<RNEL

;f Kobe University Repository : Kernel

R
S
4oge

PDF issue: 2024-05-06

A neural-network-based fuzzy classifier

Abe, Shigeo
Ming-Shong Lan
Uebele, Folkmer

(Citation)
IEEE transactions on systems, man and cybernetics, 25(2):353-361

(Issue Date)
1995-02

(Resource Type)
journal article

(Version)
Version of Record

(URL)
https://hdl. handle. net/20.500. 14094/90000210

KOBE

\j].\]\'l:lihl'[ Y
J

%)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 2, FEBRUARY 1995 353

(9 C O’Dunlaing and C. K. Yap, “A ’Retraction’ Method for Planning the
Motion of a Disc,” J. of Algorithms, vol. 6, pp. 104-111, 1985.

[20] J. T. Schwartz and M. Sharir, “A Survey of Motion Planning and Related
Geometric Algorithms,” Artificial Intelligence, vol. 37, Nos. 1-3, pp.
157-169, Dec. 1988. .

[21] J. T. Schwartz, M. Sharir and J. Hopcroft (Eds.), Planning, Geometry,
and Complexity of Robot Motion, Ablex Pub. Corp., Norwood, NJ, 1987.

[22] M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral Spaces,”
SIAM J. of Computing, vol. 15, no. 1, pp. 193-215, Feb. 1986.

(23] R. A. Singer, “Estimating Optimal Tracking Filter Performance for
Manned Maneuvering Targets,” IEEE Trans. Aerosp. Electron. Syst., vol.
AES-6, no. 4, pp. 473-483, July 1970.

[24] S. H. Suh and K. G. Shin, “A Variational Dynamic Programming
Approach to Robot-Path Planning With a Distance-Safety Criterion,”
IEEE Trans. Robotics Automat., vol. 4, no. 3, pp. 334-349, June 1988.

(251 D. D. Sworder and R. G. Hutchins, “Image-Enhanced Tracking,” IEEE
Trans. Aerosp Electron. Syst., vol. AES-25, no. 5, pp. 701-710, Sept.
1989.

[26] ——, “Maneuver Estimation Using Measurements of Orientation,”
IEEE Trans. on Aerosp. Electron. Syst., vol. AES-26, no. 4, pp. 625-637,
July 1990.

27] Y. A. Teng, D. DeMenthon and L. S. Davis, “Stealth Terrain Nav-
igation,” IEEE Trans. Syst. Man Cyber., vol. 23, no. 1, pp. 96-110,
Jan./Feb. 1993.

(28] J. S. Thorp, “Optimal Tracking of Maneuvering Targets,” IEEE Trans.

on Aerosp. Electron. Syst., vol. AES-9, no. 4, pp. 512-519, July 1973.

C. K. Yap, “Algorithmic Motion Planning,” Advances in Robotics, J.

T. Schwartz, and C. K. Yap, (Eds.), Lawrence Erlbaum Associates,

Hillsdale, NJ, pp. 95-143, 1987.

129

A Neural-Network-Based Fuzzy Classifier

Volkmar Uebele, Shigeo Abe, and Ming-Shong Lan

Abstract—1In this paper, a new technique for generating fuzzy rules
for pattern classification is discussed. First, separation hyperplanes for
classes are extracted from a trained neural network. Then, for each
~class, convex existence regions in the input space are approximated by
shifting these hyperplanes in parallel using the training data set for the
classes. Using fuzzy rules defined for each class, input data are directly
classified without the use of the neural network. This method is applied
to a number recognition system as well as to a blood cell classification
system. Classifying performance is compared with that obtained with
neural networks.

I. INTRODUCTION

In the past decade, fuzzy logic [1] has proved to be a powerful
tool for decision-making systems, such as expert systems and pattern
classification systems. However, knowledge acquisition to create
fuzzy rule bases is often difficult and time-consuming. Furthermore
it requires deep insight into the system. Fuzzy rules are commonly
expressed by means of linguistic variables that can be interpreted
as fuzzy regions in the input and output spaces. The degree of
membership of an input datum associated to a particular data group
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or class is determined by the degrees of membership of the fuzzy
rules for that class.

To automate the knowledge acquisition process, many attempts
[2]-[4] have been made to transform numerical input-output data into
fuzzy rules. Since neural networks and fuzzy systems are convertible
{5], it is reasonable to combine the merits of both paradigms,
namely the learning ability of the neural network [6] and the easy
implementation of fuzzy logic. Based on this linkage, in [2] a
classifier was constructed using a hybrid form of a feedforward neural
network that imitated fuzzy reasoning, in which fuzzy rules were
created using a multi-stage learning. process and after learning, the
final set of rules for the rule base was selected according to the
connection strength between the neurons of two consecutive layers. A
similar approach was also proposed in [3], where supervised learning
of the network was carried out using fuzzy input neurons. After
learning, fuzzy rules were selected according to the strength of a
relationship, called the causal index, between the neurons of the
input layer and those of the output layer. Another approach as in
[4], obtained fuzzy rules by applying a hybrid scheme which used
self-organizing and supervised learning techniques. All the techniques
mentioned above used conventional fuzzy logic where the boundaries
of fuzzy regions were formed by hyperplanes parallel to the input
variables. Thus it is difficult to express complicated fuzzy regions
with only a small number of rules.

