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Automating the Layout of Network Diagrams with
Specified Visual Organization

Corey Kosak Joe Marks Stuart Shieber
April 22, 1993

Abstract

Network diagrams are a familiar graphic form that can express many different kinds
of information. The problem of automating network-diagram layout has therefore
received much attention. Previous research on network-diagram layout has focused
on the problem of aesthetically optimal layout, using such criteria as the number
of link crossings, the sum of all link lengths, and total diagram area. In this pa-
per we propose a restatement of the network-diagram layout problem in which
layout-aesthetic concerns are subordinated to perceptual-organization concerns.
We present a notation for describing the visual organization of a network diagram.
This notation is used in reformulating the layout task as a constrained-optimization
problem in which constraints are derived from a visual-organization specification
and optimality criteria are derived from layout-aesthetic considerations. Two new
heuristic algorithms are presented for this version of the layout problem: one algo-
rithm uses a rule-based strategy for computing a layout; the other is a massively
parallel genetic algorithm. We demonstrate the capabilities of the two algorithms
by testing them on a variety of network-diagram layout problems.

To appear in IEEE Transactions on Systems, Man, and Cybernetics.

An earlier version of this technical report was previously available under the title “New
Approaches to Automating Network-Diagram Layout”.






1 Introduction

Network diagrams are a familiar conventional graphic form [1]; an instance is given as a
placement of nodes and links, perhaps with enclosing boxes or other diacritical symbols,
in a two-dimensional arrangement. They are perhaps most closely associated with con-
veying systems analysis and design information [22], but are used for myriad other pur-
poses. A major task in designing a network diagram is determining its two-dimensional
layout. The problem of automating network-diagram layout has consequently received
much attention. One bibliography [5] cites more than 180 references for this problem.

Every approach to diagram layout requires that the diagram remain syntactically
valid; for example, overlapping nodes and intersections between nodes and links must
not be permitted. Secondary to these considerations are those of layout aesthetics, and
it is on these considerations that previous research has focused. Eades and Tamassia [5]
summarize this approach as follows:

...[I]n almost all data presentation applications, the usefulness of a graph
depends on its readability, i.e., the capability of conveying the meaning of a
diagram quickly and clearly. Readability issues are expressed by means of
aesthetics, which can be formulated as optimization goals for the drawing
algorithms. ... A fundamental and classic aesthetic is the minimization of
crossings between edges.

(The diagram-layout literature suffers from inconsistent terminology. In this paper we
prefer the terms network diagram, node, and link over the corresponding terms graph,
vertez, and edge, respectively.) Besides the number of link crossings, other common
layout-aesthetic criteria are diagram area, diagram aspect ratio, the number of bends in
polyline links, the sum of link lengths, the length of the longest link, link-length equality,
and node-density distribution [30].

Syntactic validity and layout aesthetics do not, however, account for all the impor-
tant aspects of network-diagram layout. For example, human graphic designers rely
routinely on grouping principles derived from the classical Gestalt Laws of perceptual
psychology [12] to organize diagrams visually. Furthermore, inappropriate perceptual
organization has been identified as a major cause of design flaws in informational graph-
ics: Kosslyn [15, 16] has performed psychological experiments to support his claim that
“when a visual display is difficult to interpret, violations of [the Gestalt] grouping laws
are often the root of the problem,” and Marks and Reiter [20] have described the ef-
fects of misleading perceptual organization on the semantic interpretation of network
diagrams. We therefore generalize the problem of network-diagram layout by intro-
ducing layout considerations that concern perceptual organization. The resulting three
categories of layout consideration—syntactic validity, perceptual organization, and aes-
thetic optimality—are illustrated in Figure 1, which shows a representative selection of
appropriately classified layout considerations.

One contribution of this paper is a notation for describing the visual organization of
a network diagram; our concept of visual organization subsumes both network topology

This work was supported in part by contracts from U S WEST Advanced Technologies and the
Lockheed Palo Alto Research Laboratory. We are happy to acknowledge the support and advice of Tony
Cox, Mark Friedell, and Barbara Grosz, and the additional help of Dave Davis, Janusz Juda, Sandeep
Kochhar, and Steve Sistare.



Worse Better Worse Better Worse Better

A0 aigme O-0-0-O
Diagram Area

Node Overlap O ()\()
GD\O Symmetry
Number of Link
Crossings

o
W 5
OTO v O 9@\ = | AN %% P %g\%
Intersection i
w5 kS

Syntactic Validity Perceptual Organization Aesthetic Optimality

Sum of Link
Lengths

Figure 1: Layout considerations

and the perceptual organization of symbols. Using this notation, a desired visual orga-
nization can be specified that is independent of any particular layout. A visual organiza-
tion for a network diagram might be specified by a human user, or it might be specified
automatically.! The layout task can then be formulated as a constrained-optimization
problem in which constraints are derived from syntactic-validity and visual-organization
requirements, and optimality criteria are derived from layout aesthetics. Although the
idea of incorporating constraint satisfaction into layout algorithms as a mechanism for
achieving some degree of perceptual organization in network diagrams has been tried
before [30, 2, 9], the visual-organization features discussed elsewhere are very different
in scope and nature from those considered here.

It should come as no surprise that this constrained-optimization problem is computa-
tionally intractable, because less general formulations of the diagram-layout problem are
themselves problematic. For instance, the simpler problem of laying out a graph with
a minimal number of edge crossings is NP-complete [6]. Likewise the simpler task of
computing a layout that merely exhibits specified perceptual groupings is NP-complete,
given some reasonable assumptions concerning the size and nature of the display [17].
These results effectively rule out the existence of an efficient algorithm for finding layouts
that satisfy given constraints and that are guaranteed to be aesthetically optimal.

