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OF CONTROL SYSTEM STRUCTURE 

b 

Harvey L. Malchow 

Charles Stark Draper Laboratory 

C O N T R O L L E R  P L A N T  

An alternative functional structure for control rystema ir proporcd. The 
rtructure ia reprerented by a three element block diagram and three functional 
definitions. It is argued that the three functional elements form a canonical ret. 
The set includes the functionr prescription, estimation and control. General 
overlay of the rtructure on parallel state and nested-rtatc co.itro1 ryrtems is 
discussed. Breakdown of two real nerted-rtate control syrtema into the proposed 
functional format ir displayed. Application of the procerr to the mapping of 
complex control systems RkD effort8 ia explained with the Mara Rover Sample 
and Return mission aa an example. A previour application of thir basic 
functional structure to Space Station performance requirements organiration ir 
dircusaed. 

Introduction 

Many introductory diagrams of feedback control systems have the following 

format(1lW 

Fig.1. A Typical Text Feedback Control Loop. 

While this graphic description is economical and nominally correct, it does not 

explicitly display all the necessary functions. generally represented in a controller. 

For example, one problem with Figure 1 from a functional standpoint is that it does 

not explicitly display the estimation function. The feedback loop implicitly returns 

to the control error junction an gstimate of the feedback signal. That is, the plant 

feedback signal is operated on by the wire (or by the uncertainty principle in the 

We draw on the definition given by Pulliam and Price4 for necessary 
namely: '... a function is a thing or everrt that i s  needed to achieve the mi~~iori ." 

function 



most taxing rhetorical case) and so the pure feedback signal originating at the plant 

always arrives corrupted at the summing junction, and is therefore always just an 

estimate whether it is the product of a simple transducer output or the more 

complex product of a filtering process. Gelbs defines estimation as the "process of  

extracting information from data ...". Thus in this broad sense, a measurement on 

the plant becomes a state estimate when it is used to compute a state error signal. 

The of the measurement with whatever mapping or filtering is applied, is an 

implicit conversion of measurement data to information, and is therefore, by Gelb's 

definition, an estimation process. We argue, therefore, that the act of providing a 

feedback estimate is a fundamental and necessary function in control systems**, and 

that this function is always present whether implicitly or explicitly so that 

estimation should be granted canonical functional status. 

We also argue that the act of providing an input to a control system ought to 

have the status of a canonical function. Within the definition of necessary function 

it is therefore argued that no controller can function without an input. Control 

. systems are always driven by an in9ut. For regulating systems the input is constant, 

and for Tracking systems it is time dependent. For some systems, for example with 

missile guidance systems and with computer driven machinery, the function of 

prescribing an input state sequence is a complex discipline with sufficient status to 

stand alone as a technical specialty. Takahashie has argued for inclusion of the input 

function as part of the control system for tracking systems: "If the command signal 

is deterministic in a tracking control problem, a "generator" of the signal is 

considered part of the system." We propose to include inputs to regulating control 

systems as "generators" in the interest of generalization. 

Another problem with Figure 1 is that the signal driving the control box is 

restricted to the difference between the input and the feedback signals. In general, 

the controller operates on a function of the input and feedback signals which is not 

necessarily a simple difference. For example, in the Space Shuttle orbital 

maneuvering system' the control actuating signal is driven by a vector cross-product 

(which looks like a differencing driver only for small angles). 

** It may be argued that open loop controllers do not require estimation. Howqver, 
one can counter-argue that the designer always "peeks" to see how the system IS 
doing and thereby closes the loop as a living feedback estimator. 



This paper suggests a revised basic functional block diagram for feedback 

control loops based upon the above arguments. The purpose of the revised diagram 

is to create a mental image of feedback control loops that contains the essential 

functions and therefore facilitates structured thinking about control problems. It is 

shown how various examples of working control loops from a variety of applications 

fit within the proposed elemental functional structure. It is then shown how this 

structure can be used to lay out work plans and to organize performance 

requirements matrices for controllers for complex systems. Such systems may have 

many state vectors and modes of operation such as occurs with multi-staged space 

vehicles. 

