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Performance Analysis of Microcellization for
Supporting Two Mobility Classes in Cellular

Wireless Networks
Krishnan Maheshwari and Anurag Kumar

Abstract—We study the call blocking performance obtained by
microcellizing a macrocell network. Each macrocell is partitioned
into microcells, and some of the channels originally allocated to the
macrocell are assigned to the microlayer cells according to a reuse
pattern. The arriving calls are classified asfast or slow; fast calls
are always assigned only to macrocell channels, whereas for slow
calls a microcell channel is first sought. Slow calls may be allowed
to overflow to the macrolayer, but may berepackedto vacated mi-
crocell channels. Calls canchange their mobilityclass during a con-
versation. We develop an approximate analysis for computing the
slow and fast call blocking probabilities in such a system. We adopt
the technique of analyzing an isolated macrocell with the Poisson
arrival assumption and then iterating on the stationary analysis
of the isolated macrocell to obtain stationary results for the mul-
ticell system. Simple, but accurate approximations are developed
for analyzing the isolated macrocell and its associated microcells.
The analyses based on the approximate isolated cell model are val-
idated againstsimulations of a multicell model.

Index Terms—Fast and slow mobiles, macrocells, microcells,
repacking, TDM cellular wireless networks, traffic engineering of
TDM cellular networks.

I. INTRODUCTION

I N CELLULAR wireless mobile telephony systems, a de-
crease in the size of the cells allows more frequency reuse

in a given area. With the decrease in size of the cells, however,
there is an increase in the number of cell boundaries that a mo-
bile unit crosses. These boundary crossings stimulate handoffs
and location tracking operations. Thus, the signaling capacity
of the signaling processors (in the base stations and the mobile
switching centers) can limit the call handling capacity of a cel-
lular system as the cell size is decreased. These issues are dis-
cussed in [7].

One way of controling the increase of signaling traffic, while
deriving the frequency reuse advantage of smaller cells, is to
consider a cellular (macrocellular) network and subdivide the
large cells into smallermicrocells(see [14]). Radio channels are
allocated to macrocells and to microcells. Each mobile call is
then classified as belonging to one of two mobility classes,fast
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andslow. A call that originates at or terminates on a slow mobile
(henceforth referred to as aslow call) is allocated to a channel in
the microcell in which the mobile is currently located, whereas a
fast call is allocated to a macrocell. It can be expected that, with
appropriate engineering of such a system, more traffic can be
handled, with a given number of channels and a required grade
of service, while limiting the increase of signaling traffic on the
network. See [1], [3], [9], and [22] for further discussions of
such multitier cellular network architectures.

The main contribution of this paper is to develop an approx-
imate analysis for calculating the probabilities of call blocking
in a model of a microcellular network; the analysis is verified
by simulations of the multicell model. The scenario that we are
concerned with is that there is a macrocellular network, with a
given frequency allocation to each cell. Each macrocell is then
microcellized, and the original frequencies assigned to each cell
are partitioned between the microcells and the original macro-
cell.1 A call that is handled by a channel in a macrocell is said
to be in themacrolayerwhile a call that is handled by a channel
in a microcell is said to be in themicrolayer.

For the purpose of this study, we assume that a speed
threshold, used for classifying the mobiles, has been deter-
mined. A call is identified as fast or slow by the cellular
system. Approaches for carrying out such classification are
proposed in [10], [13], and [22]; we assume, as in [9], that such
classification has already been done on call arrival. A fast call
is allocated to a macrolayer channel in the macrocell that it is
located, and a call that is identified as slow is allocated to a
microlayer channel in the microcell that it is located. A call is
blocked in a layer if all the channels in that layer are occupied.
A slow call that is blocked in the microlayer is attempted to be
assigned a channel in the macrolayer. These calls are said to
overflowfrom the microlayer to the macrolayer. A slow call is
thus blocked in the system only if channels in both the macro-
cell and the microcell (in which it is located) are occupied.
A fast call is blocked if all the channels in the macrocell to
which it belongs are occupied. Overflow of slow calls to the
macrolayer may give them undue advantage over the fast calls;
to reduce this advantage, one possibility is that if there are slow
calls in the macrolayer from a particular microcell, one of these
calls is moved to the microlayer whenever a call departs from
that microcell. We call this procedurerepacking.

1Clearly, there are other, more efficient, channel allocation schemes, and our
analysis approach applies to any static allocation scheme. The particular alloca-
tion that we have described here is perhaps the first that a cellular operator may
adopt, as it does not disturb an already established frequency plan.
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In reality, mobiles do not move with constant speeds. A speed
change occurs when a mobile moves from a more crowded area
to a less crowded area or if a mobile encounters a traffic signal.
This aspect is also included in our model by allowing calls to
undergomobility change; i.e., a fast call can become a slow call
and vice versa.

We make the standard stochastic assumptions; i.e., Poisson
new call arrivals, exponential channel holding times, and
exponential cell sojourn times. While the entire multicellular
system can be characterized by a Markov process with many
dimensions and a complex state space, obtaining performance
measures directly from this characterization is an intractable
problem. Our approximate analysis approach is an extension of
the iterative technique that has been used in the past for macro-
cellular networks (see, for example, [5], [8], [9], and [16]).
Each cell is analyzed in isolation, assuming Poisson processes
for handoff arrivals into the cell. Blocking probabilities from
this analysis yield handoff arrival rates for the next iteration.
These iterations are continued until an appropriate convergence
criterion is met. The main effort in adapting this standard
approach to our problem is the isolated macrocell analysis,
especially when overflows, repacking, and mobility changes
are introduced. We develop approximations for these analyses
and show that the numerical results obtained compare favorably
with those obtained from a detailed simulation. Whereas the
analysis is based on iterative calculations on an isolated cell, the
simulation is of a multimacrocell system and actually simulates
call handovers between cells, slow call overflow and repacking
between macrocells and microcells, and mobility changes.

