimensional example, cI  - U ( 0 . 2 )  
and c2 - (0.5, 1.5). Fig. 1 l(a) shows the mean integrated 
square error as a function of the number of observations, 
Fig. 1 l(b) shows the number of nodes used in the network 
(dynamically allocated), also as a function of the number 
of observations, and Fig. l l (c )  plots the true versus es- 
timated posterior probability. For the two-dimensional 
example, c ,  is uniformly distributed on the square defined 



ROGERS et a l . :  COMPUTING A POSTERIORI CONDITIONAL 

0 9 -  

0 8 -  

0 7 -  

ISE, 50 Trials. I-D SONN 
0.4 

0.8 

0.7 

0.6 

100 200 300 400 500 600 700 800 

Number of Observations 

(a) 

- 

- 

~ 

CLASS PROBABILITY 1681 

0.2 

0.1 

A 
900 loo0 

- 

~ 

Number of Nodes Used, 50 Trials. 1 - 0  SONN 

i IO 

I I 
i00 200 300 400 500 600 700 800 900 loo0 

Number of Observations 

(b) 
0.9 

0 '  I I I 
- 1  -0.5 0 0.5 1 1 5  2 2 5 3 

(C) 

Fig. 11. (a) Mean integrated square error as a function of number of ob- 
servations for the case of one-dimensional, uniform distributions. (b) Num- 
ber of terms allocated in the network as a function of number of observa- 
tions for the case of one-dimensional, uniform distributions. (c) Example 
estimated posterior probability (dashed) versus true posterior probability 
for the case of one-dimensional, uniform distributions. 

by vertices a = (0,  0) and b = (2, 2) and c2 likewise with 
a' = (0.5, 0.5) and b' = (1.5, 1.5). Again, P ( c l )  = 0.3 
and P ( c J  = 0.7, and Fig. 12 shows (a) mean integrated 
square error, (b) number of nodes, and (c) posterior prob- 
ability estimate. 

ISE, 50 Trials, 2-D S O W  
I ,  I 

I 
?00 200 300 400 500 600 700 800 900 loo0 

Number of Observations 
(a) 

Number of Nodes Used. 50 Trials. 2-D SONN 

26 L 

- , . , , , , , , ]  

18 

16 
I 0 0  200 300 400 500 600 700 800 900 loo0 

Number of Observations 

(b) 

(C) 
Fig. 12. (a) Mean integrated square error as a function of number of ob- 
servations for the case of two-dimensional. uniform distributions. (b) 
Number of terms allocated in the network as a function of number of ob- 
servations for the case of two-dimensional, uniform distributions. (c) Ex- 
ample estimated posterior probability (bottom) vs .  true posterior probabil- 
ity for the case of two-dimensional, uniform distributions. 

The simulations considered in Figs. 9-12 indicate the 
fundamental trade-off between the number of nodes used 
in the estimation procedure, the number of observations 
available, and the performance (in, say, square-error) that 
one can expect. Analysis of this trade-off will be the focus 



1682 IEEE TRANSACTIONS ON SYSTEMS, MAN.  A N D  CYBERNETICS. VOL. 2 3 ,  NO. 6, NOVEMBEWDECEMBER 1993 

of an asymptotic analysis of the network. Taken together 
with the tabulated performance given in Table I ,  our sim- 
ulations give initial results indicating that the connection- 
ist approach detailed herein is a viable approach to de- 
veloping a posteriori probabilities for use in pattern 
recognition tasks. 

VIII. CONCLUSION 
We have presented a connectionist model for both su- 

pervised and unsupervised learning and probabilistic dis- 
crimination based on the Voronoi partitioning scheme 
used in vector quantization. This model is equivalent to a 
serial algorithm with strong foundations in classical the- 
ory. The approach is a Euclidean connectionist analog to 
the maximum likelihood ideas found in mixture models. 
In addition to presenting classical probability theory in a 
massively parallel framework, the model yields a connec- 
tionist formalization of automatic node creation, and thus 
has relevance to the many probabilistic neural network 
paradigms. Finally, the learning performed by the model 
has been favorably compared with a classical estimation 
technique in a series of simulation examples. 

ACKNOWLEDGMENT 
The authors would like to thank Wendy Poston for her 

help with the computer simulations and graphics that were 
used to characterize the performance of the network. 

REFERENCES 
[ I ]  P. J .  Werbos, “Beyond regression: New tools f o r  prediction and anal- 

ysis in the behavioral sciences.” Ph.D. dissertation, Harvard Univ. 
Comm. Appl. Math., Nov. 1974. 

121 D. E. Rumelhart, J .  L. McClelland, and the PDP research group, 
Parallel Distributed Processing Vol. I :  Explorations in  the Micro- 
strucfure of Cognition. 

131 D. F .  Specht, “Probabilistic neural networks.” Neural Netw,ork.s. vol. 

141 D. F. Specht, “A general recognition neural network.“ IEEE Truns. 

Cambridge. MA: MlT Press, 1986. 

3, pp. 109-1 18, 1990. 