The apparent intractability of the constrained-optimization formulation of the lay-
out problem suggests the use of heuristics. A second contribution of this paper is the
description of two new heuristic algorithms for our version of the layout problem. One

1The visual-organization specifications for all network diagrams that appear in this paper were gener-
ated automatically using a rule-based technique that determines an appropriate perceptual organization
for the information to be communicated in a diagram [17, 19]. However, we believe that there are many
application contexts in which visual-organization specifications would be best supplied by the user,
perhaps through a direct-manipulation interface.



algorithm uses a rule-based strategy for computing layouts; the other is a genetic algo-
rithm that is suitable for massively parallel computers. We demonstrate the different
capabilities of the two algorithms by testing them on a selection of layout problems.

This paper is structured as follows. First, we define our notation for describing the
visual organization of network diagrams. Second, we describe our rule-based approach
to diagram layout. Finally, we describe our parallel genetic algorithm for the same
problem. In concluding remarks, we suggest directions for future work.

2 Specifying the Visual Organization of Network
Diagrams

A layout-problem statement is given as a symbolic description of the diagram’s desired
topology and perceptual organization. Such a visual-organization specification (VOS)
is given as a specification of a network topology along with a list of wvisual-organization
features (VOF).

The topology of a network diagram is described as a set of nodes, links,; and enclosure
boxes, along with a specification of the nodes that the links connect and the boxes
enclose. More formally, the following components must be specified:

o N, L and ENC, the set of nodes, links, and enclosures for the network.

e TC:L— N x N x {unidirectional, bidirectional}, the topological connectivity of
the network. The specification is such that TC(l) = (n;, nj, d) just in case link [
connects node n; to node n; with directionality d.

e ENCLOSE : ENC — 2" the enclosure structure of the network. The specifica-
tion is such that ENCLOSE(e) = s just in case enclosure e encloses exactly the
nodes in the set s.

The VOFs codify the desired visual organization of the diagram. The VOFs in our
formulation concern nodes only. They specify perceptual groupings due to various kinds
of proximity relations, sequentially ordered layout, alignment, axial and radial symme-
try, and special, easily recognized layout patterns, such as the “T-shape” pattern that
describes a conventional layout for nodes that are related hierarchically. A notation
and description for our complete set of VOFs is described in the appendix. In the next
paragraph we shall describe a selected few in detail. Though we do not believe that our
set of VOFs is inherently exhaustive, we have noted over a period of time and through
informal taxonomic research that our set of features provides excellent coverage in prac-
tice for the actual organizational primitives conventionally used in network diagrams by
graphic designers.

To illustrate the general form and content of VOF predicates, and to establish enough
context for a simple but complete visual-organization specification, we consider zones
and clusters (two kinds of proximity relations), and axial symmetries. A zone, as codified
in the ZONES predicate over node sets, specifies a set of nodes to be laid out such that
a rectangular region of the display is reserved for these nodes only; no other nodes may
intrude into the allotted region. A cluster, specified using the CLUSTERS predicate
over sets of nodes, is related more directly to the concept of perceptual grouping by



proximity: the specified nodes must be positioned close enough in the display to be
perceived as a distinct gestalt. Symmetry about an axis (either horizontal or vertical,
though which of the two may be unspecified) is expressed using the SYM predicate over
sets of nodes. The nodes in a SYM group must be laid out so as to exhibit the specified
symmetries.

A sample visual-organization specification is shown in Figure 2. The layout task is
to compute an aesthetically optimal or near-optimal layout that exhibits the VOFs in
the specification. A layout that exhibits the required VOFs is shown in Figure 3. The
layout problem is thus cast as a constrained-optimization problem: the constraints come
from the VOFs and the syntactic validity requirements, and the optimality criteria come
from the layout aesthetics. We turn now to the problem of generating heuristic solutions
to these inherently intractable constrained-optimization problems.

3 A Rule-Based Approach to Layout

Our motivation in using heuristic rules for layout is to emulate how human graphic de-
signers appear to lay out diagrams. Similar sublayout patterns tend to recur repeatedly
in human-designed network diagrams, suggesting that human designers utilize a small
set of patterns when generating diagram layouts. This pattern-generation expertise can
be captured to some degree in heuristic rules.? A layout is computed incrementally by
augmenting a nascent layout until each node has been positioned; each augmentation of
the layout is achieved by applying a layout rule. (In this paper we assume straight-line
links, so node placement essentially subsumes link routing.) The network diagram in
Figure 4 was laid out using the rule-based approach. The diagram depicts a local-area
computer network [13]; its visual-organization specification is given in Figure 5. The
numbering of the nodes indicates the order in which they were positioned by successive
rule applications.

The left-hand side of a layout rule consists of a sublayout and a set of VOFs. A rule
can be applied if certain applicability criteria are met, namely:

e if the required sublayout is found in the nascent layout
e if the required VOFs have been specified in the visual-organization specification
e if the application of the rule does not compromise syntactic validity

The successful application of a rule leads to an augmented nascent layout in which one
or more additional nodes have been positioned, as indicated in the figure. Figure 6 illus-
trates a simple layout rule (this rule was used extensively to compute the layout shown
in Figure 10). The required sublayout for the rule in Figure 6 comprises two vertically
aligned nodes. These nodes participate in two VOFs, one for evenly spaced, sequentially
ordered layout (SSEQLAY), and one for evenly spaced, horizontally or vertically aligned
layout (SALI). Given the existing locations of nodes nl and n2, a candidate position
for n3 is generated that does not contravene the specified VOFs. If placing node n3 at
this position does not invalidate the diagram on syntactic grounds (by causing symbol

?Sugihara et al. [29] describe a variant of rule-based layout in which layout rules are derived from
examples (“layout stereotypes”) stated using fuzzy logic.