Related work on this problem has appeared in [4], [5], [9],
[10], [13], [21], and [22]. In [21], a cellular system model with
call overflow and repacking between two layers of overlapping
cells is considered. There are no call mobility considerations in
this paper. The technique is based on the observation that, with
repacking, the underlying Markov chain is equivalent to that of
a certain circuit switched network. The Erlang fixed point ap-
proach is used to approximately analyze this network. The ap-
proach, however, leads to a number of “link” constraints that is
exponential in the number of cells. The accuracy of the results
is found to vary from 15% to 40% depending on the number of
channels. In [9], a hierarchical model with three layers is consid-
ered; there are two call classes, and calls can overflow to higher
layers. Overflow processes are modeled as interrupted Poisson
processes (IPP’s) and are not repacked. Mobility changes are not
considered, and no simulation results are provided. In [4], three
types of calls are considered in a single cell with a two-tier ar-
chitecture. The types of calls are classified on the basis of their
access to the different tiers. The model does not include han-
dovers or repacking. In [5] and [10], a nonhomogenous system
(cell sizes are different, arrival rates vary from cell to cell, ar-
bitrary routing between cells, and a general overlap structure
between layers) is analyzed by iterating all the cells together.
In [5], the overflow processes between layers are modeled by
using two moments, whereas in [10] the composite overflow
processes are approximated as Poisson. In [10], calls are iden-
tified as being fast or slow depending on their sojourn time in
a cell; a call identified as fast is handed over to a higher layer
macrocell. These papers do not consider repacking, and only an-

alytical approximations are presented without validating simu-
lation results.

In [22], a procedure for identifying the mobility class of a call
(i.e., fast call or slow call) is proposed. A mobile determines
its mobility based on its microcell sojourn time. This informa-
tion is used to determine the base station (at the macrocell or at
the microcell) which will handle the call during origination or
handoff of the call. A similar approach for identifying fast calls
is proposed in [13], and in addition analysis of grade-of-service
is done for a two-layer system. The latter paper, however, does
not consider slow call repacking and mobility changes. Also,
only analytical results are presented.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the model, list the notation used, and de-
fine the performance measures. An approximate analysis for this
model is developed in Section III. In Section IV, we provide nu-
merical results that show how accurate the analysis is in com-
parison with simulations of the model. The conclusions and an
outline of further work are presented in Section V.

II. THE MODEL, NOTATION, AND TERMINOLOGY

A. Handovers, Repacking, and Signaling

We define a handoff (or handover) as any event that causes
the system to seek a new channel for an existing call in the
system. Handoffs occur due to cell boundary crossings (i.e.,
a “radio–reason” handoff), mobility changes, or repacking. A
radio–reason handoff occurs whenever a slow call crosses a mi-
crocell boundary, or a fast call crosses a macrocell boundary.

When a fast call changes mobility to become a slow call, an
attempt is made to assign it to a channel in the microcell in which
it is located. If this attempt fails, then the call is retained in the
macrolayer. When a slow call in the microlayer changes mo-
bility, an attempt is made to assign it to a channel in the macro-
layer. If this attempt fails, the call is not retained in the micro-
layer, but is dropped. If this call is retained in the microlayer, it
will encounter a large number of cell boundary crossings. This
is not desirable since, after adding substantially to the signaling
traffic, it is very likely to get dropped anyway. No harm is done
by dropping the call provided the overall call dropping prob-
ability is better than the operator's promised grade-of-service
(say, e.g., 0.1%). Channel reservation for fast calls in the macro-
layer can be used to control this dropping probability. We have
not considered channel reservation in this paper, but see [19].

If a slow call in the macrolayer moves across a microcell
boundary, then an attempt is always made to hand the call over
to a microcell channel. If there is no such channel, then the slow
call is retained in the macrolayer.

Handovers are also caused by the repacking of slow calls oc-
cupying macrolayer channels; i.e., slow calls that are assigned
channels in the macrolayer are moved back to the microlayer
on availability of channels in their respective microcells. Chan-
nels in the macrolayer are thus freed up. Note that the repacking
of a slow call in this way is triggered by a slow call depar-
ture from a microcell; a slow call in the macrolayer does not
need to constantly monitor the occupancy of its microcell. Thus,
slow calls are handled in a macrocell only when their corre-
sponding microcell is fully occupied. This increases the capacity
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of the system, but additional signaling will be incurred due to the
channel reassignments.

Channel reassignments and handoffs cause signaling traffic,
and, hence, load the call processing systems. The set of events
that contribute to the signaling traffic are new call arrivals, cell
boundary crossings, mobility changes, and repacking.

B. Model Parameters and Notation

New call arrival processes for the various macrocells are in-
dependent Poisson processes. Each arrival into a macrocell is
fast or slow with a certain probability. The probability that an
arriving call is fast or slow may be different in different macro-
cells. A call arriving to a macrocell is assumed to be located in
a particular microcell within the macrocell with a certain prob-
ability. The conversation time for a call and a mobile's sojourn
time in a cell are assumed to be exponentially distributed. Fur-
thermore, the intervals at which a mobile changes its mobility
are also assumed to be exponentially distributed. In practice,
these intervals will include the time to reliably detect the mo-
bility change.