To overcome this, in [7] the original classification power of a
trained neural network was maintained by using separation hyper-
planes [8], [9], extracted from thé weights between input and hidden
layers, as crisp boundaries for class existence regions. Input data
were classified according to which side of the hyperplane they are
on, which reduced classification to a decision-tree algorithm. The
advantages of this approach are: 1) no hybrid form of the network
structure or learning process for the neural network is necessary; and
2) the separation boundaries between class regions are not restricted
to being parallel to the input variables. However; this method allows
only one existence region per class, restricting it to problems with
singly separable classes. Namely, a connected class region must
be separable from all other class regions by means of a specific
number of separation hyperplanes. Moreover, to obtain adequate class
boundaries, many training data are usually required which slows
down the learning process. Further, the generalization ability can be
controlled only indirectly by applying a tuning step after the network
is trained. .

The neural-network-based fuzzy classifier discussed in this paper
allows any number of existence regions for each class and also
reduces the number by clustering regions of the same class. Further-
more, using fuzzy regions, the generalization ability can be directly
controlled. The proposed algorithm is relatively easy to implement
compared to the methods discussed in [2]-[4].

In the following, we first describe a method that generates existence
regions of each class, using the separation hyperplanes extracted from
a trained neural network. Then, we cluster the regions of the same
classes and adjust the limits of the region by shifting the separation
hyperplanes in parallel. Furthermore, the crisp boundaries of the
regions are replaced by fuzzy membership functions which realize
extended and more generalized fuzzy regions. Using the resultant
fuzzy rule base, numerical input data can be -directly classified
without the need of the neural network. Finally, we apply this fuzzy
classification approach to a number recognition system as well as
to a blood cell classification system. Classification performance is
compared to that gotten with neural networks.

0028-9472/95%04.00 © 1995 IEEE
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II. STRUCTURE OF NEURAL NETWORKS FOR PATTERN CLASSIFICATION

A. A Neural Network Architecture for Pattern Classification

Consider a usual multi-layered feed-forward neural network in
which biased terms, represented by neurons with no input and a
fixed output of 1, are added to the input and the hidden layers,
respectively. For each layer, without considering the bias neuron,
© the number of neurons is N (i), where 7 = 1,...,L and L is the
number of layers. The neurons of the hidden layer and the output
layer process incoming signals by a non-linear sigmoid function with
saturation, which is expressed by f(y) = 1/(1+ e ¥/Te), where y is
the input of the neuron and T is a constant. The neurons of the input
layer are linear and are used to distribute input signals to the neurons
of the first hidden layer. The neurons of two consecutive layers are
completely connected by synapses represented by the weight matrix
between these two layers.

Thus, the output vector z** of the (i + 1)-st layer is given by

7zt = f(y_H"l) and

yT=Wx' fori=1,...,L-1, )
x* = 2 fori=2,...,L—1,
where
i i i T
X =[mla"'7mN(i)51] »
i+l i+l i+l 1T
¥y =[y1+ 7---,yN(i+1)] >
i+l i+l it1 T
z :[Zl+ 7"'7Z]\-71-('i+1)] N

£y = [Fi™), ..

x* is the i-th layer input vector and

H T
i) f(yl\}'—(i+1))] ’

i i
Wiy WiN(i)+1

W= )

. Wpy
w}\l(i—}-l)l w;\/(i+1)N(i)+1
is the weight matrix between the i-th and the (¢ + 1)-st layer, w;q
is the weight between the p-th neuron of the (¢ + 1)-st layer and
the g-th neuron of the ¢-th layer. Weights w,’;q are determined by
the Backpropagation Algorithm (BP) [6] using a training data set
given by M pairs of N(1)-dimensional inputs and the associated
N(L)-dimensional target outputs as follows:

{@ tM)}fori=1,...,N(1),j =1,...,N(L)
andm=1,..., M. 3)

When applying a neural network to pattern classification, the
number of output neurons is the same as the number of classes
and the j-th neuron corresponds to the j-th class. The target vectors
L P L)]T are determined so that for class ¢ the value
te is 1 and all other t7*, with ¢ # j, are 0. Thus, an input vector
which produces the highest value at the c-th output neuron of the
neural network is classified as class c. Fig. 1 shows a three-layered
case of the network architecture used in this paper.

B. Interpreting Weight Matrices as Hyperplanes
The rows of the weight matrices of a neuralynetwork can be

interpreted as the coefficients of hyperplanes [7]-[9]. Assuming
y;*' = 0in (1), thus

wj- x=0 4)

where Wj is the j-th row vector of W, which represents a hyperplane
in the N(i)-dimensional space. When ;41 = 1, a change
of weight w}y(;)4; causes a parallel displacement of the j-th

hyperplane. From (1), the value of zi*' corresponding to gt

Z3
xI
Input Hidden Output
Layer Layer Layer
Fig. 1. Architecture of a Three-layered Pattern Classification Neural Net-
work.

satisfying (4), which is a point on the hyperplane, is 1/2. We say that
the N (4)-dimensional point is on the positive side of the hyperplane if

g > 00r 2t > 172 5)
and on the negative side if

gt <0or Tt < 1/2. (6)

In this sense, we can interpret the weight matrix between the i-th
and the (i + 1)-st layers of the neural network as a set of N(i + 1)
hyperplanes, which partition the universe of discourse of the N (z)-
dimensional space. Therefore, we call these hyperplanes separation
hyperplanes.

III. CLASS EXISTENCE REGIONS IN THE INPUT SPACE

In this section we show how existence regions of classes in the
input space can be defined by extracted hyperplanes of the weight
matrix between the input and hidden layers.

