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The Rearrangement Process in a Two-Stage 
Broadcast Switching Network 

S0REN B . JACOBSEN 

Abstract-This paper considers tbe rearrangement process in the two- 
stage btoadcast switching network presented by F. IC. Hwang and G .  W. 
Richards in IEEE TRANSACTIONS ON COMMUNICATIONS, October 
1985. By defining a certain function it is possible to calculate an upper 
bound on the number bf connections to be moved during a rearrange- 
ment. When each inlet channel appears twice, the maximum number of 
connections to be moved is found. For a special class of inlet assignment 
patterns in the case where each inlet channel appears three times, the 
mPxlmum number of connections to be moved is also found. In the 
general case, an upper bound is given when the number of outlets at each 
secand-stage sdtch i s  kept below a certain bound. 

I. THE KNOWN PROPERTIES OF THE NETWORK 

HE network to be considered here (see Fig. 1) is identical T to the one presented in [ 11, and it is described by the three 
parathetres nl, n2, and M where 

nl is the number of inlet channels at each first-stage 
switch, 

n2 is the number of outlets at each second-stage switch, 
and 

M is the number of times each inlet channel appears in the 
first stage. 

The number of crosspoints in the network divided by the 
number of crosspoints in the corresponding rectangular switch 
is called the reduced number of crosspoints and is given by 

C&=M(l/nl+ l/nz). (1.1) 
To minimize C,, the fraction M/nz has to be made as close to 
zero as possible but the rearrangement requirement puts a 
lower bound on the fraction. 

Hall's theorem on a system of distinct representatives [2] 
ensures that the network is rearrangeable, if and only if, the 
following condition is fulfilled. 

The Rearrangement Condition: For any n 5 n2, there 
are at least n first-stage switches containing appearance of 
any n inlet channels. 

To ensure that the n f inlet channels are effectively rotated in 
the M blocks the following condition is assumed to be 
fulfilled. 

The Pair Condition: No pair of inlet channels appears 
on the same first-stage switch more than once throughout 
the Mn, first-stage switches. 

All the inlet assignment patterns presented in [l] fulfill the 
pair condition, but instead of working with some explicit 
patterns, it is more advantageous in a general approach just to 
assume the pair condition to be fulfilled. 

11. A N  UPPER BOUND ON THE NUMBER OF CONNECTIONS TO BE 
MOVED DURING A REARRANGEMENT BY MEANS OF THE 

FUNCTION 
As it will be seen later, the rearrangement condition as well 

as an upper bound on the number of connections to be moved 
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Fig. 1. The network presented in [ 11. Every inlet channel has exactly one 
appearance in each of the M blocks. 

during a rearrangement can be given by means of a function 
whose values are in general unknown. The function will be 
called and it is defined by means of another function 

TM,,,(E) : = The number of first-stage switches having 

Let E be a subset of the set of inlet channels. Then, 

- elements from E amongst its inlet channels. (2.1) 

Now is defined by 

SM n 1 (n) : = min { TM,,,(E)IE has n elements}. (2.2) 

SM,nl is an increasing function, it depends on the inlet 
assignment pattern chosen, and (n)  denotes the smallest 
number of first-stage switches that n inlet channels can appear 
on. 

In terms of we have 

The network is rearrangeable if and only if 

n s S M , , , ( n )  for all n s n 2 .  

This means that the optimal choice for n2 is 

An upper bound on the number of connections to be moved 
during a rearrangement can be found in terms of a sequence 

0090-6778/88/04oO-0484$01 .oO 0 1988 IEEE 
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{ s k }  defined recursively from S+, by 

SI : = S M , ~ , ( ~ )  and S k + l  : = s ~ , ~ , ( S k +  1). (2.4) 

The main result of this section is as follows. 
Result 2. I :  Let r denote the integer with the property: s, 

5 n2 - 1 and s,, 2 n2. Then the number of connections 
to be moved during a rearrangement will never exceed r. 