Macrocells are numbered and are indexed by integers
. There are microcells in the th macrocell. The

microcells in the th macrocell are numbered using double
indexes . Define:

number of channels assigned to macrocellin the
macrolayer;
number of channels assigned to microcellin macro-
cell ;
total arrival rate of new calls (fast and slow) in macro-
cell ;
probability that a new call in macrocellis a fast call;
probability that a call originating in macrocell is
physically located in microcell;
mean conversation time of a call in the system;taken
to be one always; thus, all times are normalized to the
mean call duration;
mean sojourn time of a slow call in the microcell ;
mean sojourn time of a fast call in the macrocell;
rate of change of mobility of fast calls;
rate of change of mobility of slow calls.

The mobility change model is to be understood as follows: a call
that is now a slow call will become a fast call after a random time
that is exponentially distributed with mean , provided, of
course, that the conversation lasts that long. We further define:

probability that a call leaving macrocell enters
macrocell ;
probability that a call leaving microcell enters
microcell .

Performance Measures: In this paper, we analyze the
models to obtain thenew call blocking probabilityfor each call
class (i.e., slow or fast); i.e., the probability that a new call of
that class is blocked on arrival to the system. We denote the
blocking probabilities by and . Other performance
measures of interest would be: handoff blocking probabilities,
call dropping probabilities, and the system signaling rate for
setting up new calls and handling handoffs.

III. A NALYSIS OF THE MODEL

A. The Approximate Analysis Approach

There are cells, indexed by , and cell
has microcells, indexed by . We define
the following stochastic processes for .

For , define:

number of fast calls in the macrolayer of cell;
number of slow calls in the macrolayer of cell

and for
number of slow calls in themacrolayerof cell that
are located (at time) in microcell ; [of course,

];

number of slow calls in themicrolayer that are lo-
cated (at time) in microcell

and denote by

With our stochastic assumptions (Poisson new call arrivals,
exponentially distributed channel holding times, exponentially
distributed cell sojourn times, and Markovian call routing be-
tween cells), the stochastic process

is a Markov process. The number of calls in each layer is re-
stricted by the total number of available channels in that layer.
Hence, we have a finite state space for this process. For finite and
positive values of all the rate parameters, this Markov process is
irreducible and hence positive recurrent; thus, a stationary distri-
bution exists. In principle, the stationary blocking and dropping
probabilities can be obtained from this stationary distribution.
Owing to the several special features of this model (handoffs,
overflows, repacking, and mobility change), the stationary dis-
tribution does not have a “product form.” Furthermore, owing to
the large size of the state space, direct numerical computation
is intractable. Consequently, we resort to an approximate anal-
ysis technique similar to the one adopted by several previous
researchers in this area (for example, [8] and [16]).

The process in the cell, i.e., , is analyzed in iso-
lation, assuming that the arrival process of handoffs from the
neighboring cells is Poisson. This is done for every cell, and,
using the intercell routing probabilities, handoff rates between
the various cells are obtained. The isolated cell analyses are re-
peated with these new handoff rates. This iterative process is
begun with some initial value of handoff rates entering each
cell (e.g., zero rates). If this iterative calculation converges (as
it does in all the cases that we have studied), then the limiting
probability distribution provided by the iteration at theth cell
is taken to be the stationary distribution of theth marginal of
the process . Since new call arrivals are
Poisson, this yields an approximation for the new call blocking
probability.

In this paper, we: 1) develop the isolated cell analysis
with Poisson arrivals, with macrocells, microcells, repacking
and mobility changes and 2) examine the accuracy of this
approximate analysis procedure for a homogeneous cellular
network (i.e., all cells are identical, having the same number
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of microcells, arrival rate, mean call holding time, and sojourn
time, and also the same number of channels in the macrolayer
and microlayer). Such a homogenous model can be used to
model the central cells in a large array of cells in which the
nonhomogeneity is only in the boundary cells. Note that the
models analyzed in [9] and [13] are also homogenous.

B. Additional Notation for the Analysis of an Isolated Cell
in the Homogeneous Model

For the homogeneous model, in the stationary regime, we
drop the superscript from the various notations. We denote
the stationary marginal random variable for by ,
for by , for by , and that for
by . Also, for the homogeneous case, the notation in Sec-
tion II-B yields

.
Define arrival rate of new fast calls in a macrocell; these

are serviced in the macrolayer (thus, ); arrival
rate of handed-off fast calls in the macrolayer; arrival
rate of fast calls in the macrolayer due to mobility change of
slow calls in the microlayer; and total arrival rate of fast
calls in the macrolayer. Hence

(1)

We also define the following arrival rates of slow calls.
arrival rate of new slow calls in a microcell [hence,

]; arrival rate of slow handoff calls in a microcell;
arrival rate of slow calls in a microcell due to change of

mobility of fast calls in the macrolayer; the total arrival
rate of slow calls in a microcell. Hence

(2)

Furthermore, we denote by the rate of arrival of overflow
slow calls to a macrocell. The rates and are
a priori unknown and are calculated iteratively after assuming
an initial value for them. The dependence of these rates on the
various random variables defined in Section III-A is shown in
Section III-B1.

