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Associative Learning of Boolean Functions 

Ahstruet -A cooperative game playing learning automata model is pre- 
sented for learning a complex nonlinear associative task, namely learning 
of Boolean functions. The unknown Boolean function is expressed in 
terms of minterms, and a team of automata is used to learn the minterms 
present in the expansion. Only noisy outputs of the Boolean function are 
assumed to be available for the team of automata that use a variation of 
the fast converging estimator learning algorithm called the pursuit algo- 
rithm. A divide and conquer approach is proposed to overcome the storage 
and computational problems of the pursuit algorithm. Extensive simulation 
experiments have been carried out for six-input Boolean tasks. The main 
advantages offered by the model are generality, proof of convergence, and 
fast learning. 

I. INTRODUCTION 

N ASSOCIATIVE learning task is one that requires A the learning element to establish a connection be- 
tween input and output. Let X =  { xl; . ., xr} be the finite 
set of inputs available to the learning element. For each 
input x, E X ,  the output y can belong to a set Y = 

{ y,; . ., y,,}. For an input x E X and output y" E Y, the 
connection (or association) between the input and output 
is assumed to be probabilistic and determined by a reward 
probability d(x, y '). The reward probability is a measure 
of the uncertainties involved in sensing inputs and outputs. 
The strongest association between x and an output y," 
corresponds to the highest reward probability, i.e., 

The task of the learning element is to find out the action 
(or output) y," for each x E X .  

Learning of a Boolean function is an important associa- 
tive learning task. Here each input is a pattern vector 
consisting of signals ( E {0,1}) appearing on the input 
lines. The number of elements in the input set X is 2"' 
where m is the number of input lines. The output set Y is 
a binary set {O, l} .  For each input pattern vector, the 
correct output is 0 or 1 depending upon which of them 
correspond to the highest reward probability. The objec- 
tive of the learning task is to find the association between 
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inputs and outputs, i.e., for each input x E X ,  it is required 
to find y" E {0,1} which maximizes the reward probabil- 
ity d(x, yx). 

The learning of associative Boolean tasks is significant 
in the context of neural models in cybernetics where the 
signals can be considered to be binary, and also in fault- 
tolerant computing. 

We shall try to learn complex Boolean associative tasks 
through a popular learning model, namely, game playing 
team of learning automata. 

Learning automata models represent a useful class of 
learning systems. A learning automaton interacts with a 
random environment in a feedback loop to improve its 
performance in some sense. In a particular iteration, it 
randomly selects an action out of a finite action-set ac- 
cording to a probability distribution over the action set. 
The environment randomly assigns reward or penalty for 
t h s  action by sampling a distribution function correspond- 
ing to that action. The learning automaton updates its 
action probabilities depending upon the response from the 
environment according to a particular updating (rein- 
forcement) scheme. Properties of learning automata have 
been extensively studied and applied to different learning 
tasks by different researchers [l], [2], [3]. 

One important group behavior of learning automata is 
in the cooperative game. A team of automata involved in a 
cooperative game tries to maximize some common objec- 
tive function through mutual cooperation and information 
exchange. In a particular play of the game, all members of 
the team receive identical payoffs from the common envi- 
ronmen t. 

Many practical problems can be naturally modeled as 
cooperative games of learning automata. Some examples of 
such problems are learning optimal discriminant functions 
in pattern recognition [4] and relaxation labeling algo- 
rithms in image processing and computer vision [ 5 ] .  We 
shall try to model the problem of learning Boolean tasks as 
a cooperative game of learning automata in a similar 
manner. 

Barto [6] has proposed learning models consisting of 
networks of random threshold elements (called A , ,  ele- 
ments) to learn some specific Boolean tasks. There are two 
apparent limitations in using Barto's models. Firstly, there 
is no proof of convergence for a network of A , ,  elements, 
though the learning capabilities of a single A , ,  element 
when faced with an associative task are summarized by a 
theorem proved by Barto and Anandan [7]. Secondly, it is 
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not obvious how the model can be generalized to learn an 
arbitrary Boolean task. 

The game playing automata model presented here over- 
comes these limitations. We also present simulation results 
for a variety of six-input multiplexer tasks. As will be seen 
from the simulation results, t h s  model learns a task much 
faster than Barto's model. 