Proof: To prove the result, consider the rearrangement 
algorithm given in [l]. It is characterized by the blocking 
relationship tree and its associated levels. The development of 
the tree stops at the first level where an idle switch arises. See 
Fig. 2. The important fact, given in [l], is 

The number of connections to be moved is one less than 
the number of the level where the first idle switch arises. 

Now the idea is to step through all levels of the blocking 
relationship tree, and in each level, keep an eye on the total 
number of inlet channels that have appeared so far, and to see 
how many first-stage switches they necessarily have appear- 
ance on. Sooner or later a level is reached where so many inlet 
channels have appeared, that the number of switches they 
demand, exeed the number of busy lines, which is, at most, n2 
- 1. When this occurs, at least one switch is idle. 

The sequence { s k }  is defined so that sk is a lower bound on 
the number of first-stage switches that have appeared in the 
first k levels of the blocking relationship tree. This fact is 
explained in Fig. 3. Therefore, an idle switch must arise in the 
first level where sk 5 n2. which according to the definition of r 
is level r + 1. This concludes the proof of Result 2.1. 

To use Result 2.1 on a given network, it is sufficient to 
know SM,nl ( n )  for n = 1 ,  2, - e ,  n2 + 1 .  In the case M = 2, 

is independent of nl and for n 5 6 it takes the following 
values: 

485 

This means that the optimal choice for n2 is 5, as given in [ 11. 
The sequence { s k }  takes for k d 3, the values 

from which we see that the integer r defined in Result 2.1 
equals 2 proving. 

Result 2.2: The number of connections to be moved 
during a rearrangement will never meed 2, when M = 2. 

Fig. 2 shows a situation where two connections must be 
moved. This means that the maximum number of connections 
to be moved is two. 

m. THE MAXIMUM NUMBER OF CONNECTIONS TO BE MOVED 
DURING A REARRANGEMENT FOR A SPECIAL CLASS OF INLET 

ASSIGNMENT PATTERNS WHEN M =  3 

In this section, we consider the case M = 3. Fix an inlet 
assignment pattern and let the switches in each of the 3 blocks 
be numbered 0, 1 ,  * - e ,  nl - 1 .  We will show that this inlet 
assignment pattern induces a latin square of order nl .  Define 
the nl x nl matrix Z by 

ij'te element in 2 is the number of the switch in block 3, 
containing the common element of switch i from block 1 
and switch j from block 2. 

This definition is taken from [3] and the pair condition ensures 
that 2 is a latin square. We restrict the calculation of Sa,nl to 
inlet assignment patterns where the induced latin square is the 
multiplication table of a group. Result 4.1 applied to the case 

I1 

I2 

I3 

I4 

I5 

I1 1 

112 

I13 

I14 

I15 

Fig. 2. The development of the blocking relationship tree. Here the tree 
stops in level 3 and the rearrangement is done by moving channel 11 to 
switch I3 and channel 1 to switch II2. 

lis, S I  switches 

I T  
Ill 

level 1 

a11 arr, 
s2 switches 

Ill 12x2 

a21 a2x2 
level 2 

1 
Sk switches 

1 lkl lkxk 

level k 
akr akxk 

Inlet channel a,, is present at sI = Fig. 3. (1) first-stage switches. 
None of them are idle meaning that sI + 1 channels are present. They have 
appearance on at least s2 = SM,", (sI + 1) first-stage switches. If none of 
them are idle we now have a total of s2 + 1 channels present, etc. 
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2 5  