1) Calculation of Various Stationary Rates:The rate at
which fast calls handoff from a macrocell is. A handed-off
call can enter any one of itsneighbors with equal probability.
All the cells are assumed to be identical and, hence,
(see the stationary marginal random variables defined above)
is taken as the expected number of fast calls in any cell in the
macrolayer. It is clear that in the stationary regime, the arrival
rate due to handoffs from a single neighbor cell is .
These arrivals occur from all theneighbors of a cell. Hence

(3)

is the expected number of slow calls in the macrolayer,
and is the expected number of slow calls in a microcell.
Assuming homogeneity among the microcells within a cell also,
we have . Since slow calls oc-
cupying macrolayer channels are always attempted to be handed

off to the microlayer when they cross a microcell boundary, we
have

(4)

Also, slow calls from any of the microcells of a macrocell
may become fast calls at rate. Therefore

(5)

Since all the microcells in a cell are considered to be identical,
a fast call in the macrocell is located in any one of the micro-
cells with probability . is the rate at which fast calls
in the macrolayer generate slow calls due to mobility change.
Hence

(6)

and are again functions of the net arrival
and net service rates of fast and slow calls in a cell. Hence,
these can be computed iteratively and then used to compute the
blocking probabilities.

C. Analysis of the Isolated Cell Model Without Repacking

In this model, a slow call that arrives in a cell and is served
in the macrolayer, owing to the nonavailability of a channel in
the microlayer, is retained in the macrolayer until it requires
radio–reason handoff, or crosses a microcell boundary, or until
it completes the conversation. If the slow call crosses a microcell
boundary (even if it is in the same macrocell), then a channel is
first sought for it in the microcell that it enters.

The isolated cell model comprises groups of servers
each, corresponding to the microcells, and one group of
servers corresponding to the macrolayer channels. Slow calls
arrive to the microcell in a Poisson process
at the rate ; fast calls arrive to the macrolayer channels in a
Poisson process at the rate. A slow call finding its microcell
full overflows to the macrocell channels. A fast call holds a
macrocell channel for an exponentially distributed duration
with rate , but changes class to slow at the rate.
Similarly, a slow call in the macrolayer holds a channel for
an exponentially disributed time with rate , but changes
mobility at the rate . Observe that, without mobility changes,
this model is just the classical overflow model that arises in
telephone trunk engineering. Owing to the large number of
microcells, we assume that the overflow process is Poisson.
We will show how this approximation works in comparison
with simulations. In contrast in [9] the overflow process is
modeled by an IPP; for our situation, where we are modeling
several new features, considering the additional state of the IPP
would further complicate the analysis. Simulations show that
our approximations are adequate.

1) Stationary Analysis of the Microlayer:For a microcell
in isolation, assuming Poisson arrival processes, is a
Markov chain on , with the transition rate diagram
shown in Fig. 1; here is as defined in Section III-B.
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Fig. 1. Transition rate diagram for the microcell processZ(t), with no repacking.

Hence, the stationary probability, is calculated
from the Erlang formula, Erlang , which is defined as

Erlang (7)

where is the offered load in Erlangs and is given for our model
as .

Finally, [as needed in (4) and (5)] is computed, using
Little's theorem, as

(8)

2) Stationary Analysis of the Macrolayer:Slow calls
blocked from microcells, or those changing mobility, arrive
into the macrolayer. Hence, in the isolated cell model, the
process depends on the process . If
the number of microcells in a macrocell is large, then we can
expect that the dependence of the macrolayer process on any
particular microcell will be small, and also the microcells will
be weakly dependent among themselves. With this in mind, we
approximate this dependence by using the stationary probabili-
ties obtained for and hence model as a
Markov chain with state space .

The macrolayer has new fast call arrivals in a Poisson stream.
A fast call can leave the macrolayer for one of three reasons: on
call completion, or on cell boundary crossing, or on a mobility
change with the probability that the microcell in which it is lo-
cated has a free channel. To account for this last possibility, we
need the conditional probability distribution of , condi-
tioned on the states of the process . However, as
stated earlier, as an approximation, we use the stationary prob-
abilities of the process . Hence, the rate at which a fast
call leaves the macrolayer due to mobility change is calculated
as . A slow call leaves the macrolayer either
on call completion or on cell boundary crossing; from the point
of view of a single isolated cell model, a slow call, in the macro-
layer, that crosses its microcell boundary is seen as leaving the
macrolayer (since an attempt is made to serve it in the micro-
layer of the neighboring cell; see Section II); actually, if the
neighboring microcell is full, then the call may be retained in
the macrolayer, but this will be viewed as a new overflow arrival
from the microlayer in our analysis. Let denote the total rate
at which a fast call leaves a macrocell in the macrolayer and
denote the total rate at which a slow call leaves the macrolayer.
From the arguments above, we have the relations

(9)

(10)

Slow calls arrive into the macrolayer when the microcell
in which they are located has no free channels. New and

Fig. 2. Transition rate diagram for macrocell processf(X(t); Y (t))g, with
no repacking.

handed-off slow calls arrive to each microcell at the rate
. Hence, the rate of arrival of overflow slow calls to

the macrolayer is

(11)

The arrival rate of fast calls to the macrolayeris given by (1)
and the expressions in Section III-B1.