11. LEARNING AUTOMATA MODELS 

The model is based on expressing any Boolean function 
in terms of minterms [8], [9]. It is assumed that we can 
present all possible input patterns to the learning system 
during the process of learning. 

Suppose we consider a Boolearn function f of n vari- 
ables (inputs) xlr x2; . -, x , .  

A minterm is expressed as a product of n variables 
where each variable involves a district input variable either 
in an uncomplemented or complemented form. 

The total number of minterms possible is given by, 

m = 2" (1) 

Suppose T, denotes the ith minterm. Then f can be 
expressed as 

m 

f =  C K , T  (2) 
r = l  

where K,s are coefficients of the minterms and can have 
values 0 or 1, depending on whether the minterm is actu- 
ally present or not. Thus if we learn the parameters K ,  
through repeated trials, the output function is learnt. 

In the general game playing automata model, we employ 
one automaton to learn each of the parameters K , ,  
K,; . -, Km.  Hence the number of automata will be 2". 
Each automaton will have two possible actions (corre- 
sponding to coefficient values 0 or 1). Note that the total 
number of automata increases exponentially with the num- 
ber of input variables. 

Each automaton chooses a value of the corresponding 
parameter in accordance with the action probabilities over 
the set {0,1} of the possible values of the parameter. The 
set of values of all the parameters chosen by the team 
determines a specific value of the output according to the 
mapping f .  A random environment compares t h s  output 
with the correct output and assigns reward (corresponding 
to a payoff equal to unity) or penalty (corresponding to 
zero payoff) to the entire team according to an unknown 
random distribution. In practice this means that each set 
of actions by the team for a particular input pattern x 
generates noisy output y". If y x  coincides with the desired 
output, a reward is given to the team and penalty other- 
wise. This amounts to an environment assigning reward 
with probability d(x, y" )  that is higher when f ( x )  matches 
with the desired function output. 

Hence the problem of learning a Boolean function can 
be posed as a cooperative game played by the previous 
team. It can be easily seen that only one set of values of 

N the parameters, the set being denoted by { a;, . . . , a, } 
will be optimal resulting in maximum expected reward for 
a given Boolean problem. Following a learning algorithm 
(one such is given in the next section), the team is expected 
to converge to t h s  optimal set that completely defines the 
particular Boolean function to be learned. 

A.  Number of Automata Required for Learning a Multiplexer 
Task 

If we concentrate only on multiplexer tasks, the number 
of parameters (automata) can be reduced from exponential 
to polynomial. This is done as follows. 

Let x,; * ., xK be the address lines among the n-input 
lines. for full utilization of the address space of the multi- 
plexer, 

n = K + 2 K .  (3) 
Now the output from a multiplexer can be expressed as 

f =  F l y 2 .  . x K - l F K x K + l  + F I X 2 .  . x K p I x K x K + 2  + . . . 
+ x 1 x 2  . . * X K p l X K X , .  (4) 

Expressing X, = (1 - x , ) ,  (4) can be written as 

f = C11XK+ 1 + C l 2 X K + 2  + . . . 
+ C211X1XKt  1 + C212XlXK+2  + . . . 
+ C221X2XK+1 + C222X2XK+2 + ' ' ' 

where CqflL2 ,q is the coefficient of the term containing the 
product of q input variables; i l i 2 .  . . iqpl  give the indices 
of the first ( q  - 1) variables and ( K  + i 4 )  gives the index of 
the last input variable. 

In other words the output may consist of terms involv- 
ing 

1) only one of the variables from x ~ + ~ ;  . ., x, (num- 
ber of such terms = n - K = r (say)); 

2) one address variable from x1; . . , xK and one input 
variable from x ~ + ~ , .  . . , x, (number of such terms 
= K,.r) (note that KcT represents the number of 
combinations possible for selecting s items out of 
K);  

K addresses variables from x l , .  . . , x, (number of 
such terms= KcKr) .  Hence the total number of 
parameters required 

= r (  K,+ K,, + . . . + K,,) 

= r.2K 

Therefore the number of parameters (automata) is a 
polynomial (specifically, square) of the number of nonad- 
dress input lines. 