3 6  
6 when 2 divides nl 

7 else 
5 8  

8 when 3 divides n, 

9 else 
7 9  

M = 3 together with the upper bound U3 given in Appendix A 
yields 

9 * 10 when 4 but not 3 divides nl 

. 11 else 
10 11 

11 when 4 divides n1 
11 

12 else 

11 when 4 divides nl 

l2 { 12 else 
I 12 'when 4 or 5 divides n1 

We will now determine when S3,nl (4) = 6. If S3,nl (4) = 6 
then there must exist four inlet channels appearing in two 
switches in block 1, in two switches in block 2, and in two 
switches in block 3. (If all four inlet channels appeared on the 
same switch in one of the blocks then they would appear on 
four different switches in the remaining two blocks.) In the 
language of latin squares this means we can find four entries 
appearing in two rows and two columns so that these four 
entries contain only two different element which we call xI and 
x2. Since the latin square corresponds to the multiplication 
table of a group, the two rows correspond to two group 
elements a l ,  a2, and the two columns correspond to two group 
elements bl, b 2  so that the multiplication table for {a l ,  a t}  x 
{bl, bd is e. 
This yields al = xI b; and a2 = x2b ; and therefore xlb;  Ib2 
= x2 and x2b;'bz = X I  implying (b;1b2)2 = 1. Since an 

element of order 2 exist, if and only if, 2 divides the order of 
the group, we have proved 

' 

6 when 2 divides nl 
7 else 

S3,*1(4) = 

In Appendix A, similar methods are used to find S3,n, (n) when 
n = 11 and 13. The remaining values can be calculated the 
same way. We therefore have the following. 

Result 3.1: Assume M = 3 and nI 2 4. For all inlet 
assignment patterns where the induced latin square is the 
multiplication table of a group, we have: 

1) S3,nl takes the values in Table I. 
2) The optimal choice for  nz (assuming S3,n,(14) I 13 for  

all inlet assignment patterns), and the maximum number 
of connections to be moved during a rearrangement are the 
numbers given in Table II. 

When nl is a multiple of four or five, it is easy to construct 
states where a rearrangement requires 3 connections to be 
moved. Figs. 4 and 5 show a state where 4 (5) connections has 
to be moved. The upper bounds given in Table I1 are therefore 
the maximum number of connections to be moved. 

Can the results in this section be extended so that they 
include arbitrary latin squares? The answer is no. Consider the 
following latin square: 

0 1 2 3 4  
1 6 3 4 2  
z s o 1 3 .  
3 2 4 0 1  
4 3 1 2 0  

Select the four entries in the two upper rows and the two left 
columns and conclude that S3,5(4) = 6 in this case where 2 
does not divides nl (= 5 ) .  

I For latin squares corresponding to some special groups of order a power 
of 3, it is in doubt whether &(14) = 13 or 14. If S3,"](14) = 14 there exist 
inlet patterns where best nz is 14. 

TABLE I 
THE VALUES OF THE FUNCTION S3,nl FOR 1 < ?I < 13 

l3 1 [ 13 else 

Iv. AN UPPER BOUND ON THE NUMBER OF CONNECTIONS TO BE 
MOVED DURING A REARRANGEMENT WHEN M IS ARBITRARY 
When nl and M grow, it becomes very time consuming to 

calculate the values of S M , ~ , .  It would, therefore, be advanta- 
geous if upper and lower bounds could be given. In Appendix 
A we prove the following. 

Result 4.1: For all inlet assignment patterns fulfilling the 
pair condition the follo wing estimate is valid: 

SM,nl (n) lGM(n)  for any n r n t  (4.1) 
where 

(4.2) 
( p  + 1)M- 1 when p 2  + 1 I n s p 2  + p  

G d n ) =  [ (p+1)Mwhenp2+p+1rns(p+1)2. 

Since GM(n) 5 SM,nl(n), the network is rearrangeable as 
long as n2 5 max {nln I GM(n)}.  But (4.2) gives that max 
{nln 5 GM(n)} = M(M + 1) - 1 so 

nz = M ( M +  1) - 1 (4.3) 
well known from [l]. 

To get an upper bound on the number of connections to be 
moved during a rearrangement the following sequence {gk} 
[compare to (2.4)] is defined 

(4.4) g1 := Gd1) and gk+l=GM(gk+ 1). 
gk has the following two obvious properties: 

1) gk I s k  for any k and gk is therefore a lower bound on the 
number of first-stage switches that have appeared in the first k 
levels of the blocking relationship tree. 

2) Let m be the integer with the property g ,  5 n2 - 1 and 
g,,  I 2 n2. Then m is an upper bound on the number of 
connections to be moved during a rearrangement. 