A fast call becomes a slow call and is retained in the macro-
layer if all the channels in its corresponding microcell in the mi-
crolayer are occupied. As above, we assume that a fast call that
becomes slow finds its corresponding microcell full with prob-
ability . Furthermore, a slow call in the macrolayer
retains its channel if it becomes fast. With these observations we
define the rates

(12)

(13)

It is now clear that, with the assumptions made and the nota-
tion defined, has the transition diagram shown
in Fig. 2.

It is easily seen that the transition diagram in Fig. 2 is the same
as that of the closed Markovian queueing network shown in
Fig. 3. There are two nodes, 1 and 2; node 1 represents the arrival
process and node 2 the service process. There are three types
of calls: the incoming calls that are only at node 1, and fast and
slow calls that are at node 2. The service rate at node 1 is ;
customers at node 1 depart as fast or slow calls according to
the probabilities and where



326 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 2, MARCH 2000

Fig. 3. Equivalent product form queueing network model for the Markov chain
in Fig. 2.

. The service rates at node 2 are and
for fast and slow calls, respectively. The mobility

changes are taken care of by class changes. The valuein-
dicates the probability that a fast call leaving node 2 returns to
node 2 as a slow call; here, . Similarly
we obtain . We can use the BCMP theorem [6] to show that
there is a product form solution for the stationary distribution of
the process . The product form stationary distri-
bution of the random vector is

(14)

where

(15)

(16)

Given , the new call blocking at the macrolayer is given
by

(17)

3) Calculations from : The problem of finding
is the same as that of finding the blocking

probability in an Erlang-B model in which two classes of
customers arrive in Poisson processes; one class brings a load
of Erlangs and the other a load of Erlangs. We can
merge the two Poisson streams into one with a holding time
distribution that is the probabilistic mixture of the two, and
which brings a load of . Since the Erlang blocking
formula is insensitive to the holding time distributions and
depends only on the load, we have (exactly)

(18)

Also, from Little's theorem we have

(19)

(20)

The expected values [given by (8)], , and
are used to calculate the arrival rates due to handoffs and mo-

bility changes in the macrolayer and the microlayer as described
in Section III-B1. With these new rates, the next iteration is per-
formed. Starting with and ,
the iterations are continued until the change in the rates is less
than a small .

When the iterations terminate, the final values for the single
isolated cell analysis yield the desired blocking probabilities.
The fast call blocking is equal to the probability that the macro-
cell is full and is given by the (18). The slow call blocking is
approximated by the product of macrocell blocking and micro-
cell blocking. Hence

(21)

(22)

D. Analysis of the Isolated Cell Model with Repacking

Repacking refers to the policy that a slow call using a macro-
cell channel is shifted to a channel in the microcell in which it
is located as soon as one frees up. Thus, if a slow call is oc-
cupying a macrolayer channel, itimplies that its microcell is
full. Repacking is similar to a handoff from the point of view of
the signaling required to achieve it. Hence, there is the ques-
tion of the improvement in the blocking performance due to
repacking versus the increase in the signaling load. The “ag-
gressive” repacking strategy that has been described here may
not be the best to adopt, as it may cause excessive signaling load
without much gain in blocking performance. For a performance
study of various “lazy” repacking strategies, see [20]. We pro-
ceed in this paper with the assumption of aggressive repacking.

We first obtain an approximation to the blocking proba-
bilities when there are no mobility changes and later include
mobility changes. Without mobility change, the isolated cell
model comprises banks of servers each, corresponding
to the microcells, and one bank of servers corresponding
to the macrolayer channels. Slow calls arrive to the microcell

, in a Poisson process at the rate(see Sec-
tion III-B); fast calls arrive to the macrolayer channels in a
Possion process at the rate. A slow call finding its microcell
full overflows to the macrocell channels. When a slow call
departs from a microcell, a slow call located in that microcell
that is holding a macrocell channel is moved to the vacated
microcell channel. A slow call holds a channel (microcell or
macrocell) for an exponentially distributed time with rate .
A fast call holds a macrocell channel for an exponentially dis-
tributed duration with rate . Define
for ; i.e., is the total number of slow calls
in microcell at time . Note that, owing to repacking,

and . It is clear
that the process has a product
form stationary distribution since we have a multiclass resource
sharing model with a coordinate convexpartial sharingpolicy
(see [11]). In principle, the blocking probabilities can be
computed from this product form distribution. Since this is a
partial sharing policy, Kaufman's recursion does not apply. For
the large numbers of channels (order of 100), and the large
numbers of microcells that we will consider, direct computation
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Fig. 4. Transition rate diagram for the microcell processfZ(t)g, with repacking (mobility change not considered).

is not tractable. We will use this product form distribution,
however, to make certain exact arguments in the approximate
analysis that we now develop. In [21], the product form is
observed to be equivalent to that of a circuit switched network,
and an Erlang fixed point iteration is used; an accuracy of 15%
to 40% is reported.

1) Stationary Analysis of the Microlayer:As before, we first
consider a microcell process , for some .
We model approximately as a Markov chain on the state
space . When , the macrolayer holds at
least one slow call that belongs to this microcell with probability

. Hence, owing to repacking, the transition
rate from the state to is

. The remaining transition rates are unaffected by
repacking and are as in Fig. 4. For the purpose of blocking prob-
ability calculations in later sections, we need to obtain the con-
ditional probability . Observe that, owing to
the fact that slow calls are always offered to the microcell first,
and owing to repacking, when the set of states with is
exited then ; furthermore, the set of states with
is entered only from the set of states with . It follows
that the process conditioned on is just the
Erlang-B process with offered load and number of
servers . Hence

Erlang (23)

Observe that we do not have ; hence, the
analysis of the Markov chain for is not possible. We will
see, however, that this analysis is not necessary for the calcula-
tion of blocking probabilities.