The Proposed Functional Structure 

We begin by reconstructing Figure 1. If we recognize that in general the 

controller acts upon a function of the comparison between the input and feedback 

states (not necessarily a simple difference), and if we allocate to the controller the 

task of forming that comparison, then the comparison process can be placed inside 

the controller box with the resulting diagram shown in Figure 2. 

PLANT 
input 

i 
~~ ~~ ~~ 

Fig.2 Control Loop With Cornpariron Jdnction Inride Controller. 

This form is exhibited for example in Hsu* and Cruzg. Ogatalo explicitly displays 

the comparison action inside the controller box. 

The next step is to make the implicit estimation function explicit, and install it 

in the feedback loop. The result is Figure 3. 



CONTROLLER PLANT 

ESTIMATOR 

Fig3  Control Loop With Estimator Function Inrtallcd. 

Many authors use this diagram although some, including Ogatalo, use the term 

"measuring element" or "measurement" instead of estimator. 

We now take the important step of elevating the input action to function status. 

However before showing the result a few comments are in order. First, in the 

diagrams we have used a personalized noun form (controller and estimator) for the 

functions of control and estimation. The natural implication for the input function 

is therefore that it be termed the "inputer". In the interest of assigning an actual 

word in current usage we substitute the term "prescriber". Usage of this term is not 

without precedent (see for example Kwakernaakll and Adamsl2). Also, the root 

word prescribe has an advantage over other possible choices in that it admits both 

the gerund form prescribing and the action noun form prescription. Secondly, the 

form in which the feedback estimate and the input or prescribed state are entered 

into the control law is mathematically symmetric, i.e. as a difference, cross product, 

or some other symmetric form. To emphasize this symmetry we construct the block 

diagram with the prescriber in symmetric form opposite the controlIer from the 

estimator. The blocks have equal size to represent the equality of status of the two 

inputs from the standpoint of the controller. The result is Figure 4 which we term 

the "canonical functional form". 



contro l  
system 

PLANT 

Fig.4 Canonical Functional Feedback Control System. 

The functional blocks represented in Figure 4 are all present in the general linear 

dynamical equation for an undisturbed control system with time dependent inputls. 

Here q is the system state, and the left two terms represent the plant dynamics, r(t) 

is the prescribed state, K, is a controller gain, and Kf times y is the estimated state 

scaled by a controller gain (i.e., Kf implicitly includes both estimator and controller 

functions). A similar construct is displayed by Franklin and Powell14 for discrete 

MIMO systems, namely: 

x ( k +  1 )  = @ x ( k ) +  T N r ( k ) - T K Z ( k )  

with r(k) the prescribed state. Since Figure 4 represents all the elements of the 

above equations, we declare the figure to be a necessary and sufficient structure. 

Definitions of the Functions 

It is appropriate at this point to define the elemental functions. We choose the 

point of view of "state control" to facilitate this process. All control systems control 

certain states of the system. The canonical functions must therefore bear some 

association with the states either as inputs to or outputs from the functions. 



Function Definitions 

PRESCRIBER; The PRESCRIBER sets forth desired values of those 

plant states that are controlled by the control system. 

ESTIMATOR; The ESTIMATOR estimates those states that are controlled 

by the control system. 

CONTROLLER: The CONTROLLER compares linear functions of the 

estimated and prescribed states and sends appropriate 

actuation signals to the plant. 

The prescriber defines the purpose of the control system which is to drive the 

plant state to a desired set or sequence of sets of state values. The estimator 

operates on measurements of the plant that are related to the state through the 

relationship y = H(x). This equation is inverted to produce a feedback 

proportional to the estimated state. Note that since the closed loop transfer 

function ' is dimensionless one must have dimensional agreement between the 

prescribed and estimated inputs to the controller. In many systems the controIIer 

performs a straight state differencing between prescribed and estimated states. 