It is now easy to verify the following. 
Result 4.2: If nz I M(M + 1) - 1 then the number of 
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0 1 2 3 4 5 6  

42 43 44 45 46 47 48 

0 7 14 21 28 35 42 

1 8 15 22 29 36 43 

2 9 1 6 2 3 3 0 3 7 4 4  

4 11 18 25 32 39 46 

5 12 19 26 33 40 47 

6 13 20 27 34 41 48 

0 43 37 31 25 19 13 

7 1 44 38 32 26 20 

14 8 2 45 39 33 27 

21 15 9 3 46 40 34 

28 22 16 10 4 46 41 

42 36 30 24 18 12 6 

8 

/I\ 
level 1 7 15 14 

/ \  \XI 
level 2 1 21 9 16 

level 3 3 22 2 10 

\/ 
level 4 17 

I 
idle 

Fig. 4. In this network having a total of 49 inlet channels, a request is made 
for channel 8 and four connections have to be moved. 

connections to be moved during a rearrangement will for 
M 5 21 never exceed the numbers given in Table 111. 

In Appendix C it is proven that: 
Result 4.3: If n2 s M(M + I )  - 1, then the number of 

connections to be moved during a rearrangement will never 
exceed 3 + [(I/ln 2)ln(M21nM)] where rx] is the smallest 
integer bigger than or equal to x.  

Result 4.3 is not the best obtainable but it shows that the 
number of connections to be moved grow at most logarithmic 
in M. 

v. THE INLET ASSIGNMENT PATTERN AND FINITE GEOMETRY 
In this section, results from the theory of finite geometries is 

used to examine the inlet assignment pattern. 

level 5 4 .  

idle 
Fig. 5 .  In this network having a total of 36 inlet channels a request is made 

for channel 15 and five connections have to be moved. 

According to the definition [4, p. 2511, a geometric k net is 
a set of points together with a set of lines appearing in k 
different parallel classes such that 

1) each point belongs to exactly one line of each parallel 
class 

2) if I I  and 12 are lines of different parallel classes, then I I  
and 12 have exactly one point in common 

3) there are at least two points on each line. 
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nl is a multiple of 4 

n1 is a multiple of 5 but not 4 
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Optimal value 

for nz 

The maximum number of 

connections to be moved 

during a rearrangement 

11 3 

12 3 

nl is not a multiple of 4 or 5 

nl is not a multiple of 2, 3 or 5 

13 5 

13 4 

TABLE I11 
AN UPPER BOUND ON THE NUMBER OF CONNECTIONS TO BE MOVED 

DURING A REARRANGEMENT WHEN nz < M(M + 1)- 1 

the upper bound 

m 

M = 2  M = 3  M = 4  M = 5  M = 6  ,.., 9 M = l O  ,.., 14 M=15 ,.., 21 

2 3 4 4 5 6 7 

Consider a network with nl ,  M, and an inlet assignment 
pattern given. The n: inlet channels correspond to the set of 
points. Each of the M blocks corresponds to a parallel class, 
and each switch in a block corresponds to a line in this parallel 
class. Since each inlet channel is present exactly once in each 
block, 1) is fulfilled. The pair condition ensures that 2) is 
fulfilled, and for nl 2 2 the inlet assignment pattern given is a 
geometric M-net of order nl. 

This connection to k net can be used to find the highest 
possible value of M before the pair condition is violated. For 
nl 5 9, we have ([4, ch. 81). 

The function SM,,,~ is known in general to depend on the inlet 
assignment pattern chosen. To be more precise an equivalence 
relation is introduced. Let PI and Pz be two inlet assignment 
patterns in the same network, Le., A4 and nl is fixed. Then, 

nl 

Highest 

possible 

value of M 

The equivalence relation splits the set of inlet assignment 
patterns for the network into classes and in order to obtain the 
best network an inlet pattern that makes as big as possible 
has to be chosen. 

When M = 2, there is for any nl only one class, and it is 
therefore impossible to improve the network by using inlet 
patterns different from the one used in the Fig. 2. 