Topology
N: {77,1,...,7112}

L= {ll,...,112}
ENC = {61,...,64}

TC= A I+ (n1,ns,unidirectional), Iz (n2, ng, unidirectional),
l3 — (ng, ns, unidirectional), ly — (n4, n7, unidirectional),
l5 — (ns, ng, unidirectional), ls — (ng, ne, unidirectional),
l7 — (ne, n1o, unidirectional), lg — (n7,nyo, unidirectional),
ly — (ng, ng, unidirectional), lro(n10, o, unidirectional),

I+ (ng, n11, unidirectional), liz+ (n1g, n12, unidirectional)}
ENCLOSE: { €1 — {77'5;”67”7}; € — {77'3777'4777'8;”10})
€3 — {7111> n12}> €4 {711; n2, ng}}

Visual Organization Features

ZONES = { {n5,n6,n7}, {ng,n4,n8,n10},

{n11,n12}, {ni,na,no}t}
CLUSTERS = { {ns,ne,nz}, {ns, n4, ng,nio},
{n11,n12}, {ni,na,no}t}

SYM = { ({ns,ne, nr},vertical),
({ns, na, ng, n1g}, vertical),
({n11, n12}, vertical),
({n1,n2,no}, vertical),

{ns,ne, n7}, horizontal),
{ns, na, ng, n1o}, horizontal),
{n11, n12}, horizontal),
{n1,n2,ng}, horizontal)}

(
(
(
(

Labeling Information

NODE LABELS = { nr+ “ev”, no+ “bv’,
ng — “el”, ng — “b17,
ns — “ee”, neg — “eb”,
nzy — “bb”, ng — “ctrl’,
ng — “bve”, nig — “627,
nip — “motor”, mnyg— “lamp”}

ENCLOSURE LABELS = { er+ “data _stream”, eo+ “process’,
ez — “signals’, eq — “state _vector”}

Figure 2: A sample visual-organization specification
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o Text label = Vertex name
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Figure 3: A network diagram with the appropriate VOFs



Legend

o Text label = Vertex type
e Node shape = Vertex affiliation
I:] public network
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Figure 4: A layout computed using the rule-based approach



{nla"':nﬂ)}
{11,...,125}

{ I+ (n1, ns, bidirectional),

l3 — (n1,n7, bidirectional),

l5 — (n1,ns, bidirectional),
l7 — (n2,ns, bidirectional),
)

ly — (n4,nz, bidirectional),

Iz (ny, ng, bidirectional),
ly — (n1, ne, bidirectional)
ls — (n1,n2, bidirectional),
ls — (n3, na, bidirectional),
lro(ne, n7, bidirectional),

b

lr1(ns, ne, bidirectional),

l13 — (n3, ng, bidirectional),

l17+ (n2, ns, bidirectional),
l14 — (ng, ng, bidirectional),

l15 — (ng, nio, bidirectional),
l17 — (ns, ny2, bidirectional),

lig —

la1 — (n7,n16, bidirectional),
lag — (n16, 17, bidirectional),

(
(
(
(
(

ns, ni4, bidirectional),

las — (n16, 19, bidirectional)}
Visual Organization Features

ZONES =
HUB =
T-SHAPE =

Labeling Information

{{n1, n2, n3, na,n5, ne,n7}}

{(n1, {na, n3, n4, n5,n6,n7})}

{ (nS;{n9;n10;n11})>
(n7, {7115,7116,”20});

NODE LABELS = { nr+ “scp”, no+ “tessp”,
ng — “lessp”, ng — “tessp”,
ng — “lessp”, ng — “tessp”,
ny — “lessp”, ng — “pabz”,
ng — “phone”, migr— “phone”’,
niy — “phone”, mnyo— “lan”,
niz — “phone”, mnyq— “edp”,
nis — “lan”, nig — “nt’,
ni7 — “phone”, mnigr— “phone”,
nyg — “far’, nao 1 “edp” }

116 = n
118 —

lzzl—> n

8
s, n11, bidirectional),

(
(
(
(ns, nis, bidirectional),
(
(
(

lag — (n7, 15, bidirectional),

7
7, Nag, bidirectional),

lag — (n16, n1s, bidirectional)

(ns, {n12; n13,n14}),
(7116, {n17;n18; n19})}

Figure 5: Another sample visual-organization specification
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Figure 6: A simple layout rule

overlaps, for example), the nascent layout is augmented with the new position for node
n3.

Many layout rules in our current rule base are as simple as the one in Figure 6.
Sometimes, however, more powerful rules are useful. One way a rule can be made more
powerful is by the use of more general applicability criteria. These criteria may require
computations that potentially involve all parts of the current nascent layout and all
VOFs in the specification. For example, an alternate version of the rule in Figure 6
might utilize a predicate that inhibits application of the rule if the layout augmentation
would result in too many additional link crossings. General applicability criteria can
thus be used to include important layout heuristics that cannot otherwise be expressed.
Another way a layout rule can be made more powerful is by parameterizing its layout
augmentation. For example, the width, height, and orientation of a layout augmentation
are parameters that might be modified to generate more candidate layout augmentations.
The rules in Figures 7 and 8 (the former rule was used to position most of the nodes in
Figure 4) illustrate various different layout augmentations that result from parameter
changes.