2) Stationary Analysis of the Macrolayer:As in Sec-
tion III-C2, we analyze the process
by approximating its interactions with
using stationary probability distributions.

When , a slow call from microcell is offered to the
macrolayer only when it is blocked in the microcellinto which
it arrives. This happens with probability ,
which has been obtained above. When , since repacking
is done, the microcell must be full, and every slow call ar-
rival to this microcell will overflow into the macrolayer. Thus,
defining , the transition rate from
state to

is while the transition rate from states
to is for .

We now develop an approximate analysis for the process
, which has the state space,

.
Define the random process ;

where is the indicator process of the set . Thus,

is the number of microcells that have slow calls in
the macrolayer. Observe that, given the process , we
can obtain the transition rates for the coordinate of the
process . When and , we
see that overflowed slow calls arrive into the macrolayer from

microcells with a total arrival rate , while calls arrive
from the remaining microcells with arrival rate .
Therefore the net arrival rate of slow calls to the macrolayer
when and is given by

(24)

Let . When a slow call departs from one of these
microcells, a slow call that belongs to that microcell is moved

from the macrolayer to the microlayer. Due to this repacking,
the rate of departure of a slow call from the macrolayer when

is given by

(25)

This is because a slow call departs from the macrolayer even if
one of the calls in any of the full microcells departs.

Unless we keep track of , we do not
know the value of . To obtain an approximate analysis of

, we estimate a value for , given , and
use this estimate in the transition rate formulas shown above.
Thus, given the number of slow calls in the macrolayer we want
to obtain an estimate of the number of microcells they belong
to.

We do this by considering anurn model with urns (cor-
responding to the microcells), into which balls
are placed in succession as follows; at the end of placing the
balls, the number of nonempty urns corresponds to. The first
ball is thrown into any one of the urns with equal probability
(this corresponds to the fact that the first slow call to be han-
dled by the macrolayer comes from any of the microcells with
equal probability). Now, given that there are exactlymicro-
cells that have at least one slow call in the macrolayer, the rate
of arrival, into the macrolayer, of a slow call from any of these

cells is while the rate from the other cells is .
Thus, the next slow call arrives from thesecells with prob-
ability . The probability that the next slow
call is from the rest of the cells is .
Hence, in the urn analogy, if there areoccupied urns, the next
ball is thrown in such a way that the number of occupied urns
increases by 1 with probability . Note
that, since will be small, the next ball is thrown into occupied
urns with a much larger probability than the unoccupied urns.

Let be the probability that there arenonempty urns after
balls are thrown into the urns in the manner described. These
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Fig. 5. Transition rate diagram for the macrocell processf(X(t); Y (t))g,
with repacking.

can be recursively calculated with the following equations (
are indicator functions):

(26)

We know that and .
Finally, given , we estimate the value of as

the expected number of nonempty urns in the above urn exper-
iment; i.e., we define

(27)

and use this value for in (24) and (25), given , to
obtain the transition rates for the coordinate of the process

. Equation (27) requires the computation of
for all possible values ofand . This can be avoided by using a
recursion for directly computing (this is provided in [17]).
Thus, we have approximated the process by a
Markov chain with the transition rates shown in Fig. 5; here

.
Observe that we have a two class blocking model in which the

arrival rates and the service rates of each class depend only on
the marginal number in that class. Hence, the stationary distri-
bution has the following product form (see [12]). For

(28)

where

(29)

and are as given in (24) and (25), with . is
the normalization constant given as

(30)

The probability that all the channels are occupied in the macro-
layer is thus

(31)

3) Blocking Probabilities for Fast and Slow Calls:Iterative
application of the above analysis provides an approxima-
tion to the stationary probability distribution for the process

. The blocking probability for fast calls is the
probability that all the channels in the macrolayer are occupied.
Hence

(32)

Slow calls are blocked if the microcell to which they arrive
and the macrolayer channels are full. Since all the microcells
are considered to be identical, the blocking probability for slow
calls arriving into any microcell is

(33)

Writing out the right-hand side of (33), we get

(34)

The product form for the stationary distribution of
can now be used

to establish certain conditional independences (shown in Ap-
pendix A, Lemma A.1). These are used to yield the following
simplifications:

(35)

Similarly

(36)

Hence, we get

(37)

is obtained from the stationary
distribution (28) (see [17]). Also
Erlang as shown in Section III-D1. Obviously,
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, owing to the repacking
policy. Finally, recalling the definition of the process
from Section III-D2 and letting denote the stationary random
variable for , we have

(38)

and, of course

(39)

We approximate with from (27).
Hence, we have all the ingredients to compute from

(37).
4) Including Mobility Changes in the Analysis with

Repacking: When there are mobility changes in the system,
the model for the macrolayer has a transition structure with
“diagonal” transitions due to change of type of calls. Since
the transition rates in the coordinate are not simply
proportional to , the product form distribution now fails to
hold. Furthermore, we do not have an analysis of the microcell
process ; hence, we cannot obtain arrival rates of slow calls
due to mobility change as we did in the case with no repacking.