When M = 3, the results in Section 111 prove that S3,nl 
depends on nl and for nl 2 5 there are in general more than 
one class. From lemma 1 in [3], it can be seen that for nl a 
prime all inlet assignment patterns made from the subarrays 
given in [l] are contained in only one class. 

For a general M and nl ,  it seems very difficult to determine 
the classes. Then it seems more practical to find an useful 
upper bound U,+, on S,+,,nlr which can be used to decide whether 
or not a given inlet pattern makes SM,,,~ big enough. In [4] and 
[SI, geometric nets are used to construct projective planes, and 
it is not unlikely that methods and results there can be helpful 
in finding an useful upper bound. 

VI. CONCLUSIONS 
In this paper, an upper bound on the number of connections 

to be moved during a rearrangement in a two-stage broadcast 
switching network is found. In general. the bound is given in 

p prime 

2 3 4 5 6 7 8 9  p" 

3 4 5 6 3 8 9 10 p " + l  

TABLE IV 

IN THE FIRST STAGE BEFORE THE PAIR CONDITION IS VIOLATED 
THE MAXIMUM NUMBER OF TIMES EACH INLET CHANNEL CAN APPEAR 

terms of the function S M , ~ ~ ,  which means that when the values 
of S,+,,nl are known, then the upper bound is easily calculated. 

When M = 2 the function SM,,,~ is independent of nl and of 
the inlet assignment pattern, and two is the maximum number 
of connections to be moved during a rearrangement. 

When M = 3 the function S,+,,,,, depends on n l .  For a special 
class of inlet patterns the values of S3,nl is found, and the 
optimal choice for nz is 11 when nl is a multiple of 4, it is 12 
when nl is a multiple of 5 but not 4, and it is 13 in the other 
cases. The maximum number of connections to be moved 
during a rearrangement is 3 when nl is a multiple of 4 or 5. 
When nl is not a multiple of 4 or 5, the maximum number of 
connections to be moved is 5 and when nl is a prime it is 4. 

In the case where M is arbitrary the pair condition is used to 
find a lower bound G,+, on and this lower bound yields 
that the number of connections to be moved during a 
rearrangement grows, at most, logarithmic as a function of M 
when the number of outlets at each second-stage switch is not 
exceeding M(M + 1) - 1. 

Finally, the close connection between the inlet assignment 
pattern and finite geometry is considered. 

APPENDIX A 

THE CALCULATIONS OF 

We first find an upper bound U, for S3,nl. Let for 1 I n 5 
14, U3 be defined by Table V. 

Result A.1: Assume nI 2 4. For all inlet assignment 
patterns where the induced latin square is the multiplica- 
tion table of a group we have S3,nI (n) I U3(n), n = 1, 2, 
... . 13. S2",(14) 5 13 when the induced latin sauare 

Y - Y -,,.,. , 
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n 

U3(n) 

1 2 3 4 5 6 7  8 9 1 0 1 1 1 2 1 3 1 4  

3 5 6 7 8 9 9 10 11 11 12 12 13 13 

b - -  

1 1 a b d  
a a - - -  
b b - - -  
q c - - -  

We only prove the lemma in the case where I CI fl C'l 2 3 for 
j = 2, 3 ,  Then there are three possibilities to consider: 1) ab is 
the unknown element, i.e., we do not know whether or not ab 
E { 1, a, b,  c}, 2 )  b2 is the unknown, or 3) cb is the unknown 
element. 

Assume that ab is the unknown element: Then b2 = a or b2 
= 1. If b2 = a then b has order 4 and the subgroup generated 
by b is a subgroup of order 4. If b2 = 1 we have cb = a 
implying c = cb2 = ab. But then a2 = 1 ,  b2 = 1 ,  c = ab = 
ba and therefore { 1, a, b,  c} is the Klein Four Group (2, x 

Assume that b2 is the unknown element; then ab = c. 
Multiplying by a from left gives b = ac. Now cb = 1 or cb 
= a. If cb = 1 then a = acb = b2 implying that b has order 
four. If cb = a then 1 = a2 = acb = b2 and then ab = ba = 
c implying that { 1, a, b,  c} is the Klein Four Group. 