Note that for this model for multiplexers, each parame- 
ter can have one of three possible values { - 1,0,1}. 
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111. PURSUIT ALGORITHM FOR A TEAM OF 
COOPERATIVE GAME PLAYING AUTOMATA 

Here gHn= unit vector with H,th component 1 and 0 < h 
< 1. Also, the estimates are updated as follows: 

The most important aspect of learning automata theory RI1  . . . , w (  k + 1) = R I 1  * * * IN ( k )  + B (  k )  
is the design of efficient learning schemes (also called 

(6) 
R J 1  ' .  
' J 1  . . . J N ( ~  

reinforcement schemes). Recently Thathachar and Sastry i J , . . . J N ( k + l ) =  
[5] ,  [ 101 have proposed a fast converging reinforcement 
scheme, called Estimator scheme, whch uses estimates of 
reward probabilities of the actions to converge to the 
optimal action with a high probability. The extension of 
this algorithm to a cooperative game playing automata 
team case is also available in [4] ,  [5].  

jn€ { l , - . . , r n } , l < n < N  

,$n( k + 1) = max 
r, . ld s d N ,  

(ill . . . i n - l i f l j f l + l . .  . j N ( k  +I)). 

(7) 
s # I' 

More recently the same authors have proposed a varia- 
tion of the estimator scheme that is much simplified in 
expression but retains all the major characteristics of an 
estimator algorithm. This they termed as Pursuit Algo- 
rithm [ l l ] .  

Following the analysis for cooperative game playing 
estimator algorithm that has been extensively done in [4], 
[ 5 ] ,  we propose a game playing pursuit algorithm in the 
following way. 

1) Let A', A 2 ;  . ., A N  be the N-automata that repre- 
sent the N-players. 

2) Let ith player have rI strategies (actions), i = 

1;. f )  N. 
3) { a ; ,  a;; . -, a:,} is the set of actions or strategies 

of A'. 
4 )  [ p ; ( k ) ; .  ., p: , (k ) ] '=p ' (k )  is the action probabil- 

ity vector of A' at k ( k  = 0,1,2, . . . represents 
discrete time instants). 

5 )  a'( k )  is the action selected by A' at k. 
6) B ( k )  is the payoff at k. The payoff is common to 

all the players and takes values 0 or 1. 
7) Let D be an N-dimensional matrix with elements, 

= Prob [ B (  k )  = llafl( k )  = a:", n = 1; . . , N]  dI l l2  

indicated in (6) in the algorithm next. 
Let ,'' = [ E;; . ., E;]', n = 1,. . -, N, ( T  denotes 
transpose) such that 

10) 

El' = i , ,  max { dI l  * . . ifl-' j i , ,  . . . i ,  ) 
1 > . 1  Q s d N 

S Z f l  

and let 

S Z f l  

be an estimate of E,? at k .  
Let H,, be the random index such that, 11) 

E i n (  k )  = max { 6;( k ) }  

A .  Algorithm 

Let a " ( k )  = a':,, n =1;. ., N. Then updating of the 
probability vector over the action set of A", n = 1; . -, N is 
as follows: 

- p"(  k + 1) = - p" ( k ) + h [ gH" - _p"( k )] . ( 5 )  

Here Z,, . . . i N  ( k )  represents the count of number of 
times action set {ail,... ,  a:} has been selected by the 
team up to time instant k .  RI1 . 1 z N ( k )  is the cumulative 
reward obtained by the team for se1ec;ing the action set 
{ U ! ~ , . . . , U : }  up to instant k .  Thus dIl  . . - I N  ( k )  is an 
estimate of the reward probability for the action set 
{ atl; . ., a:}  obtained by the team on the basis of experi- 
ence up to and including time instant k .  

The convergence result for the algorithm can be ob- 
tained following a line similar to that for cooperative game 
playing estimator algorithm [4] ,  [ 5 ] ,  and can be summa- 
rized by the following theorem. 

B. Theorem 1 

In every stationary random environment, a team of 
cooperative game playing learning automata using the 
pursuit algorithm is E -optimal. 