Our implementation of the rule-based algorithm is written in Prolog [28, 25]. Pro-
log’s resolution-based search strategy is used to find sublayout patterns in the nascent
layout and VOFs in the visual-organization specification. Verifying the validity of a can-
didate sublayout requires only simple checks for overlapping symbols and intersecting
enclosures. The current rule-based layout system has fewer than 50 rules, though each
rule may have several possible layout augmentations at its disposal. The actual layout
rules used are a little more complex than those depicted in the figures. For example,
additional candidate layout augmentations are generated by permuting the positions of
nodes in the augmented sublayouts. Furthermore, although the rules in the figures ap-
pear to apply to node sets of fixed cardinality, the corresponding Prolog versions of these
rules can accommodate nodes sets of variable cardinality: thus there is only one rule like
the one in Figure 7, not multiple rules that differ only in the number of nodes involved.
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Figure 7: A layout rule with multiple augmentation options
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{n1,n2,n3,n4} O CLUSTERS
@ I ({1, n2, n3, n} , vertical) O SYM —- - - oo oo
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Sublayout VOFs Augmented Sublayouts

Figure 8: Another layout rule with multiple augmentation options
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These added complexities are represented and processed easily in Prolog. Marks [17]
provides a more detailed discussion of the rule base.

Even with a small rule base containing relatively primitive rules (for instance, none
of the standard layout aesthetics figure in the applicability criteria of our current set of
rules) our rule-based layout system often computes excellent layouts. These layouts are
also computed very quickly, i.e., usually in under 10 seconds on a Sun-4 for diagrams
with fewer than 20 nodes. Figures 9 and 10 illustrate two of the more than 30 different
layout problems on which we have tested our algorithms. Both network diagrams convey
the same information as the diagram in Figure 3 (the diagrams depict an elevator control
system [26]). The diagram in Figure 9 has the visual-organization specification shown
in Figure 2. The diagram in Figure 10 has the same topology, but a different visual-
organization specification that includes VOFs for evenly-spaced alignment (SALI) and
sequential layout (SSEQLAY).3

The layouts generated using the rule-based approach are qualitatively very different
from those generated using any previously reported layout algorithm [5]. The unique
qualities of the rule-based approach stem from the efficient generation of sublayouts that
have a desired visual organization. Another advantage of layout rules is that graphic-
design knowledge is represented in a form that is easily comprehended, thus facilitating
the modification and extension of a rule base.* However, the rule-based approach has
significant weaknesses that include:

o No guarantee of success: There is no guarantee that a valid diagram layout will
always be found if one exists. In fact, this is a problem for any efficient solution to
the layout problem, because merely determining if a layout with the desired VOFs
exists is an NP-complete problem [17].

e QOccasionally unacceptable performance: Prolog’s resolution-based search strategy
can be used to automatically backtrack when no layout rules are applicable for a
given nascent layout, but excessive backtracking can lead to unacceptable perfor-
mance. There is no obvious way to formulate an intelligent backtracking strategy
that could quickly identify and undo infelicitous layout decisions. The rule base
has therefore been designed in a way that reduces the likelihood of having to undo
layout decisions. This is achieved by including in the rule base some weak, but
very generally applicable rules, thus ensuring that some layout rule is applicable
for almost every nascent layout. The more complex (and potentially useful) rules
in the rule base are always tried first, but if none are applicable some weak rule
can usually be applied instead of backtracking. This strategy can have a negative
impact on diagram quality (in particular, some desired VOFs may not appear in
the diagram), but will avoid expensive backtracking most of the time.

3 All graphical aspects of these diagrams were designed by the ANDD system [17, 19]. The ANDD
system first generates a visual-organization specification for a network diagram. The specifications
generated by ANDD are more general than the ones discussed here. They include additional VOFs
that describe perceptual grouping by similarity, perceptual ordering, and perceived magnitude. Having
generated a visual-organization specification, ANDD then instantiates a network diagram that is con-
sistent with the specification. A comparison of human-designed and ANDD-designed network diagrams
is given in [18].

4The current rule base used by ANDD is only one of probably many useful rule bases. Different rule
bases might reflect different layout styles, and may be better for some kinds of network diagrams than
others. The development and comparison of different rule bases is a possible goal for future research.
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Figure 9: A second layout computed using the rule-based approach
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o Introduction of unwanted VOFs: There is no guarantee that the algorithm will
not introduce unwanted VOFs inadvertently, possibly resulting in a diagram that
carries unwanted implicatures [20]. It is hard to imagine a heuristic layout strategy
that could efficiently guarantee not to introduce unwanted VOFs. At the very least
such a strategy would have to incorporate some computational methods for de-
tecting VOFs in a given diagram, which is essentially a computer-vision problem.
Fortunately, the more VOFs in a diagram, the harder it usually is to introduce
additional unwanted ones. By concentrating on including desired VOFs, the like-
lihood of inadvertently introducing unwanted ones is reduced. Both our layout
algorithms rely tacitly on this empirical observation.

o Difficulties with certain layout aesthetics: Most layout aesthetics, e.g., the number
of link crossings in a diagram, are global in nature. Layout rules, on the other
hand, are essentially local in nature. The effects of local layout decisions on any
global aesthetic will be difficult to gauge, making it very hard to guarantee even
near-optimal layouts when layout decisions are made on a local basis. This problem
is apparent, for instance, in the layout of Figure 9 with its large number of link
crossings.

e Problems posed by interacting VOFs: Interacting VOFs, i.e., different VOFs that
apply to the same node(s), pose difficult problems for a rule-based approach to lay-
out, particularly when the interacting VOF's are mutually inconsistent. Interactions—
especially those that result in inconsistencies—can often be resolved by compromise
layouts that exhibit aspects of all interacting VOFs, but formulating rules that can
forge compromise layouts is not easy.