Assume that cb is the unknown element; then ab = c and 
therefore b2 = 1 or b2 = a. If b2 = 1 ,  ( 1 ,  a, b,  c }  is the 
Klein Four Group and if b2 = a, b has order 4. Since we have 
now covered all cases the proof of lemma A. 1 is completed. 

We now proceed with the calculation of S3,nl. The fact that 
no element appears more than once in a row (column) will be 
used without comment. 

n = 11: Assume S3,nl (1 1 )  = 1 1 .  If the 1 1  inlet channels 
appeared on only two switches in one of the blocks then they 
would have to appear on at least six switches in each of the 
remaining two blocks and the 1 1  inlet channels would then 
appear on at least 14 switches. Because of the symmetry in 
rows and columns, we only have to consider the following two 
cases: 1)  when the 11 inlet channels appear on four switches in 
block 1, four switches in block 2 ,  and three switches in block 
3; 2) when the 1 1 channels appear on four switches in block 1, 
three switches in block 2 ,  and four switches in block 3. 

Case 1): In the language of latin squares we have 11 entries 
containing only three different elements (xl, x2. x3) and 
appearing in four rows and four columns. The four rows 
(columns) correspond to four group elements al,  a2, a3, a4 (b l ,  
b2, b3, b4). Since it is 1 1  entries containing only xi, x2. x3,  
three of the rows and three of the columns contain all the 
elements xI, x2, x3 and the remaining row and column contains 
two of these three elements. After possible renaming of the 
group elements we may assume that we have the following 
table: 

Z2). 

,y x 2 - - -  

- _ -  a3 
a 4 - -  - - 

where row 1,2,  and 3 and column 1, 2, and 3 or 4, contain xl, 
x2, x3 while row 4 and column 4 or 3 contain two of these three 
elements. Multiply the row elements by a;l from the left and 
the column elements by b;l from the right and obtain 

1 1  a b d 
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If ba = c then ca = b or ca = 1 .  ca = b implies ca2 = c 
implying a2 = 1 and by lemma A. l ,  we conclude that 4 
divides nl.  ca = 1 implies c = a-l and b2a = 1 and we have 
once more the multiplication table of 1, a ,  a-I, a-2 from 
which we conclude that 4 or 5 divides nl .  

Assume that ab is unknown. Then a2 = 1 or a’ = c. If a2 
= 1 lemma A. 1 yields that 4 divides nl.  If a2 = c then ca = 1 
or ea = b. ca = 1 implies a3 = 1 and by using ICl n C3J = 
3 this implies b = c or column 3 contains the same element 
twice; in both cases a contradiction. Therefore, ca = b 
implying b = a3, i.e., { 1, a, 6,  c} = { 1, a, a2, a3}. As in the 
case a2 unknown, this yields 4 divides nl or 5 divides n l .  

Since ac unknown proceeds the same way and gives the 
same result, it will be omitted. The calculation of S3,nl(13) is 
therefore completed. 

APPENDIX B 

A LOWER ESTIMATE FOR S M , ~ ~  

In this Appendix, a proof of Result 4.1 is given. The M 
blocks in the first stage is denoted by B1, B2, . . . , BM and the 
Mnl first-staF switches are denoted ZI, * . , IMnl. 

Let E be of subset of the set of inlet channels, assume that E 
has n elements and put 
k j ( E )  : = The number of switches in Bi having elements 

from E among their inlet channels. 

k ( E )  := min { k j ( E ) l i = l ,  2, e . . ,  M). 

a j ( E )  : = The number of elements from E appearing on 4. 
a ( E )  := max ( a , ( E ) J j = l ,  2, . . e ,  Mnl} .  