That is, given any E > 0,6 > 0, there exist A* > 0 and 
K O  < 00 such that 

Prob[Ipc(k)-l l< € 1  > 1 - 6  

for all k > Ko,O < h < A* and n =1; * ., N. 

C. Proof 

The proof of the theorem is given in the Appendix. 

D. Comment 

This means that the probability of selection of the best 
(optimal) action by each member of the team, can be made 
as close to 1 as desired by properly choosing h and k .  

In an actual learning exercise, the parameter h is to be 
chosen carefully. Too small a value of h will ensure 
convergence with higher probability, but will make the 
learning too slow to be useful. On the other hand large h 
may help in increasing the speed of learning, but may also 
lead to false convergence. There is, at present, no theoreti- 
cal basis for selecting a value for X in general. In most of 
the simulation experiments, various h values are tried out 
and a compromise value is worked out. 

Iv. SOLUTION OF HIGH DIMENSIONAL PROBLEMS 

Straightforward application of the pursuit game playing 
model developed in the previous section for learning 
Boolean functions of relatively high dimensionality (e.g., 
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six or more input Boolean function) is ruled out as can be 
seen from the reasoning given below. 

The problem is a basic limitation (weakness) of pursuit 
(or any other estimator) algorithm. Since in an estimator 
algorithm we have to keep estimates of reward probabili- 
ties for each action-tuple, there is a severe storage and 
computation requirement as the number of players in- 
creases even though the number of actions per player is 
small. Actually the storage and computation requirement 
increases exponentially with number of players. The suc- 
cess of the estimator algorithms depends upon the accu- 
racy of the estimates and each action set must be tried out 
at least once (maybe several times) before we can have 
confidence in the accuracy of the estimates. Hence when 
the dimension of the action-space increases, straightfor- 
ward application of estimator algorithms is unattractive, 
both computationwise and storagewise. 

As an illustration, let us try to apply the previously 
developed model to the problem of learning a Boolean task 
with six inputs. There will be 26 = 64 players correspond- 
ing to as many minterms. Each player will have two 
actions corresponding to two possible values, (0,l) of the 
coefficient of each miperm. Hence the dimension of the 
action space (D and D matrices) will be 264 E 1019 whlch 
is too large to be manageable. 

The way out may be decentralized learning using the 
linear reward inaction ( L R I )  and related algorithms. But 
again the problem would be slowness and also optimality 
cannot be guaranteed. 

The specific solution to this problem to be considered 
here is to break up the Boolean task of larger number of 
inputs to several smaller problems with smaller number of 
inputs. The idea is borrowed from [8]. 

Let us illustrate the concepts with a three-input prob- 
lem. The general minterm expression for such a problem is 
given by 
y = ~121x223 + ~ 2 x , . F 2 ~ 3  + ~ 3 Z 1 ~ 2 Z 3  + ~ 4 x , , ~ 2 ~ 3  

f U 5 x l x 2 x 3  + a(jx122x3 + a7xIx2x3 + agxIx2x3, (8) 
which can also be written as 

y = X1X2(a,Z3 + u 2 x 3 )  + x1x2( a& + u4x3) 

+ x1?2( a523 + a6x3) + x1x2( + agxj) (9) 

or, 
y = XI( u , . F ~ F ~  + ~ 2 x 2 ~ 3  + ~ 3 x 2 2 3  + ~ 4 ~ 2 x 3 )  

+ X l ( a 5 x 2 x 3  + abx2x3 + a7x2x3 + agx2x3). (10) 
We can attempt to learn the function in any of the three 

forms just given. If we employ the form given in (9), we 
will use the two input lines x, and x 2  for selecting 
different groups. There will be four such groups corre- 
sponding to four different possible patterns of x1 and x 2  
lines. Each group will use only x 3  to learn the function, 
and will consist of two automata each, corresponding to 
the coefficients of .F3 and x 3  respectively. For example the 
group corresponding to x 1  = 0 and x 2  = 0 will be used to 

I GROUP SELECTOR 

I c.;r CI GROUP (2m-1) 

I * * -  I 

I .. .. 
I I  

Fig. 1. Illustration of group selector concept. 

learn the parameters a, and u2 in (9). If the four different 
possible groups are denoted by G,,G, ,G2,  and G,, then 
any input pattern with x , = O  and x 2 = 0  will select G, 
whose players will learn the parameters a, and u2.  Since 
with each input pattern, one and only one group is se- 
lected, the members in each group need to keep estimates 
of the reward probabilities of the action-tuples consisting 
of actions of the members in their group only. In other 
words each group will learn its assigned task indepen- 
dently of the others. 