We develop an approximation for the blocking probabilities
by viewing a change of mobility as an arrival of a call of the
other type. Each slow call arrival is viewed as an arrival of a
slow call, and also an arrival of a fast call with the probability
that the slow call will change class before it terminates or leaves
the microcell in which it arrived. The channel holding times of
these two arrivals are adjusted so that the total offered Erlang
load due to slow calls remains unchanged. The same is done for
fast calls.

Let and . Define
is the probability that a slow call changes mobility before it

terminates or hands off. Thus, if is the total arrival rate of fast
calls in a macrocell and that of slow calls in a microcell, then,
after including mobility change, the net arrival rate into the fast
call stream is taken as , where

(40)

Similarly, if is the net arrival rate of slow calls into the
microcells in a macrocell, then

(41)

where . We now obtain the modified channel
holding rates. Let denote the mean duration of stay of the
fast part of a call in the macrocell. It stays for at least a mean
duration of . Then, with probability it becomes a
slow call which again becomes a fast call with probability.
Hence, with the probability , the fast call returns to the
system as a fast call and takes an additional durationto leave
the system. Hence

(42)

Therefore

(43)

Also, . From this we obtain

(44)

A similar expression can be obtained for the mean duration of
stay of a slow call (as a slow call) in a microcell, finally yielding

(45)

Now and can be considered to be the net arrival rates
of fast and slow calls, respectively, in a macrocell. Similarly,

and can be considered as the net termination rates of the
calls in the macrocell. Thus, the macrolayer model with mobility
changes is analyzed by replacing, in the previous analysis,
with with , and with .

IV. COMPARISON OFANALYSIS AND SIMULATION

Recall that our analysis approach involves two levels of ap-
proximations. The isolated cell analysis is approximate, even
for Poisson arrivals and exponential service times. The multi-
cell analysis is approximate because the handover processes are
modeled approximately as Poisson processes, with rates deter-
mined from the stationary analysis of the isolated cells. It is im-
portant to understand the contribution of the errors in the nu-
merical results from each of these major approximation steps.
In Section IV-B, we show numerical results obtained from the
analysis of asinglemacrocell in isolation. We compare these
analytical results with those from a single macrocell simula-
tion with Poisson call arrivals. Overflow and repacking within
the macrocell are modeled; the number of microcells and the
channel partitioning are varied. These results serve to validate
the approximations used in the analysis that we have developed
for an isolated cell.

In Section IV-C, we show numerical results obtained from
the analysis and simulation of a multicell system, for varying ar-
rival rates, and mobility parameters. Whereas the analysis is just
iterative calculations on a single macrocell, the multicell simu-
lation models a system of 64 macrocells each with a number
of microcells. In the simulation, the assumptions of Poisson
new call arrivals, exponential channel holding times, exponen-
tial cell sojourn times, and exponential time interval between
mobility changes are identical to those in the analysis. How-
ever, call mobility, handoffs to neighboring cells, repacking of
slow calls, overflow, and mobility changes are all actually sim-
ulated. In the simulation, for example, handover calls are routed
to neighboring cells in each layer and are then handled in the
neighboring cells; when slow calls located in a microcell are in
the macrolayer and a slow call departs from that microcell, then
a slow call from the macrolayer is repacked; if a slow call in
the macrolayer moves to a new microcell with a free channel,
the slow call is repacked, etc. Thus, the details of the move-
ment and state changes of the calls are simulated exactly as
they would be in the full multicell Markov process

(see Section III).

A. System Parameters for the Numerical Results

The number of channels allocated to each (macro)cell is
80; with a reuse factor of three between the macrocells, this
would mean that there are 240 channels available in the system.
Nonoverlapping channel sets are assigned to the macrolayer
and the microlayer. A reuse factor of four is assumed in the
microlayer; hence, the set of channels allocated to the micro-
layer is partitioned into four sets. It follows that .
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TABLE I
SINGLE MACROCELL WITHOUT REPACKING,
� = 0; � = 0; m = 16; N = 56; n = 6

TABLE II
SINGLE MACROCELL WITH REPACKING, � = 0; � = 0; m = 16;

N = 56; n = 6

TABLE III
SINGLE MACROCELL WITHOUT REPACKING, � = 0; � = 0; m = 36;

N = 64; n = 4

When a macrocell is divided into microcells, the area of
the microcell is times the area of the macrocell. Hence,
the linear distance that a mobile travels to leave a microcell
is times the linear distance the same mobile travels to
leave a macrocell. Assuming that fast mobiles are five times as
fast as the slow mobiles, the sojourn rates of the fast and slow
calls (in macrocells and microcells, respectively) are related by

. We also take the mobility change parameters to
be related by .

Since the value of (the mean conversation time) is taken
as one, the values of the cell sojourn rates and the rates of change
of mobility are normalized to the mean conversation time. Thus,
for example, is the average number of macrocells that a fast
call crosses during its conversation time.

B. Validation of the Isolated Cell Analysis

Tables I–IV show slow call blocking and fast call blocking
versus Erlang offered load, in an isolated cell; results are shown
from our approximate analysis and from a simulation of the iso-
lated cell model. The specific parameters are given in the figure
captions; in each case, the fraction of arrivals that are fast calls
is 0.4. Results are shown with and without slow call repacking.
Observe that the analysis, in spite of the many approximations
made, is quite accurate.