If x is a real number rxl denoted the smallest integer not less 
than x.  In this notation, a switch exist, which has at least rn/ 
k(E)l elements from E among its inlet channels. Therefore, 

a ( ~ )  2 p/k(E)1. (B. 1) 

The definition of k(E) and TM,nl (2.1) ensures 

three elements 1, a, a-I to conclude that a has order 4 and, 
therefore, 4 divides nl.  

Assumeba4 ( l , a , b } ; t h e n a 2 =  1 o r a 2 =  b . I f a 2 =  1 
then ca = b and therefore c = ba. Since row 2 contains 1 ,  a, 
b, we get ad = b and therefore d = ab. The same argument is 
applied to row 3 gives b2 = 1 and bd = a or b2 = a and bd 
= 1. If b2 = a then b is an element of order 4. If b2 = 1 then 
d = b2d = b(bd) = ba = cand then (1, a, b, c} = (1, a, 
b, d} is the Klein Four Group. 

I f a 2  = bthen ba = 1 o r c a  = 1. ba = 1 impliesa3 = 1 
and b2 = a and makes it impossible for row 4 and column 4 to 
contain more than one of the elements 1 ,  a, b. Therefore, ca 
= 1 and in row 2 ,  we get ad = 1 .  Then c = a-I = d and ( 1 ,  
a, b, c} = (1, a, b, d} = (1, a, u2, a-’} and it follows as 
before that a has order 4. 

Assume ca 4 { 1 ,  a, b) . Look at column 2 and conclude 
that ba = 1 and therefore a2 = b. Row 3 implies that b2 = a 
or bd = a. b2 = a contradicts the assumption that row 4 and 
column 4 contains two of the elements 1, a ,  b. Therefore, bd 
= a. Since 1 = ba = ab, it must be column 3 that contains all 
the elements 1, a, b and by looking at row 3, we get that cb = 
a which implies c = a2. Multiply bd = a by a from the left 
and get d = a2 = c. We now have the elements 1, a, a2, a-I 
and as before, we conclude that a has order 4. 

Case 2): Assume that we have 11 inlet channels appearing 
on four switches in block 1 ,  on three switches in block 2 ,  and 
on four switches in block 3. In the induced latin square, we can 
find 1 1 entries appearing in four rows and four columns so that 
the 1 1  entries contains only four different elements. By 
appropriate multiplication as in the former case, we may 
assume that the row elements are 1, a, b, c and the column 
elements are 1 ,  a, b. Since only four different elements are 
present in the 11 entries, we have CI = C2 or C1 = C,. and 
ICI n C’l B 3 f o r j  = 2 , 3 .  We assume that CI = C2. If a2 = 
1 ,  we conclude by lemma A.l that 4 divides nl. If a2 = b, 
then ba = 1 or ba = c. Since ba = 1 forces ea = c, we 
conclude that ba = c. Then cu = 1 yielding 1 = ba2 = a4 
and c = a3. Therefore, a is an element of order 4 and 4 
divides n l .  When a2 = c the same argument yields that a has 
order 4. 
n = 23: Assume S3,n,(13) = 12. If the 13 inlet channels 

appeared on only three switches in one of the blocks this would 
force the inlet channels to appear on at least five switches in 
each of the remaining blocks. We may, therefore, assume that 
in the induced latin square, there exist 13 entries containing 
only four different elements xI, x2, x3, x4 and appearing in four 
rows and four columns. There exists at least one row and one 
column each containing all the elements x I ,  xz, x3, x4. By 
appropriate multiplication as in Case 1) of n = 11, we may 
assume that the four rows and the four columns correspond to 
the elements 1, a, b, c. If there exist two columns both 
containing these four elements, we can proceed exactly as in 
Case 2) of n = 1 1  and conclude that 4 divides n,. We may, 
therefore, assume that IC1 n Cjl = 3 f o r j  = 2 ,  3,  4. From 
this we see that if a2 = 1 then by lemma A. 1 ,  we conclude that 
4 divides n,. 