Gavrilovls has suggested that control systems involve three internal actions 

including the control action, the monitoring action, and the input action, and that 

structure resembles the one proposed here. However, Gavrilov includes distur- 

bances and measurement noise in the input category, and later qualifies the input 

category of function to include monitoring, which is a definite departure from 

our structure. 

Nested Loops, General Format 

For independent states of a system the overall control system is represented 

simply by an independent set diagrams of the type shown in Figure 4. As stated by 

Meerovls: "... when there are n controlled variables present, the whole system will 

consist of at least n control loops interconnected in one way or another.". For 

interdependent states as well as time derivatives of the same state one can recast 

Figure 4 in a nested structure. The structure for nested loops depends upon the 



interaction between the controller of one loop and the prescriber of the next. If the 

following prescriber changes its prescribed state as a result of the preceding control 

action (as it might do in Artificial Intelligence systems for example) then the 

structure is applied as drawn in Figure Sa. 

P R E S C R I B E R  - -b P R E S C R I B E R  
3 2 - 

P R E S C R I B E R  
1 

Fig.5a General Nested Loop Structure. 

1 1 

If the prescribed state is not a function of the preceding control, then the 

preceding control acts as an internal prescriber, and the internal and external 

prescribed states can be added inside the following controller as illustrated in Figure 

5b. 

1 

PRESCRIBER 

C O N T 3 O L L E R  - 

PRESCRIBER PRESCRIBER 

C O N T R O L L E R  - C O N T R O L L E R  P L A N T  - 
A 1 2 

CONTROLLER P L A N T  

E S T I M A T O R  ESTIMATOR 

E S T I M A T O R  
3 

FigSb Nested Loop for Simple External Prescribers. 

E S T I M A T O R  E S T I M A T O R  
2 1 

Many real control systems such as those shown in the following examples are 

structured as in Figure 5b. 



Examples of Nested Loops 

We display two examples, one involving two nested state vectors, and one 

involving four. The first is a proposed U.S. Space Station flight control system 

structurel7. The flight control system is responsible for control of (at least) the 

following two state vectors: 1) Space Station attitude, and 2) control moment gyro 

(CMG) stored momentum. The controller for CMG momentum alters the Space 

Station attitude so that gravity gradient torques can unload stored momentum. 

Meanwhile the station attitude controller attempts to maintain alignment with the 

local vertical coordinate frame. In the structure shown in Figure 6, the momentum 

controller output is expected to be the lone dynamic driver of attitude, and the 

external prescribed attitude is constant at some average torque equilibrium value. 

The CMG prescriber declares a.desired target CMG momentum which may be 

biased in anticipation of disturbances, and the controller generates a desired attitude 

offset which becomes in essence a prescribed attitude for the attitude controller. 

ATTITUDE 
PRESCRIBER 

CMG H 
PRESCRIBER 

SPACE 
CONTROLLER CONTROLLER STATION 

I ATTITUDE 1 
ESTIMATOR ESTIMATOR 

t t 

Fig.6 TworState Nested Loop Structure for CMG Momentum Management. 

Some schemes18 weight the CMG momentum controller output, and combine 

that output with a weighted prescribed attitude from the attitude control loop. In 

that case the revised block structure of Figure 6 resembles that of Figure 5a. 

In Figure 7 we display a four-state nested control system19 for c o n t r o h g  the 

Space Shuttle Orbiter when it is changing its orbital velocity. The highest level state 

vector, representing the outer loop, is the VGO or velocity-to-go vector. 



S H U T T L E  OMS deflect. 4 
CONTROLLER CONTROLLER 

Fig.7 Four-State Nested Loop System for Space Shuttle Orbital Thrusting. 

. 