So although a rule-based approach may be useful in some contexts (e.g., for applica-
tions that require near real-time design of network diagrams, or in situations where an
automatically designed diagram may be improved by a human designer), the inherent
shortcomings of layout rules have led us to investigate another approach to the layout
problem based on the idea of layout as constrained optimization.

4 A Stochastic-Optimization Approach to Layout

The more expensive stochastic-optimization approach to diagram layout described in
this section is superior to the rule-based approach in that it provides simple mechanisms
for taking layout aesthetics and interacting VOFs into account, and it uses a powerful
search strategy that is a better and more efficient method for exploring alternative lay-
outs than the backtracking strategy implicit in the rule-based approach. The algorithm
is a parallel genetic algorithm [7, 3] adapted to both the diagram-layout problem and to
the massively parallel SIMD architecture of the Connection Machine [8]. A high-level
description of the algorithm is presented in Figure 11. A more detailed description of the
algorithm is provided in [14]. The layouts computed by this algorithm are node embed-
dings on a fixed-size integer grid. Each (virtual) processor in the Connection Machine
stores one layout in its local memory. The initial generation of layouts is chosen ran-
domly, with each processor computing its own random layout. Subsequent generations
are computed by mating and mutating, two “genetic” operations that can alter existing

14



Definitions:
Each processor has eight neighboring processors.
A processor and its neighboring processors constitute a neighborhood.

Procedures and Functions:
initialize—compute a random node layout.
evaluate—compute layout fitness.
mutate—randomly translate one or more nodes.
crossover—copy node locations from a neighboring processor.
reproduce—copy a layout from a processor in the neighborhood.
scatter—send a layout to a randomly chosen processor.
find-best—find the best layout of the current generation.
A 7 suffix indicates stochastic application of a procedure.

Algorithm:
parallel {initialize}

repeat

parallel

{
evaluate
reproduce
scatter?
crossover?
mutate?
find-best

}

until no improved layout has been found for N generations

return the best layout found

Figure 11: Outline of a parallel genetic algorithm for diagram layout
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layouts. Prior to mating, each layout is evaluated and assigned a single numeric score
to indicate its layout fitness. This requires approximating the constrained-optimization
problem described in Section 2 as a pure optimization problem, so that the quality of
a layout can be expressed with a single value. A simple method for performing this
approximation is to develop scoring methods for the constraints as well as the layout
aesthetics, combining these scores according to a weighted sum. The magnitude of
the weights corresponding to the syntactic validity subterms are largest; a syntactically
invalid diagram ought to have a very poor score. These weights dominate those corre-
sponding to the degree of conformity with the visual-organization specification, which
in turn dominate those corresponding to layout-aesthetic quality.
Fitness is therefore determined by the following layout formula:

(Degree of Syntactic Validity)
(Degree of Conformity to the Visual-Organization Specification)
(Layout-Aesthetic Quality)

fitness =

_|_
_|_

Each term of this formula is composed of several subterms, each of which is assigned
an empirically determined weight that corresponds to its relative importance [14]. We
discuss the three terms and their subterms below.

e Degree of syntactic validity: This term has the following form:
Degree of Syntactic Validity = s1 x |Node_Overlaps| + s2 x |Node_Invasions|

Node_QOverlaps is the set of all pairs of overlapping nodes. Node_Invasions is the
set of all pairs of intersecting links and nodes. The factors s; and s; are the
empirically determined weighting factors.

o Degree of conformity to the wvisual-organization specification: In the following
formula, we write ¢(V) as an abbreviation for “degree of conformity to visual-
organization specification V”. For example, the term ¢(NP-PROX ) is the candidate
diagram’s degree of conformity to the NP-PROX specification.

Degree of VOS Conformity

v11 X ¢(PERIMETER)
v13 X C(HUB)

v12 X ¢(PERIMETER-CYCLE)
v14 X ¢(HUB-CYCLE)

v x ¢(NP-PROX) + vy x ¢(NN-PROX)
+ vs x ¢(ZONES) + vy x ¢(CLUSTERS)
+ v x ¢(SEQLAY) + v x ¢(SSEQLAY)
= | 4+ wrxec(ALl) + ws x ¢(SALI)
+ wvg x ¢(SYM) + wvio X ¢(T-SHAPE)
+ +
+ +

Like the s;, the v; are empirically determined weighting factors. The complete list
of visual-organization specifications, along with a description of the computation
of ¢(V), is given in the appendix.
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o Layout-aesthetic quality: This term has the following form:

ay x (Total Diagram Area)

as x (Number of Link Intersections)

az x (Sum of Link Lengths)

ayq x (Degree of Link Length Inequality)
as x (Degree of Global Symmetry)

Layout-Aesthetic Quality =

++++

As above, the a; are empirically determined weighting factors. For certain dia-
grams, it may be appropriate to disable one or more of these aesthetics (by zero-
ing the corresponding weighting factor). This can be done either under program
control or by the user.

