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SEQUENTIAL DECODING WITH ARQ AND CODE COMBINING

A ROBUST HYBRID FEC/ARQ SYSTEM

by

Samir Kallel and David Haccoun

ABSTRACT

Hybn'd FEC/ARQ Systems allow reliable and effici'ent commum'cation.

In thi's paper we consider sequential decoding with ARQ and code combi'mng

under the time-out condition. That is, whenever the decoding time of a

gi'ven packet exceeds some pr'edetermined durati'on, decodi'ng is stopped and

retransmission of the packet is requested. However the unsuccessful packets

are not discarded, but are combi'ned with thei'r retransnntted copies. We

show that the use of code combi'mng allows sequential decoding to operate

effici'ently even when the codi'ng rate R exceeds the computational cut-off

rate R^^^^. Furthermore, an analysis of the Selecti've-Repeat ARQ scheme

shows that the use of code combi'mng yi'elds a sigmficant throughput even at

very high channel error rates, thus making the System very robust under

sever-e dégradations of the channel .
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l INTRODUCTION

In order to mai'ntain reliable and efficient communication over

noi'sy channels, hybrid forward-error-correction and automatic-repeat-request

(FEC/ARQ) are the techniques communly used. The ARQ System provides the

very low undetected error probability performance required, whi'le the FEC

System reduces the number of retransmissions by correcting as many packets

in error as possible.

In conventional FEC/ARQ schemes, whenever a packet of data needs

to be retr-ansnntted, this packet is di'scarded and replaced by Us retrans-

mi'tted copy. Thus the decoder- uses only a single copy of a packet at a time

and ignores the information contained in all previous copies. When the

channel becomes very noisy, such Systems fail to provide a si'gmfi'cant

throughput. Recently Chase, Mullers and Wolf [l] have suggested a way of

combim'ng a11 the received copies of a packet in order to achi'eve useful

throughput at ver-y hi'gh channel error rates. This technique of combi'ning

noisy packets is known as code combim'ng [2]. In [l] the FEC System

consists of a convolutional encoder with an optimum Viterbi decoder. Thi's

idea of using the information contained in a11 previous copies of a packet

has also been investi'gated using block coding [3]-[4]. In thi's paper we

exploit the idea of code combim'ng with ARQ in conjuncti'on wi'th

convolutional codi'ng and sequential decoding.

Sequential decoch'ng is well known for its very good error correc-

ti'ng capabi'1 iti'es. A sigm'ficant amount of work has been done on hybn'd

FEC/ARQ schemes usi'ng convolutional codi'ng and sequential decoding [5] -

[8]. However, when the channel becomes very noi'sy, thèse Systems fai'1 to

provide useful throughput and may even become totally impracti'cal. That is,

whenever the coch'ng rate R exceeds the computational cut-off rate R^^^, the

average computational effort of sequential decoding becomes unbounded.

Therefore as the dégradation of the channel becomes more sévère, successive

decoding fai'lures occur and the number of retransmissions tends to become

very large. Thi's leads to an overflow of the buffen'ng resources of the
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System, and hence to a complète breakdown of the commum'cation. We show

that code combim'ng allows sequential decoding to operate efficiently even

when the codi'ng rate R exceeds R^^ yieldi'ng a si'gm'ficant throughput under

sévère dégradations of the channel (error rates approaching 50%), thus

making the System very r-obust.

We assume the reader familiar wi'th the basi'c notions of convolu-

ti'onal coch'ng and sequential decodi'ng. After a bn'ef descnption of sequen-

tial decoding in section II, the pnnci'ples of code combimng wi'th ARQ are

gi'ven in section III. Sequenti'al decodi'ng with code combi'mng is analyzed

in section IV. It is shown that code combim'ng improves both the computa-

tional effort and error performance bounds of sequential decoding. Sequen-

tial decoch'ng with ARQ under the time-out condition is then analyzed. Ti'ght

upper and lower bounds on the average number of transmissions are den'ved in

section V. Applications to the Idéal-Sélective. Repeat ARQ scheme is

présentée! in section VI. Numen'cal évaluations of the theoreti'cal through-

put expression are conducted in section VII together w1th computer simula-

tions. The theoretical results are in agreement with the simulation, con-

fimn'ng the great advantage of using code combim'ng wi'th sequential deco-

ding.