A. Class Existence Regions Defined by Extracted
Separation Hyperplanes

Since the N(1)-dimensional input space of the neural network
is divided by N(2) hyperplanes, we can define a maximum 27(?
disjoint regions R, by

Rl={x[w1x<Oﬂwzx<00---ﬂw1\/(2)x<0},
RZ:{xlwlxzOﬂwa<Oﬂ---ﬂwN(2)x<0},

o N(2)

R ={x|wix>0Nwx>0N---Nwyzx >0},

O]

where some regions may be empty, i.e., RF = 0. The conjunction of
all regions { R' UR?U- - Rz } constitutes the entire input space
and any NV (i)-dimensional vector x is included in one region RF.
The region R* can be specified by the set of separation hyperplanes
and information about which side of the hyperplanes it resides on.
Thus, using a given set of hyperplanes, we can define a region RF
with a vector p¥ = [p,...,pK(s)]", whose j-th element indicates
on which side of the j-th hyperplane the region resides. To designate
that datumn x is on the negative side of the hyperplane w;x = 0,
with j = 1,..., N(2), the corresponding value pf in p* is set to 0,
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Fig. 2. Class Regions and. Separation Hyperplanes in a Two-dimensional
Input Space.

while to designate it is on the positive side of the hyperplane, pf is
set to 1. The vecior p* is considered as the pattern of region RE.
All patterns p* are disjoint.

For illustration, let us consider classification of four classes in a .

two-dimensional input space using a three-layered neural network
with three hidden neurons, as shown in Fig. 2. We assume that a set
of suitable separation hyperplanes has been obtained by successfully
training a network. The arrows attached to the three hyperplanes
P1, P2 and P3 show the positive side of the hyperplanes, and each
symbol in the figure denotes a datum in the input space, belonging
to the tagged class. As an input datum can lay on either side of the
hyperplanes, the existence regions of the classes in the input space
can be expressed in terms of the regions R',..., R®, formed by the
separation hyperplanes P1, P2 and P3. Note that in the example
R" is empty. Thus, each class with training data holds at least one
existence region and pattern.

To obtain the existence regions of classes in terms of regions R¥,
we check the output of the first hidden neurons for all M training
input vectors x™, if either (5) or (6) holds, to decide on which side

of the hyperplanes x™ is found. Then, we generate an associated.

pattern vector p™ in the same way as described above. We call this
procedure digitizing, the resulting vector p™ is the digitized output
or the pattern of the datum x™, and the value pj* is the j-th digit
of pattern p™. All different patterns of all classes are stored, so that
after digitizing all M training data, we can obtain a set of patterns
P, for each class ¢ as follows:

P.={p"|m=1,...,M,x™ € class c}. 8)
Thus all the patterns in class P form the existence region
U =& ©)
mforp™meP,

of class c. We call this region an unclustered existence region in
contrast to the clustered regions which are defined in the following
subsection.

If all regions R™ belonging to one class are different from those
of other classes, in other words, no data of one class exist in a region

P2
o o
o]
o Og
Copo0 o
© 050
o ]
o
Class 11 o o g Classl
B °
L ®
® -
[ .' - -
- -
- P1
-
-
-
-
-
-
-
- Separating Hyperplanes

Fig. 3.
Space.

Existence of Two Dependent Classes in a Two-dimensional Input

of another class, we consider these two independent. Otherwise, they
are dependent. If two classes are dependent, they share the same
pattern p™. As an example Fig. 3 shows two dependent classes in
a two-dimensional input space.

If the data of one class, like Class IV in Fig. 2, exist on both sides
of a hyperplane w;x = 0, i.e. P1, we can combine the two original
regions on both sides of that hyperplane into one hyper region. In this
case, we allow the digitized value p]" to be indefinite, and denote it
as dc. As is discussed in the following, hyper existence regions can
be obtained by clustering connected regions of one class using dc’s.

B. Clustering Class Existence Regions

We show two methods of clustering existence regions, which
reduce the number of patterns of a class. The first method defines
a single region for each class where most of the class data exist,
while the second method combines neighboring regions of a class.

Heuristic Approximation of Class Regions by A Single Pattern: A
heuristic method for clustering has been proposed in [7]. It assumes
that a class is singly separable, namely, it covers only one connected
region in the input space, that can be separated by the N(2)
hyperplanes of the input-to-hidden weights [10]. Thus, for every class
a single region and a single pattern can be created. First, all digits pf
of all patterns p® of a class are checked successively. If the values
of the j-th digit of pf for all the patterns of that class are identical,
the digit of the clustered pattern then has the same value. Otherwise,
the digit of the clustered pattern is set to dc. In the second step, some
digits with values of dc’s of the clustered patterns are changed to
either O or 1 until each pattern has at least one different digit for all
clustered patterns of the remaining classes that is not de. Digits are
considered different if their values are different, e.g. dc and 1 are
different. In this case, the digit of the class with the highest number
of occurrences of the same value, either O or 1, is changed. Thus, this
method generates regions, where most of the training data of classes
reside. The resultant regions are called heuristically clustered regions.

Neighboring Regions Clustering: The premise of the second
method for clustering patterns is that only neighbored regions
containing the data of one class can be combined into a hyper region.
An advantage over the heuristic method is that all regions of classes,
obtained by digitizing the training data set, are considered. Thus,
regions clustered with this method have the ability to approximate
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Fig. 4. (a) Class Regions in a Two-dimensional Input Space. (b) Single-sided Shifting of Separation Hyperplanes in a Two-dimensional Input Space.