The terms in this formula are intended to: encourage smaller diagrams, discourage
link intersections, minimize both link lengths and the differences between link
lengths, and promote a global symmetry in the diagram. The computation of
the first three terms is trivial. The fourth is computed as the summed absolute
difference of the link lengths and the average link length:

Z abs(link-length;, — mean(link-length))
i€L
where link-length; is the length of link ¢, and mean(link-length) is the average

length of all the links. The final symmetry term is computed using the same
methodology as for the SYM VOF described in the appendix.

Once layout fitnesses have been computed, mating can occur. There are two kinds of
mating, reproduction and crossover. Reproduction is primarily a local operation. Each
processor overwrites its own layout with a layout from one of the processors in its neigh-
borhood. It seems intuitively obvious that we would want good layouts to be favored
over bad in the reproduction step—indeed, the directional component of the algorithm’s
search strategy derives solely from reproduction. However, the simple heuristic of always
copying the best layout in the neighborhood is rarely the most effective reproduction
strategy. Instead, reproduction is governed by a reproduction schedule, which sets a
probability for copying the n-th best layout in a neighborhood. For example, a good
reproduction schedule may heavily favor the best and second-best layouts in a neigh-
borhood, but may still assign non-zero probabilities to the copying of all neighborhood
layouts, even the worst one.

The reproduction operation ensures that good layouts will migrate from processor to
processor; the crossover operation ensures that good sublayouts migrate between proces-
sors. A processor performs crossover by copying the locations of one or more randomly
chosen nodes from a layout in a neighboring processor. The crossover operation may
be applied to individual nodes or to groups of nodes that are perceptually related, as
indicated in the visual-organization specification.’

5Repeated applications of the reproduction operator tend to create homogeneous neighborhoods or
“colonies”, in which neighboring processors have substantially similar layouts. Because it would seem
that crossover should work poorly in these kinds of neighborhoods, we developed the scatter operator,
which copies layouts between randomly chosen pairs of processors—in effect creating “immigration”
into the colonies. However, our experiments showed that although the scatter operator was able to
decrease homogeneity, it had a negligible effect on the quality of the final layouts [14].
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The mating operations—reproduction and crossover—are of limited utility by them-
selves because they cannot generate new sublayouts, i.e., sublayouts that were not in
some layout of the initial generation. New sublayouts are generated by the mutation
operation. A processor performs mutation by randomly moving one or more nodes in a
layout. Like crossover, mutation may be applied to individual nodes or to perceptually
related groups of nodes.

After each new generation of layouts has been computed, all processors are examined
to determine which one has the best layout, which is then recorded. The program
terminates if the average improvement in the best layout over a set number of generations
falls below a certain threshold. Then the overall best layout from all generations is
returned. Figure 3 contains a network diagram designed by the ANDD+ system that
incorporates this layout algorithm. The network diagram in Figure 3 has the visual-
organization specification given in Figure 2. Global symmetry, minimization of link
crossings, and area minimization were the layout aesthetics used. This network diagram
can therefore be compared directly to the one in Figure 9 that was laid out using the
rule-based approach. The number of link crossings is the most salient difference between
the diagrams.

The layout in Figure 3 evolved over 128 generations. To illustrate the way in which a
layout evolves, we have included two layouts that were generated at intermediate points
in the algorithm’s progress. The best layout that had evolved after 17 generations is
shown in Figure 12. The diagram is not even syntactically well-formed; for instance, en-
closure boxes overlap. By the 69th generation (Figure 13), a syntactically valid diagram
has evolved. This diagram exhibits approximately the right perceptual organization,
has no link crossings, and is almost symmetric about a horizontal axis. By the final
generation, the syntactic and VOF constraints are satisfied completely by a totally sym-
metric layout (symmetric about a vertical axis) that contains no link crossings. It is
interesting to note that the final dominant layout is oriented differently from the earlier
dominant layouts. It is therefore likely that the final layout did not evolve from these
earlier layouts, but from a line of layouts that only achieved dominance late in the game.

Another diagram laid out by ANDD+ is shown in Figure 14. It was designed to
conform to the visual-organization specification that led to the network diagram shown in
Figure 10. For this particular diagram the rule-based and the genetic layout algorithms
both appear to work well. However, the global symmetry of the layout computed by the
genetic algorithm was achieved by design, whereas the global symmetry achieved with
the rule-based approach was somewhat serendipitous. A bigger layout computed using
the genetic algorithm—the diagram depicts a causal financial model [27]—is shown in
Figure 15. This diagram exhibits the same kinds of VOF's that are evident in Figure 3.

The genetic-algorithm approach to network-diagram layout shares some of the draw-
backs of the rule-based approach: there is still no guarantee that a valid (or optimal)
layout will be found if one exists, and there is also no guarantee that unwanted VOFs
will not be introduced inadvertently. The algorithm is also quite expensive. Most small
(1-20 nodes) or medium-sized (20-50 nodes) diagrams require 100-300 generations for
a good layout to evolve, where each generation comprises 4,096 individual layouts. For
small diagrams a new generation usually evolves in under a second on the Connection
Machine (a CM-2), so the layout in Figure 3 took about four minutes to evolve. This slow
performance is probably due to the fairly severe limitations of the individual processors

in the CM-2.
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Figure 12: The best layout after 17 generations
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Figure 13: The best layout after 69 generations
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Figure 14: Another layout computed using the genetic algorithm
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Figure 15: A larger layout due to the genetic algorithm
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The advantages of the genetic-algorithm approach, however, are considerable: the
notion of layout fitness provides a robust mechanism for taking multifarious layout aes-
thetics into account and for creatively handling interacting VOFs; the search strategy
supports the directed exploration of many different solutions to the layout problem; and,
most important of all, the layouts computed by this algorithm are usually of excellent
quality. Furthermore, newer SIMD parallel computers with more powerful processors
should be able to run the algorithm much more quickly; serial implementations of the
genetic-algorithm approach may also give acceptable performance [21, 23, 24].