Il SEQUENTIAL DECODING

Sequenti'al decoding is a subopti'mal decoding procédure for tree

codes where only a fraction of the convolutionally encoded tree is explored

in the attempt to détermine the most li'kely tr-ansnn'tted path [9]. There are

two main sequential decoch'ng algonthms: the Fano algonthm [10] and the

Zigangirov-Jel inek (Z-J) or stack algonthm [11]. Assumi'ng a discrète

memoryless channel (DMC), the decoder explores the tree one branch at a ti'me

and uses the log-li'kelihood functi'on or Fano symbol metn'c [10] given by

,P(yjx,)
y, = log [—1LJ_] - R (D
•3 -L P(y,l

where x,. is the j"" channel input symbol, y.; is the corresponding received

symbol and R is the rate of the code. The total metn'c for a path of length

U symbols i s then
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r" °jxl TJ (2>

and a sequential decoder wi'll always attempt to search and extend the path

having the largest accumulated metn'c. At the end of the tree the path with

the highest metn'c is accepted as the decoded path. One of the drawbacks of

sequential decodi'ng is that it involves a variable number of computations to

decode a given packet of data. The distnbuti'on of the number of

computations to decode one bit is bounded by a Pareto function [12]

P (C > N) < p N~u, N » l (3)

where p is a fi'm'te constant independent of N and where a, the Pareto

exponent, is given by the parametn'c équation

(4)

In (4) ËQ(a) is the Gallager functi'on which dépends only on the channel.

For a DMC, E (a) is gi'ven by [13].

-±. 1+,

E.(a) = - log ^ [^ p(k) [p(j|k)]l+a] (5)
J k

where j and 1< are the channel output and input letters respectively, and

where p(k) is the probabi'lity assignment of input letter k. When the Pareto

exponent a < l, the average number of computati'ons to decode one bit is

theoreti'cally unbounded. At a = l, E (a) is called the computational

cut-off rate (Rcomp) of sequential decoding. Hence opération at R = Rcomp

represents the practical limit of sequential decoders. Clearly as a gets

1 arger the number of computati'ons to decode one bit decreases, decreasi'ng

wi'th it the decodi'ng time of a packet of data.
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Occasionally, decoding of a packet may exceed some practical

limitations of the decoder- and a/decoding failure may occur. One can use a

feedback channel to eliimnate the decoding failures and take full-advantage

of the good error correcting capabi'lities of sequenti'al decoding. Moreover-

since those packets which are too difficult to decode are often decoded in

error, their retransmissions wi'n then lead to an improvment of the error

probability. Therefore, sequential decoding in conjunction with a retrans-

mission procédure may be considered as an hybn'd FEC/ARQ technique.

Several retransmission procédures are possible. The decoder may

li'm't the time devoted to the decoding of a given packet to some value T_,..;
1T18X

whenever this time is reached, decoding is stopped, the current packet is

discarded and Us retransmission is requested [5 ]-[?]. In another approach

the decoder mom'tors the van'ations of the metn'c of the most li'kely path;

if thi's metn'c falls below some speci'fied value, decoding is stopped and

retransmission of the current packet is requested [7]-[8]. The remai'mng

available memory of the decoder may ai so be used as a cnten'a to request

retransmissions [8].

In thi's paper we consider only the first retransmission procédure,

i.e. the time-out condition. Assumi'ng the decoding time proportional to the

number of computations, then if the total number of computati'ons C, per-

formed for the decoding of a gi'ven packet exceeds some value C^^^, decoding

i"s stopped and retransmission of that packet is requested. This decoding

failure event occurs with probability P(F) gi'ven by

P(F) . PIC, > C^l . (6)

For an L-bi't information packet, the probability of a decoding failure P(F)

can be approxi'mated from (3) [7], [14] as

P(F) - L P c»ax~a (7'
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III CODE COMBINING IN ARQ SYSTEMS

Code combim'ng is a technique for combining any number of repeated

packets encoded wi'th a rate-R code, in order to obtain a lower coding rate,

and thus a more powerful erTor-correcti'ng code [l].