Using (9), the size of the D matrix for each group is 
22 = 4. There will be four such groups, so the total storage 
and computation requirement for keeping estimates of the 
reward probabilities will be 0(2’.4) = O(16). Previously with 
eight automata in a single group we required 0(28) memory 
and computation time. Also note that by this process of 
breakmg up, the total number of automata required is 
unchanged. 

The breakmg up can be done in various possible ways. 
For a three-input problem, we can have 0,1,2, or 3 lines 
for selecting the groups. In actual practice any number of 
lines can be used as selectors provided the total storage 
and computation requirement is within manageable limits. 

For a general n-input problem we can use the first 
m-lines (note that the exact identities of the m-lines out of 
n input lines are unimportant) for selection of groups, and 
the remaining K = n - m lines for learning the partitions 
of the function corresponding to particular patterns on the 
first n-lines. The exact way of partitioning the input space 
through the choices of m and n can be done in any 
convenient manner. 

The model can be schematically represented by Fig. 1. 
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TABLE 1 

Number Average Number of 
of Runs Range of Number of Iterations Iterations for 

Task No. Tried Required for Convergence Convergence 

Lowest Highest 
1 10 10659 15398 12628 
2 10 10748 15398 12641 
3 10 10403 12937 11917 

V. SIMULATION RESULTS 

For illustration of the ideas developed in previous sec- 
tions, we concentrate on the six-input Boolean function 
learning problem. 

Two possible partitions of the input lines between groups 
are considered. Out of six-input lines, initially four are 
used as group selector inputs. Subsequently, all six are 
used for this purpose. The first model will be referred to as 
16 X 4 model (16 groups with four automata in each group). 
Similarly the second one will be referred to as 6 4 x 1  
model. 

The three tasks are defined as follows. 

Tusk I 

Inputs x6 and x1 are used as address lines according to 
the following. 

Pattern On 
~ 

Xh XI Selects Line 
0 0 
0 1 
1 0 
1 1 

Task 2 

Pattern On 
x4 x ? Selects Line 

~~ ~ 

0 0 
0 1 
1 0 
1 1 

Tusk 3 

Pattern On 
x5 X1 Selects Line 

0 0 
0 1 
1 0 
1 1 

TABLE 2 
COMPARISON OF 16 X 4 AND 64 X 1 MODELS-TASK 1 

Average Number of Iterations 
Runs Required for Convergence Average Value of J 

A Tried 1 6 x 4  6 4 x 1  1 6 x 4  6 4 x 1  

0.01 10 12628 28748 63.9 64.0 
0.10 10 4324 4314 63.0 64.0 

Initially a 16 x 4 model with x6, x5, x4, and x3 as inputs 
to the group selector is tried for each of the tasks 1,2, and 
3 with a fixed learning parameter value ( A  = 0.01) to 
illustrate the generality of the model. 

Then its performance is compared with the 64 X 1 model 
for learning Task 1 with various learning parameters. 

The results of the simulation experiments are summa- 
rized in the following tables. J is the number of input 
patterns for whch the correct. output is obtained from the 
system after convergence. Convergence of the team is 
assumed to have occurred when an action probability of 
each automaton attains a value of at least 0.9. J is used as 
a performance index with maximum possible value of 64, 
since there are 64 different input patterns. 

Reward probabilities have been chosen as follows: 
d (  5 ,  y x )  = 0.9 

output = 0.1, otherwise. 
if y" coincides with the desired function, 

VI. CONCLUSION 

From the extensive simulations of the six-input multi- 
plexer problems presented here, it is clear that cooperative 
teams of learning automata present attractive models for 
learning complex nonlinear associative tasks like the 
Boolean task. 