Assume that a2 is unknown, i.e., we do not know whether 
or not a2 E C1. Then ba = 1 or ba = c. If ba = 1 then ca = 
b. Then we see b = a-I and c = a-’. Therefore, we only 
have to consider the multiplication table of 1 ,  a ,  a-I, a-’. 
Since IC1 17 C41 = 3, we get a-3 E (1, a} or a-4 E (1, a} 
yielding a has order 4 or 5. The conditions 1 Cl n Cj( = 3 for 
j = 2, 4 give no further information. 

TM,nl(E) 2 k ( E ) M .  

G f , r q ( E ) r a ( E ) ( M -  l)+k(E). 

The pair condition gives 

From 2.2 ,  B . l ,  B.2, and B.3 ,  we get 

SM,,,(n)rmin max k ( E ) M ,  - I [ Ll 
- (M- 1) + k(E) E has n elements . (B.4) 

When E runs through all subsets with n elements, k(E) runs 
through a subset of { 1, 2, * . nl}  yielding 

11 1 

Put f l ( k )  : = kM and f 2 J k )  : = rn/kl (M - 1) + k. To 
finish the proof of Result 4.1, it is enough to show that 

min {max [ f , ( k ) , & ( k ) ] }  =GM(n)  for any ncn:. 
k 

Choose p as the integer having the property 

n=p2+x where 1 1 x ~ 2 p +  1. (B.6) 
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First assume that 1 I x I p. Then for k = 0, 1, * * * ,  p - 1, 
we have 

2 ( p + k +  1)(M- l ) + p - k  

= (p + 1)M+ k ( M -  2) - 1 

2(p+ 1)M- 1. 

Sincefi,,,(p) = ( p  + 1)M - 1 andfl(k) 2 ( p  + 1)Mfor k 
h p + 1, it is now proved that 

min {max [fi(k), f~ ,n (k ) l}  = (P + 1)M- 1 

. 3 1 - ( k + l ) ~ - 2  

which concludes the proof of the lemma. 
Now assume k 2 3 + (l/ln2)ln(M21nM). By taken exp, 

when n =p2+x and l s x s p .  (B.7) we obtain 

Assume now thatp + 1 5 x 5 2 p  + 1 .  Then fo rk  = 0, 1, 2i- 3 L ~2 1nM. 
* * * , p  - 1 wehave Since k h 2, we have ( 3 k - l -  1) /3k-1 1 2/3 yielding 

f i , n ( ~ - k )  3 3k-1- 1 3 3k-1-1 
2 k - 3  - ___ 2M21nM H -~ M - 2  2 2 I - klnM. 

( p - k)( p + k+ 1) + k2+ k + x - p  2 3 k - 1  4 2  3k-1 ( M - l ) + p - k  
P - k  1 Since ln(1 + x )  2 (314)~ for x small, this implies 

r(p+k+2)(M- l ) + p - k  

= ( p +  l ) M + ( k +  1)(M-2) 
M - 2  221-k1nM. 1 3 k - I  - 1 

1 ( p +  1)M. Take exp and multiply by M2-21-k and obtain 

Since f2,,,(p + 1 )  = ( p  + l)Mandf,(k) 2 ( p  + 1)Mfor k 
L p + 1 it is proved that 

min {max [fi(k), f2,n(k)l) =(P+ 1)M But, 

when n =p2 + x and p + 1 5x1 2 p  + 1. 

B.5, B.7, and B.8 concludes the proof of Result 4.1. 

(B.8) 

APPENDIX C 

PROOF OF RESULT 4.3 

In this Appendix, we prove Result 4.3. It is enough to show 
if k h 3 + l/(h21n)(M21nM) then gk 2 M 2 .  The following 
lemma will be helpful. 

Lemma C.1: For k h 2 and M L 2 the folIowing 
estimate is valid: 

Proof: We have g2 = GM(M + 1) h M(M + 1)112 L 
M312(l + 1/3M) 2 M3l2(l + 1/3M2). This proves the 
lemma for k = 2. Assume the lemma is true for some k. 
Then, 

g k +  I = G d g k  + 1) l M ( g k  + 1) 

- -M2-21-k  (1 + (Z 3 3  3 1 - 4  

= g k *  

and the proof is completed. 
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