.complex shapes of class existence regions and allow plurally

separable classes. To generate the combined patterns, we repeat
the following algorithm for every class:

i) For class ¢ check all the combinations of patterns pi € P,
successively. If two patterns p’ and p* of P, differ in only
one digit, namely p] # pf, forl € 1--- N(1) and p] = p¥, for
i=1,...,N(1),i # I, create a new pattern p” whose value for
p] is dc and the values for all other p] are the same as those of
the patterns p’ and p*. The region of the new associated pattern
then is C7 = R’ U R*. After all combinations are checked move
to step (ii).

if) Check all combinations of patterns in P, including the newly
created patterns p”. If two patterns p’ and p* differ in one
digit I only, with p/ # pF and either p] = dc or pf = de,
delete the pattern which has the smaller number of dc’s. After all
combinations are checked, return to step (i) until no two patterns
of this class can be further clustered.

The resulting patterns p* and regions Cy, where v = 1,...,U and
c € {1,...,N(L)}, incorporate all the patterns of the classes, which
are obtained by digitizing the training data set, where U is the number
of resulting patterns of all classes after combination. If overlaps
among different classes exist before clustering, these overlaps still
exist after clustering. However, they may be resolved by shifting the
separation hyperplanes as is described next.

C. Class Representation with Shifted Hyperplanes

Based on the knowledge of the existence regions of all classes in
the input space, we can construct a decision-tree-like classifier like
that described in [7] without using the neural network. The existence
regions are expressed in terms of regions C7', whose boundaries are
the separation hyperplanes extracted from input-to-hidden weights
of the neural network. Classification is performed by digitizing a test
datum x using the extracted separation hyperplanes and by comparing
the digits of the resulting pattern, one at a time through the decision
tree, with the stored pattern set of the classes. However, performance
of this classifier will be poor, if training and test data differ, because
test data may produce patterns that are not stored in the decision tree
and thus cannot be classified.

Another problem arises, if the patterns of two classes are depen-
dent, namely that two different classes exist in the same region, i.e.,
for w3 4 and ¢ # & C¥ = C¥. In this case, a test datum can belong
to either of the dependent classes and hence no data in this region
can be classified.

Since class boundaries are given in terms of the artificial limits
of separation hyperplanes, they are only rough estimates of the
regions a class occupies. Using the existence regions C¢', we lose

valuable information about which part of region C7 the data of a
class reside in. In order to improve the performance and reduce or
resolve overlapping regions between classes, we need to define the
existence regions more precisely.

To adjust the boundaries of existence regions, the N (2) separation
hyperplanes, obtained through a trained network, are shifted in
parallel to the limits of the training data set, as illustrated in
Figs. 4(a)-4(c). Fig. 4(a) shows the training data of two classes
in a two-dimensional input space and two extracted separation
hyperplanes. If we shift a separation hyperplane to the datum of
the considered region in the training data set which is closest to the
extracted hyperplane, this type of shifting, as shown in Fig. 4(b), is
called single-sided shifting. This method requires knowing on which
side of a hyperplane a region resides. If data of the region exist on
either side of the considered hyperplane, namely the corresponding
pattern value is dc, we do not shift the hyperplane for this region.

Further we can shift the hyperplanes in two directions to the closest
and the farthest data points of the training data set of the considered
existence region, as shown in Fig. 4(c). This type of shifting is
called double-sided shifting. If class data reside on either side of
the considered hyperplane, namely the corresponding pattern value is
dc, we shift the hyperplane to the points of the training data set for
that existence region, with the longest distance in the positive and
the negative direction of the hyperplane vector w, as illustrated in
Fig. 4(d). Double-sided shifting limits the regions in two directions
and thus reduces overlapping.

To apply shifting, we vary the weights wixy11,5 = 1,..., N(2),
which correspond to the bias terms in the input-to-hidden ma-
trix W'. The resulting column weight vectors are W41 =
[QDI“N(I)H,...,zb}(,(z)N(l)H]T for v = 1,...,U and U is the
number of class regions. Thus, we obtain a set of U class existence
regions C¥, whose boundaries, parallel to the original separation
hyperplanes, define the limits of the training data set within the
specified class regions C¢'.

According to the discussion in section 2.2, the new weights
Win(1)41 Of the existence regions C¥ can be expressed by:

~u _— 1, u
WiN(1)+1 = WyjN(1)+1 — 85

foru=1,...,Uandj=1,...,N(2), (10)

where s} is a shifting factor. In the following, we describe the
algorithms for single-sided shifting and for double-sided shifting.
Single-Sided Shifting: Check all the patterns p“ of all classes ¢
successively. For each pattern p“, check the values p, for j =
1,...,N(2). If p} is not dc, the shifting factor is determined by
u xmincgr*‘r,li}él,...,M(w}xm) for P}L =0

s; = .
J min (wix™)
x™inC¥,m=1,...,M

for p} =1 (an
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Class I1

Class I

Hyperplanes in a Two-dimensional Input Space (p}‘ de).

where w} x™ is the scalar product between the j-th row of the weight
matrix W* and a training data vector x™ belonging to the region
C¢. Thus, we obtain a shifting vector s* = [s},..., s}”\,(z)]T for each
pattern p“. The new weights W}y ;) of the shifted hyperplanes are
calculated by (10). After single-sided shifting, the class regions are
approximated more precisely by a set of shifted hyperplanes.

Double-Sided Shifting: Check all the patterns of all classes suc-
cessively. For each pattern p* calculate two shifting vectors sp,;, =
(8% mims- - - s”N(z)’min]T and spax = [8Y maxs - - - ,»s“N(z)}max]T, with
the shifting factors

min (12)

u 1 _m
8, min — WX
J,min x™inC¥%,m=1,..., I( J )

and

5% max = (wix™) 13)

xminC?:lm:l,...,M
-where w}x™ is the scalar product between the j-th row of the weight
matrix W* and a training data vector x™ belonging to region C¥.
Thus, for each class region p“, we obtain two shifting vectors and
two sets of shifted hyperplanes. Each class region is-limited by a set
of N(2) hyperplanes in both directions of these hyperplanes. Using
(10), (12) and (13) the weights W} ymi, and @7 max, Which correspond
10 87 min and $7 .y, respectively, are calculated.