Out of the 30 runs tried for three different tasks with 
h = 0.01, only one run resulted in convergence that corre- 
sponds to incorrect output for one out of 64 possible input 
patterns and correct output for the remaining 63.  In all 
other runs the convergences were optimal in the sense that 
they resulted in correct output for all possible input pat- 
terns. T h s  illustrates the stability of the model. 

A quick glance at Table I1 gives one the idea that the 
1 6 x 4  model is much faster in learning than the 6 4 x 1  
model for smaller values of A. But for hgher values of A, 
they behave almost identically. However it must be pointed 
out that'these impressions are based on simulation results 
alone. So far no way has been found for estimating the 
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speed of convergence for a team of automata, nor do we 
have any general results for studying the variation of speed 
of convergence with A values. 

The first, and in our opinion, the most important advan- 
tage of learning automata models is, as mentioned before, 
the generality of the model. For example though simula- 
tions were performed for multiplexer tasks, it can be easily 
seen that the same models are valid for any other six-input 
Boolean function. 

Secondly the rigorous mathematical theory behind learn- 
ing automata models guarantees convergence with very 
good confidence level without over-dependence upon sim- 
ulation results. 

The third advantage that we claim with learning au- 
tomata models is the high speed of learning. Recently with 
the advent of estimator algorithms in learning automata, 
the speed of learning has improved very considerably. 
However these claims are based only on simulation results. 

We can compare our models with the A, ,  network 
model proposed by Barto [6]. He proposed empirical mod- 
els to learn some specific Boolean tasks. Mathematical 
convergence proof for such models does not exist. On an 
average 133 149 trials were required to learn a six-input 
multiplexer task. 

Our model is a general one and is based on sound 
convergence concepts. The number of iterations required 
for learning a six-input multiplexer task with high proba- 
bility (with A = 0.01) was 12628 for 16 X 4 model, which is 
more than ten times faster than Barto's model. We can 
increase the speed of learning further by proper choices of 
A and learning model. 

All these results point out the usefulness of learning 
automata models for learning complex Boolean tasks. 

APPENDIX 

The proof of Theorem 1 proceeds in two stages. First it 
will be shown that with sufficiently small A, all action 
cnombinations are chosen enough number of times soAthat 
dml . . . m, ( k )  will remain the maximum element of & ( k )  
after a finite time. Then it is shown that this implies 
convergence of p t ,<  k ) ,  n = 1 . . * N ,  as desired. 

Lemma 1: For given constants 6 > 0 and M < 00, there 
exists A* > 0 and N o < m  such that under the pursuit 
algorithm, for all A E (0, A*), prob [all N-tuples of actions 
are chosen by the team at least M times each before 
instant k ]  > 1 - 6 for all k 

Proof: For each realization of the process { p'(k);  . -, 
p N ( k ) }  we define a set of random variables 

No. 

- 

= 0 otherwise. 

Let P ' ( k )  denote any specific realization of the process - 

{ f ' ( k ) ,  k > O } .  Now, 
N 

n = l  
Ex(i , ;*. , i , ,k)= 77 P,Y(k) 

E[x(i , ; . - , i , ,k)]  2 N  = r j j t ( k ) .  
n = l  

Hence, 

N 

n = 1  n = l  

Now the random variables { x(i,; . -, i,, k ) ,  k > 0} are 
uncorrelated bec'ause 

E [ x ( i  l,...,iN,k,).x(il,...,iN, k , ) ]  

= E [ x (  i1,. ' * , iN, k l ) ]  ' E  [ x (  i,>* ' . 9 i N ,  k , ) ] .  

Let us define another random variable Y( i,, . . . , i,, k )  
that gives the number of times the n-tuple of actions 
(i,; . -, i N )  is chosen up to time k .  Thus, 

k 

~ ( i ~ , - - * , i ~ , k )  = 1 x(i,;..,i,,s). 
s =1 

Since from (5) it follows that 

Pl:(k+l) > P r : ( k ) ( l - A ) ,  and 

a:,@) > P , : ( o ) O -  Uk. 
Now, 

k 

E [ Y( i1; * * , i,, k ) ]  = C E X (  i,, * * . , iN, S) 
s =1 

Now, 

1 - (1- A)kN 
1 - (1 - A) 