VGO is set externally by the VGO prescriber which is part of the Shuttle PEG7 

(Eowered Explicit Guidance, mode 7) guidance algorithm. VGO is estimated by the 

User Parameter Processor logic which reads IMU data. The estimated VGO is 
compared to the prescribed value in the PEG7 guidance logic which issues an 

appropriate thrust direction command (which we label THR) as long as the VGO 

estimate is sufficiently different than the prescribed VGO. The THR prescriber 

merely prescribes a thrust direction in body coordinates that is through the center of 

mass. The THR estimator feeds back accelerometer data, and the THR controller, 

using "cross product steering"20 converts the thrust direction error into a body rate 

command. The body attitude rate prescriber prescribes a nominal rate of zero in all 

axes. The rate error is mapped by the rate controller into an Orbital Maneuvering 

System (OMS) engine gimbal deflection command. The OMS deflection prescriber 

presets deflections according to known Shuttle mass distribution. Of the four 

prescriber functions in this example, only the guidance VGO prescriber and the 

OMS deflection prescriber are nontrivial. The others, which are often implicit in 

descriptions of this particular control system, are included in Figure 7 in the interest 

of generality. 

The proposed functional structure allows one to resolve some arguments about 

the meaning of other functional terms used in connection with control systems. For 

example, while "navigatiod' is clearly an estimation function, the roll of "guidance" 

in flight control systems has been defined by a range of functions. For example 

Blakelock21 says: 

E S T I M A T O R  E S T I M A T O R  
OMS deflect. 
. E S T I M A T O R  



"The Guidance system performs all the functions of a navigation 

system plus generating the required correction signal to be 

sent to the control system.". 

whereas Wolverton22 is more inclusive: 

"Guidance may be defined as the processes o f  measurement, data 

extraction and smoothing computation and control which are 

required to assure that a space vehicle reaches a desired 

destination from a given launch point.", 

and Beck23 is more exclusive: 

"Guidance's purpose, then is to determine where we want to be 

and how best to get there." 

The first of these definitions has guidance performing an estimation function on 

position (navigation) in addition to calculating an error signal (on an unidentified 

state vector). The second definition seems to include estimation and control 

functions, and is notable for its absences of prescriptive function. The third is a 

purely prescriptive function. In the Space Shuttle OMS system, the guidance 

function performs both prescriptive and control tasks according to our definitions. 

It prescribes a VGO, then exercising a control function, tests the prescribed VGO 

against the VGO estimate and issues a control signal to the spacecraft. For Shuttle 

first stage operations however, guidance is a purely prescriptive function24, and in 

that case, an attitude sequence is prescribed by extraction from a tabular reference. 

So while "guidance" can be uniquely defined as a prescriptive process, in practice it 

sometimes incorporates the other basic functions. 

Mapping Control Systems 

The stated function structure is useful for systematically identifying control 

system design problem areas. If the canonical functional structure is complete, then 

for each controlled state the basic function set must necessarily be invoked. For a 

complex system then, the overall control problem can be mapped out in a 3 by N 

array, with i = 3 representing the three canonical functions, and N representing the 

controlled states. If a system uses different controllers, estimators, or prescribers 



for different modes of operation, the space of problem areas is expanded to 3 by m 

by N, where m is the number of distinct modes. This structure is illustrated by 

example in Figure 8, where two states are controlled in MODE 1, and three states in 

MODE 2. 

MODE 1 
n 

STATE 1 STATE 2 

J c o n t r o l  I l c o n t r o l  1 

MODE 2 
1 

STATE 1 STATE 2 STATE 3 

Iprescribl((prescribaIlprerrrib.1 

Fig3 General Control System Mapping Structure. 

ExamDle sf a Svstem Structure Map 

As a specific application consider the proposed Mars Rover Sample and Return 

Mission25. We begin breaking the problem down by listing flight modes and their 

associated controlled states (those normally associated with flight control - other 

states such as thermal and power control can of course be dealt with in the same 

manner). Table 1 is a hypothetical partial listing which ends at Mars orbit stage 

separation to save space. 



Table 1. Controlled States for Various Flight Modes. 