Because the generated regions are limited on both sides, double-
sided shifting reduces overlapping. In general, resolving existing
overlaps between different classes is difficult, because we do not have
enough knowledge about the shifted hyperplanes and regions C7'.

IV. Fuzzy RULES GENERATION AND Fuzzy CLASSIFICATION

The existence region C* for class ¢ is defined as
Cl={x|Wix>0ifp} =1, and Wix < 0if p} =0,

for j =1,...,N(2) and p} # dc}, (14)

for single-sided shifting and

C¥ = {X | WiminX > 0N WY mayx < 0 for j =1,...,N(2)}
(15)
for double-sided shifting, and W} represents the j-th shifted hyper-
plane. Then we can define fuzzy rules FRY as follows:

FRY : If x is in C¥ then x belongs to class c, (16)

where v = 1,...,U.

Using membership functions, we can create more generalized
regions in the input space by replacing the crisp boundaries of
existence regions with fuzzy boundaries. Thus for every existence
region C‘f, we define a set of membership functions in the direction

Shifted Hyperplanes

Shifted Hyperp!

N
T
o

o]
-
Class I ©
o o
[o]
-
-
-
-
-
-
-

(d
Fig. 4. (c) Double-sided Shifting of Separation Hyperplanes in a Two-dimensional Input Space (p; = 0,1). (d) Double-sided Shifting of Separation

of the hyperplanes vectors. Membership functions for single- and
double-sided shifting are different. For fuzzy reasoning, we calculate
the degree of membership of the test datum for each rule, and the
datum is classified as belonging to the class which has the highest
degree of membership. :

A. Definitions of Membership Functions and Fuzzy Regions

An intuitive assumption is that data, which reside within the crisp
boundaries of the existence region C¥, should belong to the same
class ¢ with the degree of membership 1. As the datum location
becomes farther away from the boundaries of the original class region,
the degree of membership decreases and eventually reaches the
minimum value of 0, where the distance between the test datum and
the considered class region becomes so large that the datum becomes
unlikely to belong to that class. Hence we can define membership
functions (%, p7) of a region C* with the corresponding pattern p*
in the direction of the hyperplane vectors w; by

min(1l, max(0, —yyWwix)) forp; =0
p(x,p7) = { min(1l, max(0, v} W}ix)) for p} =1 {an
1 for p; = dc
for single-sided shifting, and
/‘L(X, p;) = min(L max(O, V;minvv}‘,minx))
x min(1l, max(0, —v; max W7 maxX)) (18)

for double-sided shifting, where v}, 77 min and 7} max are sensitivity
parameters that control the steepness of the membership functions and
thus, control the generalization ability of the fuzzy regions. Figs. 5(a)
and 5(b) show membership functions for single- and double-sided
shifting in the direction of the considered hyperplane vector wj,
respectively.

B. Fuzzy Inference Operators

To calculate the degree of membership of a fuzzy rule we propose
the minimum operator and the summation operator which are defined
in the following. The final classification of a datum x is carried
out by using the maximum operator, which selects the class, whose
fuzzy rule has the highest degree of membership among all rules.
We denote the combination of minimum and maximum operators
for fuzzy reasoning as Min-Max inference and the combination of
surnmation and maximum operators as Sum-Max inference.

Minimum Operator: The minimum operator [11], which takes the
minimum value of all one-dimensional membership functions for the
fuzzy rule FRZ, is given by:

n(x, p*) =, mi (19)

i w(x, py)-
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Fig. 5 (a) Membership Function in the Direction of the Hyperplane Vector w; for Single-sided Shifting (p}‘ = 1). (b) Membership Function in the

Direction of the Hyperplane Vector w; for Double-sided Shifting.

The minimum value is taken so that the degree of membership
within the class boundaries of the training data set becomes 1. The
minimum operator selects the smallest degree of membership or, in
other words, the largest distance of the test datum from any of the
boundaries of the considered region C*. When selecting the minimum
degree of membership, we lose information on the distance of the test
datum from the other boundaries of the considered region.

Summation Operator As a second operator to calculate the degree
of membership of a fuzzy rule, summation of the one-dimensional
degrees of membership is proposed. It imitates neural network based
inference. Since a datum x is more likely to belong to a fuzzy region
C¢ if its average distance is closer to all shifted hyperplanes of C¥,
we define the summation operator by:

N(2)
1
= —— ). 20
16 P*) = 5 ; u(x, ) (20)
Maximum Operator With the maximum operator we select the
fuzzy rule FRY™**, whose degree of membership is the highest among
all fuzzy rules for an input vector x according to

Umax = arg maxpu(x, p"*), (21

u=1,...,

where p(x,p*) represent the degrees of membership obtained by
(19) or (20) and U is the number of fuzzy rules for all classes. Thus
a datum x is classified as class c if the fuzzy rule FRg™** corresponds
to that class. However, if two classes overlap and the test data resides
in the overlapping region, it is impossible to classify this datum, since
more than one class has the degree of membership 1. The same thing
happens if two or more fuzzy rules have the highest membership
or if all the fuzzy rules have the degree of membership 0. When
the degree of membership is zero, the generalization ability may be
enhanced by reducing the sensitivity parameters, which might help
to classify this datum.

V. PERFORMANCE EVALUATION

We chose two classification systems to evaluate the performance
of our method. The first system was a number recognition system
which had very well-defined class regions. In contrast to that, the
second system for blood cell classification had complicated regions
with severe overlapping.