Lim (1 - A)" = k by L'Hospital's rule. 
X-0 

Again, 

l - ( l - A ) k N  

1 - (1 - A) 
Lim (1 - A ) = 0. 
A - 1  

Hence there exists a finite A(i,; . ., i,, k )  such that for 
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A < A(i,;. -, i,, k) 

EY(i , ; . - , i , ,k)> ?r jj:(o) ( k- 1 ) .  (11) I 
Again since { x ( i , ;  . 0 ,  i,, k ) ,  k > } are uncorrelated 

VarY(i,;- ., i,, k) =Var c x ( i , ;  .., i,, s) 
k 

s = l  

Using Chebyshev inequality, 

p r o b [ Y > M ]  = l -p rob [Y<M]  

>l-prob[IY-EYI>EY--M] 

>1- 
Var Y 

(EY-M)2  

EY 
>1- 

(EY - M ) 2 .  

From (ll), E[Y(i,;. ., i,, k ) ]  increases linearly with k. 
Since M is fixed, there exists k,(i ,;  . -, i,) < 00 and 
A(i , , . .  -, i,, k) such that 

prob[Y > M ]  21- 6 

for k > k,(il; . ., i,) and A < A(i,; * -, i,). 

A* > 0 and k, < 00 such that 
Now, considering all N-tuples of actions, there exists 

k,= max {kO(il ; - . , iN)} 

A*= min { A ( i 1 ; ~ ~ , i N ) } .  

i1; . . , i, 

I , ;  . . , i ,  

Hence, 

prob[Y(i,;-. , i , ,k) > M ]  2 1 - 6  (14) 

V A E  ( O , A * ) , i = l ; . . ,  Nand k > k , .  

This completes proof of the lemma. 

Hence by Martingale convergence theorem and noting 

p i " ( k ) - l w . p . l a s k ~ o o f o r n = l ; . . , N .  (16) 

A # 0, it follows: 

Hence the lemma. 

Proof of Theorem 1: Since (a!,,, . . . a,",) is the optimal 
action N-tuple for the team and since by assumption this 
is unique, there exists one and only one maximum of _D 
matrix given by d,, . . m ,. 

Since we are _estimating _D matrix by &k) given by (6), 
it is obvious _D(k) will converge to _D if each of the 
N-tuples of actions is attemped infinitely often. 

Also from (7) it follows _ E n  converges to _En if & -+ _O. 
Now E:,= max I {  E:}. 

Hence A,, = - max I + ,,( E: } > 0. 
For each of the automata, the game playing algorithm is 

identical with a single pursuit algorithm with, expected 
reward vector E "  and estimated reward vector _En. 

Hence the law of large numbers when applied to the n th 
automaton gives the following result: given 6 > 0 there 
exists q; < 00 such that 

prob [ 1l?:( k) - EJ < -f > 1 - 6.  " I  (17) 

for all k such that the action al: is attempted more than 
4; times (say, vYn times). 

By the definition of A,, for all i,, # m, 

prob [ g:"( k) > El:( k)] > 1 - 6 ,  for all k. 

Hence combining this result with Lemma 1 and Lemma 
2, it follows that given an E > 0, there exists No < 00 and 
A* > 0 such that 

prob [ 1 p:"( k)  - 11 < E ] > P1P2P3 2 (1 - 6 )3  

V k  > No, A E (0, A*) and all n = 1,2, . . . N where, 

I p i , ( k )  -11 < E I i m j k )  > i , , , ( k ) ,  

i n  + m,,, min { v y j k ) }  > ~ n ]  

& J k )  > k l j k ) ,  i n  f m,l@n { v % ( k ) }  > M " ]  
Lemma 2 

Suppose there exist indic5s q,, n =,1; . ., N and a time 
instant N, < 00 such that E:Jk) > EJk) for all j ,  Z q, 

1,. . . , N .  Consequently prob [ 1 pqJ k)  - 11 < E ] 1 - S for 
all k No. This proves Theorem 1 

and k > k, ,  then p i J k )  -1 w.p.1 as k + 00 for n = 

Proof Let us define 

AP;*,( k 1 = E [ p;,,(k + 1) - ~ $ , , ( k )  lQ(k)] 
where Q(k) is the state of the system consisting of 
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