5 Conclusions and Future Work

We have described a novel version of the network-diagram-layout problem in which
perceptual organization is given priority over purely syntactic aesthetic considerations.
We discussed two new layout algorithms for this problem: one uses heuristic layout rules
to incrementally compute a layout; the other uses a massively parallel genetic algorithm
to explore the solution space of possible layouts. Both algorithms compute layouts
that are qualitatively different from those computed using existing automatic methods.
Another major advantage shared by the algorithms is flexibility: they are both easily
adapted to take new perceptual gestalts and layout aesthetics into account. For example,
new layout rules can be incorporated easily into an existing rule base. Likewise, terms
corresponding to new gestalts and aesthetics can be introduced into the layout-fitness
formula used by the genetic algorithm. Our algorithms are incorporated into the ANDD
and ANDD+ systems that automate fully the design of network diagrams with a given
semantic content, but we believe that they will also prove useful in traditional CAD
environments for the semi-automated development of network diagrams.

In future work we hope to improve the performance and efficiency of our algorithms.
One obvious problem is the slow rate of convergence of the genetic algorithm. Manifest-
ing a behavior that is typical of genetic algorithms [7, 3], our algorithm initially makes
rapid progress towards a solution, but then converges very slowly to a global optimum
(or at least to a good local one). We have investigated the use of a gradient-descent
methodology for rapidly converging on a locally optimal solution once an almost locally
optimal solution has been generated by the genetic algorithm. The goal of this work is
to develop an algorithm that will compute layouts for medium-sized diagrams in a few
seconds on a regular workstation. Some preliminary results are reported in [11]; more
recent developments of this theme are presented in [4].° Another promising direction is
the development of a hybrid algorithm that uses heuristic layout rules to generate layouts
with which to seed the genetic algorithm (the genetic algorithm is currently seeded with
random layouts). We also hope to incorporate polyline-link routing into the algorithms
described here: initial experiments have shown that the routing of polyline links can
be subsumed into our genetic algorithm by including a single mutation operator that
introduces link bends by creating and positioning dummy nodes.

6This is joint work with Ed Dengler, Mark Friedell, Peter McMurry, and Steve Sistare.
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Appendix: Specification and Implementation of Vi-
sual Organization

A visual-organization specification can be stated using a set of visual organization fea-
tures codified as predicates. We make use of the following notations. The set of nodes is
N, and its powerset 2%; the set of nonrepeating sequences of nodes is notated seq(N).
Each node is given a position in the real plane R x R where R specifies the real numbers.
The set of axes is given by

AXIS = {horizontal, vertical,any}

(The value any indicates that a particular axis is not mandated, i.e., that either the
horizontal or vertical axis may be used.) The set of possible alignment positions is given
by

POS = {center,top, bottom, left, right, any}

and the possible perimeter shapes by
SHAPE = {circle, rectangle, any}
The visual-organization predicates are then defined as follows:

Proximity

NN-PROX = {(n;,n;) € N x N | n; is positioned near n;}
NP-PROX {(n,z,y) € N xR x R | the position of n in the display reflects
its location (#,y) in the real plane}
ZONES = {s € 2V | the nodes in s are the only nodes positioned within a
rectangular region of the display}
CLUSTERS = {s € 2" | the nodes in s are perceptually grouped by proximity}

Sequential Layout

SEQLAY = {(g,a) € seq(N) x AXIS | the nodes in the tuple ¢ are positioned
left-to-right or top-to-bottom along the axis specified by a}
SSEQLAY = {(q,a) € seq(N) x AXIS | the nodes in the tuple ¢ are positioned
evenly spaced, left-to-right or top-to-bottom along the axis
specified by a}

Alignment

ALI = {(s,a,p) €2V x AXIS x POS | the nodes in the set s are aligned
along the axis a and relative to the position given by p}
SALI = {(s,a,p) € 2V x AXIS x POS | the nodes in the set s are aligned
evenly spaced along the axis a and relative to the
position given by p}

Axial Symmetry

SYM = {(s,a) € 2V x AXIS | the nodes in the set s are symmetric about
the axis a}
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T-Shape

T-SHAPE = {(t,s) € N x 2V | there are axes aj, as € {horizontal, vertical}
such that a1 # ag and the nodes {t} U s are laid out
satisfying ({t} Us,a1) € SYM and (s, aq, center) € SALI}

Circumferential Layout

PERIMETER = {(s,p) € 2" x SHAPE | all nodes in s are positioned on the

perimeter of the shape specified by p}
PERIMETER-CYCLE = {(q,p) € seq(N) x SHAPE | all nodes in ¢ are positioned
sequentially in clockwise order on the perimeter of the
shape specified by p}
HUB = {(c,s,p) € N x 2V x SHAPE | all nodes in s are positioned on the

perimeter of the shape specified by p, with node ¢ at its center}

HUB-CYCLE = {(c¢,q,p) € N x seq(N) x SHAPE | all nodes in ¢ are positioned
sequentially in clockwise order on the perimeter of the shape
specified by p, with node ¢ at its center}