A. Number Recognition System

The original system for number recognition [7] of license plates
used a decision-tree algorithm and recognized 10 numbers using 12
input features extracted from video images of moving cars. The
numbers were printed, but distorted and covered with dirt. In our

study a total of 1630 data were divided into a combination of 200
training data and 1430 test data. For performance comparison, we
used a three-layered neural network with 12 input neurons plus a bias
neuron and 10 output neurons. Since the performance of the network
varies according to the initial weights, we trained 100 networks,
using initial weights randomly assigned between -1 and 1. To train
the networks a learning parameter of 0.3 and a momentum term
[9] of 0.5 were used while learning. After learning, the separation
hyperplanes were extracted from each network and fuzzy rules were
created by applying single- and double-sided shifting to unclustered
existence regions and regions clustered by the heuristic method and
the neighboring regions clustering method. The recognition rates for
the training and test data were measured for the original network
obtained by the BP and the fuzzy-rule bases for the above-mentioned
combinations of shifting and clustering for both Min-Max and Sum-
Max reasoning. Since the minimum number of hyperplanes for
separating 10 classes was 4, we varied the number of hidden neurons
from 4 to 10. All measures were obtained with a training convergence
criterion ¢ between 0.01 and 0.3. For each network we started the
learning process with € =0.3. After the training converged, the fuzzy
rules were created and the performance of the neural network and the
fuzzy classifiers were evaluated. With the same network the process
was reiterated, successively lowering € from 0.3 to 0.01. The above-
described procedure was carried out for 100 different initial networks
with 8 hidden neurons using a 70 MIPS workstation. The work was
performed for about 8 hours of CPU time, which resulted in an
average of approximately 4.8 minutes for each network. The time
required for generating fuzzy rules was less than 1 second on average.

The sensitivity parameter vy that determines the slope steepness of
the membership functions was set to 0.2. With this value the degree
of membership for all data scattered between 0.1 and 1. Trials with
smaller ~v-values showed similar results.

On average, for all the 6, 8 and 10 hidden-neuron cases, training
converged after 41, 105, 212 and 467 epochs for ¢ =0.3, ¢ = 0.15,
€ = 0.05 and ¢ = 0.01, respectively; while for 4 hidden-neuron
cases convergence was reached after 67, 213, 442 and 1021 epochs.
For all the cases that we tried, the recognition rates for the neural
networks and all fuzzy classifiers with double-sided shifting were:
100% for the 200 training data, while for fuzzy classifiers with single-
sided shifting, the recognition rate dropped due to overlapping of
regions. For example, for 4 hidden-neuron networks we obtained
three networks whose fuzzy classifiers could not recognize an entire
class and thus the overall recognition rate for the training data set
was 99.2%. In all other cases, the recognition rate was 99.9%.

Fig. 6 shows the average recognition rate for 1430 test data with
€ = 0.01 applied to different numbers of hidden neurons. (In the
following Figs., the term ‘s-shi’ indicates single-sided shifting; ‘d-
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Fig. 6. Average Recognition Rate for 1430 Test Data vs. the Number of
Hidden Neurons (Convergence Criterion ¢ =- 0.01, Sum-Max Inference,
Double-sided Shifting).
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Fig. 7. Average Recognition Rate for 1430 Test Data vs. the Cdnvergence
Criterion (10 Hidden Neurens, Sum-Max Inference, Double-sided Shifting).

shi’, double-sided shifting; ‘u-reg’, unclustered regions; ‘m-reg’,
neighbored region clustering; and ‘s-reg’ indicates the use of a
single hyper region for every class, generated by the heuristic
clustering method.) The fuzzy classifiers used Sum-Max inference.
The advantage of using a larger number of hidden neurons for the
neural networks and the fuzzy classifiers with regions clustered by
the heuristic method can be seen in the figure. The performance
of unclustered and neighboring regions clustered fuzzy classifiers
reached a plateau at 6 hidden neurons and for higher numbers
of hidden neurons their performances were inferior to the neural
networks. The performance -gap between the neural networks and
the fuzzy classifiers dropped from 0.5% to 0.07% with increasing
numbers of hidden neurons, although the number of fuzzy classifiers
that performed better than the neural networks dropped only from
a ratio of 60:40 to 57:43 for the regions clustered by the heuristic
method. The total number of fuzzy rules for neighboring regions
clustering increased steadily with the number of hidden neurons, e.g.,
from 10 to 24 for 4 to 10 hidden neurons. Since the performance of
the classifiers with clustered neighboring regions was better than that
of the classifiers with unclustered regions, in the following we show
only the clustered neighboring regions.
- Fig. 7 shows the influence of the convergence criteria on the
performance using 1430 test data and the networks with 10 hidden
neurons. The fuzzy classifiers used Sum-Max inference. In all cases
smaller ¢ led to a better average performance. The trends for all
the cases were very similar. Fuzzy classifiers using the heuristic
clustering method outperformed the neural networks and the fuzzy
classifiers using neighboring regions clustering. The total numbers of
fuzzy rules decreased as the convergence criterion ¢ decreased. For
example, when ¢ varied from 0.3 to 0.01, for 6 hidden-neuron cases,
the number of rules varied from 30 to 23 for unclustered regions,
while for neighboring regions clustering, it varied from 19 to 14.
Fig. 8 shows the recognition performance of the fuzzy classifiers
with single- and double-side shifting for 1430 test data versus
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Fig. 8. Average Recognition Rate for 1430 Test Data vs. the Number of