Neural Networks, i o l .  2,  pp. f68-576, 1991. 
L. 1. Perlovsky and M. M.  McManus. “Maximum likelihood neural 
networks for sensor fusion and adaptive classification,” Neurd N e t -  
works, vol. 4, pp. 89-102, 1991. 
H. G. C .  Traven, “A neural network approach t o  statistical pattern 
classification by ‘semiparametric’ estimation of probability density 
functions,” IEEE Trans. Neural Networks. vol. 2. pp. 366-377, 1991. 
S .  Lee and R. H.  Kil, ”A Gaussian potential function network with 
hierarchically self-organizing learning.” Neural Networks. vol. 4,  pp. 
207-224, 1991. 
D. J .  Marchette and C .  E. Priebe, “Adaptive kernel neural net- 
work,” Mathemat., Compui. Model.. vol. 14. pp. 328-333. 1990. 

191 H. White, “Consequences and detection of misspecified nonlinear 
regression models,” J .  Amer. Statist. Soc.. vol. 76, pp. 419-432, . .  
1981. 
P. Shoemaker, M. Carlin, R. Shimabukuro. and C. E .  Priebe, “Least- 
squares learning and approximation of posterior probabilities on clas- 
sification problems by neural networks,” Proc. 2nd Workshop Neural 
Networks, WNN-AIND 91. pp. 187-196, 1991. 
C .  Wolverton and T. Wagner, ”Asympotically optimal discriminant 
functions for pattern classification,” IEEE Trans. Informat. Theory. 

A. K .  Krishnamurty, S. C. Ahalt. D. E. Melton. and P. Chen, 
“Neural networks for vector quantization of speech and images,” 
IEEE J .  Select. Areas Commun., vol. 8, pp. 1449-1457, 1990. 
T. Lee and A. M. Peterson, “Adaptive vector quantization using a 
self-development neural network,” IEEE J .  Sc.lrt.1. Areus Comniun.. 
vol. 8, pp. 1458-1471. 1990. 

VOI. 15, pp. 258-265. 1969. 

[ 141 F. P.  Preparata and M. I .  Shamos, Compurational Geometry. New 
York: Springer-Verlag. 1985. 

[IS] D. M. Titterington, A. F. M. Smith, and U.  E. Makov, Statistical 
Anulysi.~ of Finite Mixture Distributions. New York: Wiley, 1985. 

1161 G .  Carpenter and S .  Grossberg. “A massively parallel architecture 
for a self-organizing neural pattern recognition machine,” Compur. 
Vision, Graphics, Image Process.. vol. 37, pp. 54-1 15, 1987. 

[I71 C .  E .  Priebe and D. J .  Marchette. “Adaptive mixtures: Recursive 
nonparametric pattern recognition,” Pattern Recogn., vol. 12, pp. 
1197-1209. 1991. 

[ 181 F. J .  Pineda. “Generalization of back-propagation to recurrent neural 
networks,” Phvs. Rev. Leu . ,  vol. 59. pp. 2229-2232, 1987. 

1 191 Y .  Pao, Aduptive,Pattern Recognition and Neural Networks. Read- 
ing. MA: Addison-Wesley, 1989. 

1201 R. P.  Lippmann, “An introduction to computing with neural nets,” 
IEEE ASSP Mag., VOI. 4, pp. 4-22. 1987. 

George W. Rogers received the B S degree from 
Georgia Southern College in 1977 and the Ph.D 
degree in theoretical physics from the University 
of South Carolina in 1984 

Since 1985 he has been employed at the Dahl- 
gren Division of the Naval Surface Warfare Cen- 
ter where he first worked in orbit computation and 
more recently in the field of artificial neural net- 
works His current research interests are in com- 
posite neuronal dynamics and adaptive pattern 
recognition 

5ystems and recursive 
ter. San Diego. CA. ai 
Center, Dahlgren, VA 

Jeffrey L. Solka received the B.S .  degree in 
mathematics and chemistry in 1978 and the M.S. 
degree in mathematics from James Madison Uni- 
versity in 1981, and the M.S. degree in physics 
from Virginia Polytechnic lnstitute and State Uni- 
versity in 1989. 

Since 1984. he has been working in the areas of 
strategic defense, artificial neural systems, and 
pattern recognition for the Dahlgren Division of 
the Naval Surface Warfare Center. 

Stephen Malyevac received the B.S .  and M.S. 
degrees in mechanical engineering from Virginia 
Polytechnic Institute and State University in 1986 
and 1988, respectively. 

Since March 1988 he has worked at the Dahl- 
gren Division of the Naval Surface Warfare Cen- 
ter. His areas of interest include the application of 
control methods to practical systems, theoretical 
techniques for robust control design, and neural 
networks and their applications. 

Carey E. Priebe received the B.S.  degree in 
mathematics from Purdue University in 1984, the 
M . S .  degree in computer science from San Diego 
State University in 1988, and the Ph.D. degree in 
information technology (computational statistics) 
from George Mason University in 1993. He also 
did two years of undergraduate work at the United 
States Military Academy, West Point, and grad- 
uate work in mathematics at the University of Cal- 
ifomia at San Diego. 

Since 1985. he has been working in adaptive 
estimators, first for the Naval Ocean Systems Cen- 

nd since April 1991, with the Naval Surface Warfare 