Owing to the fact that slow calls can use macrocell channels,
their blocking probability is much smaller than that of fast calls.
This discrepancy, which will result in inefficient system sizing,

TABLE IV
SINGLE MACROCELL WITH REPACKING, � = 0; � = 0; m = 36;

N = 64; n = 4

Fig. 6. Multicell system without repacking;� = 0; � = 0.

is corrected by channel reservation (for an analysis with reser-
vation, see [19]).

Note that repacking of slow calls will always help to reduce
the blocking probability of fast calls, but may increase or de-
crease the blocking probability of slow calls. The blocking prob-
ability can increase since without repacking new slow calls can
use free channels in the microlayer, which would have been
filled up by repacking. Blocking is a bursty phenomenon, how-
ever, when there are free channels in a microcell and slow calls
from that microcell occupy macrolayer channels, then repacking
these calls helps slow calls arriving atothermicrocells that may
be experiencing a period of blocking. The latter effect is ex-
pected to predominate when the number of microcells is large,
and the blocking probability of slow calls at their microcells
is large; in this scenario there is a large probability that at any
time some microcell is overflowing. Observe that for

, introducing repacking increases the blocking
of slow calls, but substantially reduces that of fast calls. For

, however, there is a slight decrease in
slow call blocking when repacking is introduced.

C. Analysis and Simulation Results for the Multicell Model

A multiple macrocell system is analyzed using our iterative
analysis and using a multicell simulation; graphs between the
Erlang load and the blocking probability are plotted for the pa-
rameter values , and . The
simulation is done for a homogeneous system with 64 macro-
cells.

Figs. 6–9 show the results without slow call repacking. Al-
though done for the multicell case, since , Fig. 6
is just another case of the single-cell results presented in the
previous section; we provide this figure for comparison with
the results for the same system parameters with mobility. In
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Fig. 7. Multicell system without repacking;� = 0:5; � = 0.

Fig. 8. Multicell system without repacking;� = 3:0; � = 0.

Fig. 9. Multicell system without repacking;� = 0:5; � = 2:0.

Figs. 7 and 8, there is mobility, but no mobility change (in Fig. 7,
; hence, with , the value of ; in Fig. 8,

and ). In Fig. 9, there is mobility and mobility
change; here .

In Figs. 10–13, we provide results with repacking of slow
calls. Each of the figures for the cases without repacking has a
corresponding figure here, and the results between these should
be compared.

Observe, first of all, that the analysis results compare well
with those obtained from the simulation. Analysis has the major
advantage of requiring just a few minutes of computation time
versus the several hours required for accurate simulation. Thus,

Fig. 10. Multicell system with repacking;� = 0; � = 0.

Fig. 11. Multicell system with repacking;� = 0:5; � = 0.

Fig. 12. Multicell system with repacking;� = 3:0; � = 0.

such an analysis can be very useful in an iterative system sizing
process.

In each case, introducing repacking substantially reduces
fast call blocking and increases or slightly reduces the blocking
probability of slow calls. Since we do not have channel reserva-
tion in these results, slow call blocking is much lower than fast
call blocking. Increasing the mobility rate is seen to reduce the
blocking probability; this is because with increasing mobility
some calls are dropped before they complete conversation, thus
reducing the overall occupancy of the channels. We are not
controling dropping probability in these results, as our objective
here is only to validate the analysis against simulations.
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Fig. 13. Multicell system with repacking;� = 0:5; � = 2:0.

V. CONCLUSION

We have studied the performance of microcellization in a cel-
lular network, in which the mobiles can be classified as fast or
slow. We have developed approximate analyses for calculating
the slow and fast call blocking probabilities and have validated
the analyses against a detailed multicell simulation. The approx-
imate analysis is an iterative procedure that utilizes an analysis
of an isolated cell. We find that in spite of the many approxima-
tions made, the analysis results compare well with the simula-
tions. For a large number of microcells, exact analysis of even
the isolated macrocell processes is intractable; we are able to
obtain approximations that require the analysis of no more than
two-dimensional (2-D) Markov chains. Such analyses are useful
in an iterative procedure for sizing a cellular system to achieve
a desired grade of service, since their computation time is much
smaller than that for simulations.

It is a relatively straightforward matter to obtain approxima-
tions for dropping probabilities and signaling rates from the
analysis [17]. Our analysis procedure in this paper does not
permit reservations for fast calls or handovers; the isolated cell
analysis needs to be enhanced to accommodate this feature. It is
also interesting to explore “lazy” repacking policies. The latter
two issues have been addressed in our more recent work re-
ported in [19] and [20]. In these references, we have also studied
the use of these analytical techniques for system design, i.e.,
choice of the number of microcells and channel partitioning.
More efficient policies for channel allocation to the macrolayer
and the microlayer need to be explored.

APPENDIX I
PROOFS OFCERTAIN CONDITIONAL INDEPENDENCERELATIONS

FOR THEANALYSIS WITH REPACKING

As observed previously in this paper (Section III-D),
the process has a product
form stationary distribution. The stationary probability of

is
of the form

(A.1)

where is a normalization constant and
is in the state space

. Let
denote the stationary random vector for the process

.
Let be a set of values that can

take.
Lemma A.1:

(A.2)

Proof: From the product form distribution, we have

We denote the set
by and

the set
by . Observe that and do not

depend on . Denoting these sets by and , we have

(A.3)

We now obtain an expression for .
Recall that . We have

From the definition of the sets and above, we have

(A.4)

Since and do not depend on, (A.4) yields

(A.5)
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From (A.3) and (A.5) we have the result.
It follows that

Similarly, it can also be shown that
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