Hidden Neurons for Single- and Double-sided Shifting (Convergence Criterion
e = 0.01, Sum-Max Inference).
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Fig. 9. Average Recognition Rate for 1430 Test Data vs. the Number
of Hidden Neurons for Min-Max and Sum-Max Inference (Convergence
Criterion € = 0.01, Double-sided Shifting).

different numbers of hidden neurons. The classifiers used Sum-
Max inference and were generated with a convergence criterion of
0.01. The classifiers with double-side shifting performed better than
the ones with single-sided shifting, although the performance gap
decreased with decreasing €. The percentage of unclassified data due
to overlapping for the single-sided shifting using networks with 6
hidden neurons was 0.019%, while that for double-sided shifting was
0%. In this case, the performance gap between the classifiers with
single- and double-sided shifting was approximately 0.25% and thus
overlapping could not be the main reason for the poor performance
of the single-side shifted cases. Since the separation hyperplanes are
defined during training, they are only rough estimates of regions
where training data reside. Single-sided shifting extrapolates the
class regions not covered by training data which results in higher
misclassification rates. This can be understood by the fact that for
single-sided shifting the degree of membership for the misclassified
data is higher than that for double-sided shifting. For the number
recognition system, the performance of the classifiers using the
heuristic clustering method is superior to that of neighboring-region-
clustered ones, because the heuristic clustering creates larger convex
regions that also include regions where no training data reside and
thus it has a greater generalization ability.

Fig. 9 shows the performance of classifiers using Min-Max and
Sum-Max inference, respectively, for different numbers of hidden
neurons. The fuzzy rules were generated using a convergence criterion
of & = 0.01. The results show that the Summation operator performs
better than the minimum operator.

B. Classification of Blood Cells

The second application was a blood cell classification system [12],
used to classify optically screened white blood cells into 12 categories
of mature and immature cells using 13 features such as area and
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Fig. 10. Average Recognition Rate for 3100 Test Data vs. the Number of
Hidden Neurons (15,000 Epochs,Sum-Max Inference).

" perimeter of a kernel. For evaluation, we divided a set of 6197 input-
target data into a learning data set of 3097 input-target pairs and a
test data set of 3100 input-target pairs. Meanwhile we used three-
layered neural networks with 13 input neurons plus a bias neuron,
different numbers of hidden neurons and 12 output neurons. We
varied the numbers of hidden neurons between 5 and 15, plus a
bias neuron, and trained each type for 25 times using initial weights
randomly assigned between —1 and 1. The learning rate and the
momentum term were initially set to 0.3 and 0.5, respectively, and
the learning rate was lowered in three steps to 0.05. Training was
difficult and tests showed that even for 50,000 epochs and ¢ =
0.3 we could not obtain convergence, although the summed square
error decreased. So we set € to 0.3 for all further trials. Due to
the difficult training, the recognition rate for the training data set
after learning scattered between 80.7% and 92.4% for all trials of the
neural networks. Because of severe overlapping, the performance of
the fuzzy classifiers ranged between 86.2% and 95.7%. We set ~y to
0.1 for the fuzzy classifiers.

First we trained the networks with 2,500 training epochs and
created fuzzy rules. Then we evaluated the performance of the
classifiers. The already trained networks were used to reiterate this
procedure three times with 5,000, 9,000 and 15,000 training epochs.
The whole procedure took 53 hours of CPU time for networks with
15 hidden neurons on a 70 MIPS workstation and thus about 2.15
hours for each network. The time to create fuzzy rules was 7 seconds
on average.

The terms used in the Fig. legends are the same as those used
for the number recognition system. The performance of the fuzzy
classifiers using the heuristic clustered regions is not shown, since
their performance was very poor (around 75% recognition rate) due
to severe overlapping.

Fig. 10 shows the average recognition rate for 3100 test data
for networks of different numbers of hidden neurons trained for
15,000 epochs. Sum-Max inference was used. The average number
of rules created was between 122 and 302 for unclustered regions
and between 53 and 152 for neighboring region clustered cases. The
number of rules increased with the number of hidden. neurons and
with the number of training epochs. In all cases, the fuzzy classifiers
outperformed the neural network by an average of 2% to 7.5%.
The best neural network had a recogpition rate of 90.46%, while
the recognition rate of the best fuzzy classifier was 91.68%. Due to
overlappping, the performance of the classifier using clustered regions
was worse than that using unclustered regions. For higher numbers
of training epochs and higher numbers of hidden neurons the class
regions could be defined more precisely; this was indicated by the
increasing numbers of created rules, and thus the performance of
the clustered regions approached that of the unclustered regions. For
example, using 15 hidden neurons and 15,000 training epochs, on
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Sum-Max Inference).
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Fig. 13. Average Recognition Rate for 3100 Test Data vs. the Number
of Hidden Neurons for Min-Max and Sum-Max Inference-(15,000 Epochs,
Double-sided Shifting).

average 302 unclustered rules were created, while the number was
reduced to 179 when clustering was applied.

Fig. 11 shows the influence of the number of training epochs on
the performance of the classifiers for 3100 test data. At epoch 2500,
both fuzzy classifiers achieved the performance of the neural network
which was trained for 15,000 epochs. Thus we concluded that if
we use the fuzzy classifiers described in this paper, we can shorten
training time for the neural network. '

Fig. 12 shows fuzzy classifiers with unclustered and neighboring-
clustered regions for single- and double-sided shifting based on
networks trained 15,000 epochs. The performance of classifiers using
single-sided shifting was worse than that of the classifiers using
double-sided shifting due to severe overlapping.