Earth trans-Mars trans-Mars 
orbit boost coast 

earth re1 I inertial I solar 
attitude attitude attitude 

--------- --------- --------- 

earth inertial trans-Mars 
orbit I thrust (rrohctory 

vector 

Mars 
deboost 

inertial 
attitude 
inertial 
thrust t- vector 

--------- 

antenna antenna 

point inn pointing 
X G  1 -  I CMG I 

momentum I Imomentum I 

Mars stage 
orbit separation 

antenna 

I CMG 
momentum 

We break down the problem areas for column 1 of Table 1 (the Earth orbit 

flight mode) into the task array shown in Figure 9. 

8 earth re1 8 earth 8 antenna 0 solar array 8 CMG 
att i tude orbit pointing pointing mornen turn 

i 

I I 

rn ome n9t u rn 
manager an ten na 

controller scheme con troller con tr  oY1 er control 

I .  , 

Fig.9 Array of Control System Design Tasks for Column 1 of Table 1. 

Some of the problem areas may turn out to be trivial, for example prescribing 

a solar array pointing sequence may just mean stating that the array shall point at 

the sun. However if night-side feathering or differential drag pointing are 

considered this prescriptive function becomes nontrivial. The aim of the general 

process is to be all inclusive at the occasional expense of overkill. 



Organizing Performance Requirements 

Performance requirements for complex systems are often organized within an 

arbitrarily defined structure. Subsystem designers are asked to submit their 

requirements to the system level designers, and the collection is interleaved in a 

sequence with loose associations. Reference 26 is a case in point. Although the 

report is exhaustive and functionally complete, the flight control system related 

performance requirements are displayed on thirty-odd scattered pages, under a 

dozen different headings, and in some cases, the information is repetitive. 

Using the structures of Figures 8 and 9, and Table 1, it is possible to construct 

organized sets of performance requirements. As demonstrated previously27, the 

concepts of control system structure, controlled states, and distinctive operational 

modes lead to the layout of a complete set of place holders into which performance 

requirements may be entered. Table 2 is an example of such a layout that has been 

previously composed28 for the US Space Station program. 

Table 2. Partial Space Station Performance Requirements Layout. 

NORMAL 
FLIGHT 

REBOOST 

MRMS OP- 
ERATION 

DOCKING 
BERTHIN& 

BUILDUP 

EVA 

I Pres: LVLH 20.02 Pres: 180<aIt<250 Pres: < 1.OE-05 
inc. = 28.5 deg 

Est,: - - -- - - - - - - I Est.:+0.01,3 sigma I Est.: +O.OOOl 
Pres: < 3.99 I Est.: TBD 
Cont: +LO Cont: +0.0005 
Pres: TBD Pres: TBD 
Est.: TBD Est.: TBD 
Cont: TBD Cont: TBD 
Prea: TBD Pres: TBD 
Est.: TBD Est.: TBD 
Cont: TBD Cont: TBD 
Pres: TBD Pres: TBD 
Est.: TBD Est.: TBD 
Cont: TBD Cont: TBD 
Pres: TBD Pres: TBD 
Est.: TBD Est.: TBD 
Cont: TBD Cont: TBD 
Pres: TBD Pres: TBD 
Eat.: TBD Est.: TBD 
Cont: TBD Cont: noRCS? 

----- means no req. expected 

Cont: TBD Cent: -- --- - - - - - 
Pres: 180<aIt<250 Pres: TBD 

Est.: TBD 
Cont: TBD Cont: TBD 
Pres: 180<alt<250 Pres: TBD 
inc. = 28.5 deg 

Est.: TBD Est.: TBD 
Cont: TBD Cont: TBD 

g;: deII 

Pres: 180<alt<250 
Est.: TBD 

inc. = 28.5 deg 
Est.: TBD 
Cont: TBD I Cont: TBD 

Prea: TBD 
Est.: TBD 

Pres: alt>l50 
inc. = 28.5 deg 

Est.: TBD 

Est.: TBD 



Conclusions 

Control systems, including those that involve many state vectors, can be broken 

down into a three function structure. Identification of this canonical functional 

structure is of practical as well as pedantic value. It allows for a systematic 

mapping out of control system design problem areas, and it provides for 

construction of a complete array of performance requirement place holders. 
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