Because perceptual organization is not yet perfectly understood, terms like “near”
and “perceptually grouped by proximity” that are used in the predicates above cannot
be defined rigorously [10]. Nevertheless, these perceptual-organization concepts can be
modeled approximately: for example, nearness can be modeled adequately using simple
distance measures; perceptual grouping by proximity can be modeled as a function of the
area and aspect ratio of the region occupied by the grouped nodes. The methods that
we used for approximating degree of conformity to a visual-organization specification V,
notated ¢(V), are as follows:

e ¢(NN-PROX)
The nodes in each pair in the visual organization specification {(n;,n2;)} are to
be placed near to each other. The score can therefore be computed as the sum of
the distances between the paired nodes, that is,

o(NN-PROX) = > [(21; — 22:)* + (y1: — y20)"]

i
where node n,; is at position (2p;, Ypi)."

e ¢(NP-PROX)

Each node n in the NP-PROX specification has a “desired position” (z;,y;), given
in the visual-organization specification, and an “actual position” (a;, b;), which
represents the node’s position in the candidate diagram. First, a normalization step
is performed so that the (z;, y;) and (a;, b;) have values in the range [(0,0)...(1, 1)].
The purpose of the normalization step is to avoid the inappropriate penalization
of candidate diagrams that are merely scaled or translated versions of the desired
diagram. Then the score is computed as the Cartesian distance of the actual
position from the desired position:

co(NP-PROX) = Y " [(zi — a;)* + (y; — bi)"]®

i

"The current ANDD system does not implement the NN-PROX VOF because of its limited utility.
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o ¢(ZONES)
First, the geometry of each zone is computed by finding the smallest rectangle
that encloses all the nodes in that zone. Let Zone_Owerlaps be the set of all pairs
of intersecting rectangles and let Zone_Invasions be the set of all zone invasions.

The pair (n,Z) is a zone invasion if node n lies within the rectangle defined by
zone Z, but n ¢ Z. Then

c(40NES) = |Zone_Owerlaps| + | Zone_Invasions|

(The two terms in the above formula, as well as the terms of all of the following
formulas, were assigned empirically determined relative weights.)

e ¢(CLUSTERS)
The geometry of each cluster is computed by finding the smallest rectangle that
encloses all the nodes in that cluster. Then

¢(CLUSTERS) = Z area(cluster;) + Z abs(width(cluster;) — height(cluster;))

o ¢(SEQLAY)
¢(SSEQLAY)
The SEQLAY VOF indicates that that nodes in the specification are to appear
in a left-to-right or top-to-bottom order. The SSEQLAY VOF specifies that in
addition to this, the nodes should be evenly spaced.

The sequential-ordering term is computed by accruing a penalty if a node in the
sequence is positioned to the left of (above) a node earlier in the sequence. The
accrued penalty is proportional to the horizontal (vertical) distance between the
offending nodes.

To compute the even-spacing term, we first compute the spacings between each
node along the horizontal (vertical) axis. Then the mode of the spacings is found.
The even-spacing term is the sum of the absolute differences between the individual
spacings and their mode.

o c(ALI)
¢(SALI)
The ALI VOF indicates that the nodes in the specification are to be aligned
horizontally or vertically. The SALI VOF specifies that in addition to this, the
nodes should be evenly spaced.

The alignment term is computed in the following way. If the VOF indicates that
the nodes should be aligned along one axis, then for each pair of nodes in the
VOF, a penalty accrues that is proportional to the distance between them along
the opposite axis. When the nodes are aligned, all such distances will be zero.

The even-spacing term is computed in the same manner as for SSEQLAY .

e ¢(SYM) This term measures the degree to which the nodes are symmetric. For each
node in the VOF its reflected position is computed by reflecting the node around
the desired axis of symmetry. The penalty term that accrues is proportional to the
Cartesian distance from that reflected position to the nearest (unreflected) node.
In a symmetric diagram, all such distances will be zero.
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o ¢(T-SHAPFE) The T-SHAPE VOF is derived from SYM and SALI, as described

above. The degree of conformity to T-SHAPE is computed by performing the cor-
responding computations for SYM and SALI, weighting the results appropriately,
and computing their sum.

¢(PERIMETER)

C(PER[METER-CYCLE)

c(HUB)

¢(HUB-CYCLE)

The description of these terms assumes that the specified shape is a circle. The
computation for the square shape is similar.

HUB (-CYCLE) differs from PERIMETER (-CYCLE) in that the the center of the
shape is specified to be at a given node. For PERIMETER (-CYCLE), the center
is computed to be the centroid of the positions of all the nodes on the perimeter.

For each node n; on the perimeter, its position in polar coordinates (r;, ;) relative
to the center point is computed. The nodes are sorted in order of increasing @,
and the difference A; between successive values of # is computed as well.

Penalties accrue in three ways:

— a penalty accrues proportional to abs(r; — mean(r)). Intuitively this penalizes
nodes that do not lie on the circumference of the circle.

— a penalty accrues proportional to abs(A; — mode(A)). Intuitively this penal-
izes nodes that are not spaced evenly along the circumference.

— for the -CYCLE forms of the specifications, a penalty accrues for nodes that
appear on the perimeter that are out of sequential clockwise order.

These penalties are weighted appropriately and summed.
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