Fig. 13 shows the performance of the fuzzy classifiers which used
Min-Max and Sum-Max inference for 3100 test data. Although the
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TABLE 1
PERFORMANCE OF THE BEST NEURAL NETWORK AND BEST Fuzzy CLASSIFIER

Neural Network Fuzzy Classifier

overall performance 89.99% 91.97%
correct mature cell class 99.20% 99.49%
correct immature cell class 95.47% 96.00%

recognition rates of the Sum-Max method were slightly higher, the
recognition rates of both methods did not differ significantly.

For this system, besides the overall performance, two characteristic
values were also compared:- the percentage of correctly classified
mature cells against detected mature cells and the percentage of
detected immature cells against total immature cells. From all trials,
we found that a three-layered neural network using 10 hidden neurons
and trained for 6000 epochs performed the best. Table I summarizes
the performance of this network and that of the fuzzy classifier
derived from it. :

VI. DISCUSSION

The separation hyperplanes extracted from the pattern classification
neural network can be used as boundaries of the class regions, and the
fuzzy classifiers have the potential to outperform the original neural
networks. The performance of fuzzy classifiers based on double-
sided shifting is superior to that of those based on single-sided
shifting due to reduced overlapping. Both Sum-Max and Min-Max
inference methods are applicable, while Sum-Max inference shows
better results on average. The choice of a suitable clustering method
is essential to the performance of the fuzzy classifiers.

The advantages of the proposed fuzzy classification system over
the neural networks can be summarized as follows.

* The implementation of the fuzzy classifier is easy.

* The fuzzy classifier outperforms the neural network.

» The training time can be shortened while maintaining the same
performance.

* Misclassification can be analyzed by checking the degree of
membership of the fuzzy rules.

* The generalization ability can be easily controlled by modifying
the sensitivity parameters . If a test datum is in a region not
covered by class existence regions, the system can determine
that this datum cannot be classified.

* Class boundaries can easily be adjusted, without retraining the
neural network.

* Additional fuzzy rules can be added easily, without retraining.

A disadvantage of the fﬁzzy classifier over the neural network is the
following.
* For complicated shapes of class regions a lot of fuzzy rules are
generated, slowing down the inference speed.

The advantages over conventional fuzzy systems can be summarized
as follows.

* Fuzzy rules are generated automatically using the learning ability
of neural networks.

* Since the boundaries of the fuzzy regions need not be parallel
to the input variables, separation of two classes can be defined
more precisely and that also requires fewer rules.

A disadvantage over conventional fuzzy systems is the following.
* Analyzing and modifying the existence regions are difficult
tasks, because the boundaries between the class regions are not
parallel to the input variables.

VII. CONCLUSION

In this paper, we developed a method for extracting fuzzy rules
from trained pattern classification neural networks. The fuzzy rules
are represented by variable fuzzy existence regions of the classes
in the input space, of which boundaries are formed by separation
hyperplanes extracted from the input-to-hidden weights of the neural
networks. The existence regions are clustered and the resulting
boundaries are shifted in parallel to define the class regions more
precisely. By replacing the crisp boundaries by membership functions,
we obtained fuzzy regions in the input space that represént fuzzy
rules, which can be used with common fuzzy inference techniques to
classify input data without the use of the neural network. The method
described in this paper was compared with use of neural networks for
a license plate recognition system and a blood cell classification task.

ACKNOWLEDGMENT

We are very grateful to Professor N. Matsuda of Kawasaki Medical
School for providing the blood cell data used in our study.

REFERENCES

[1]1 L. A. Zadeh, “Fuzzy sets,” Information Control, vol. 8 pp. 338-353,
1965.

[2] S. K. Halgamuge and M. Glesner, “A fuzzy-neural approach for pattern
classification with generation of rules based on supervised learning,”
Proc. Neuro Nimes 92, pp. 165-173, Nimes, 1992.

[3] I Enbutsu, K. Baba, and N. Hara, “Fuzzy rule extraction from multi-
layered peural networks,” Proc. IJCNN-91, Seattle, vol. 2, pp. 691-695,
1991.

[4] C.-T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and decision system,” IEEE Trans. Computers, vol: 40, pp. 1320-1336,
1991.

[5] J.J. Buckley, Y. Hayashi, and E. Czogala, “On the equivalence of neural
networks and fuzzy expert systems,” Proc. IJCNN-92, Baltimore, vol.
2, pp. 691-695, 1992.

[6] D. E. Rumelhart et al., Learning Internal Representations by Error
Backpropagation, Parallel Distributed Processing: Explorations in the -
Microstructures of Cognition, Vol. 1: Foundations. Cambridge, MA:
MIT Press, 1986, pp. 318-362.

{71 S. Abe, M. Kayama, H. Takenaga, and T. Kitamura, “Extracting algo-
rithms from pattern classification neural networks,” Neural Networks,
vol. 6, no. 5, pp. 729-735, 1993.

[8] R.P. Lippmann, “An introduction to computing with neural nets,” Proc.

IEEE ASSP Magazine, vol. 4, pp. 4-22, 1987.

J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural

Computation. Addison-Wesley Publishing Company, 1991.

S. Abe, M. Kayama, and H. Takenaga, “How neural networks for pattern

recognition can be synthesized,” J. Information Processing, vol. 14, no.

3 pp. 344-350, 1991.

J. C. Bezdek and S. K. Pal, Fuzzy Models for Pattern Recognition.

New York: IEEE Press, 1992.

A. Hashizume, J. Motoika, and R. Yabe, “Fully automated blood ceil

differential system and its application,” Proc. IUPAC 3rd Int. Cong.

Automat. and New Technol. in the Clinical Laboratory, pp. 297-302,

Sept. 1988.

9

—

(10]

(11]

(12]