In ARQ Systems using code combim'ng, whenever a packet needs to be

retransmitted, thi's packet is not discarded as in usual ARQ. Upon receiving

the retransmitted copy, the decoder interlaces the two copies and repro-

cesses the two combi'ned copies as a packet issued from a 2-repeti'tion-code

of rate R/2 bits/symbol. Should a second retransmission be requested, then

as the retransrmtted copy becomes available, the decoder combines it wi'th

the two earlier ones, and again reprocesses the combined packet as a packet

issued from a 3-repetiti'on-code of rate R/3 bits/symbol. This procédure is

continuée! until decoding succeeds.

IV SEQUENTIAL DECODING WITH FIXED NUMBER 0F REPEATS

AND CODE COMBINING

In this section, we assume a given encoded packet is repeated n

times. The n received copies are combined and presented to a sequenti'al

decoder. The opérations of sequenti'al decodi'ng wi'th n-repetition-code

combi'm'ng are discussed and its performances analysed.

Let l = (I,, lo, ...» I, ) be an L-bit information packet encoded

into the séquence ^ = (x^, x^, ... Xy). Let the encoded packet ^ be

repeated n times and 1 et the n répétitions be transmitted over a DMC* conse-

cutively. Let the n received séquences be

*The DMC may be différent for each répétition. A transition probabi'lity
set is then considered at each répétition.
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^1^ = t., (i) v (i^ « (i)^ i =
> y^ » • • • .Yjj » i -1»^> •••>

The decoder interlaces the séquences Y , 1=1, 2, ..., n, and forms the

séquence

Y = (v.(l).v.(2).....v,(n).....v.(l).v.(2).....v.(n).....v,,(l).v.,(2).v,,(n))
^ >V ^ l'-'aJ'^ «•••«J'j aJ^j »''«»^j l'-'a.yy s^jj-'«»^jj

(9)

Each received group of n letters (y^ ,y^ ,...,y n ) corresponds to the n

transmissions of the same encoded symbol x... Those n letters are thus

statisti'cally dépendent and hence the sequential decoder must consider them

as a group of n letters at a ti'me rather than as a séries of single letters.

We can model the encoder and the n-repeater as a single devi'ce.

Instead of repeating n times the packet X, let us repeat n times each symbol

of X. The resulting séquence denoted by X1 ) is thus given by

Xi » Xi , • • • , X.) ,. . .,X,. ,X^. ,. • • ,X^. ,. • .X](,X|i,. . .,X|

n répétitions

If thi's séquence X were transmi'tted over a DMC, it would produce the same

séquence Y gi'ven by (9), where for each n-repetition symbol (x,.,x,.,.. .,x,.)
J J J

corresponds the n letter-s (y,v" ,,y/L;,... ,y,v"/ ).

Considenng each n-repetition symbol (x,. .x,.,... ,x,.) as an entity,

the convolutional encoder-, of rate R = b/V bits/symbol, followed by the

n-repeater, may be vi'ewed as an "apparent convoluti'onal encoder". For each

b-information bit input, the apparent encoder produces V output groups of

n-repetition symbol. The rate of this apparent encoder is thus ?„ = b/V

bits/n-repetition symbol, and hence we have
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R^ = R (11)

The channel used for the n consécutive r-epetitions may also be

viewed as an "apparent channel" produci'ng n output letters (y/ '" ,y^'"/,...,

y/ ) for each input n-repetition symbol (x,,x,,... ,x,.). Thi's apparent

channel is clearly a DMC.

With the above modelli'ng as a single apparent encoder and as a

single apparent channel, we can now apply known sequential decoding results

to sequential decoding wi'th n-repetiti'on-code combi'm'ng.

A. Fano Metnc for Sequential Decoding wi'th n-Repetiti'on-Code Combi'ning

Substi'tuting in (l) each symbol x,. by an n-repetition symbol
J ,,, /(l) (2

(x,,x.;,...,x,), each symbol y, by an n-tuple 1etters(y,'x/,y, "~ ',...,

y,.vl" ), and using (11), the n-repetition symbol or Fano metnc is now gi'ven

by

li P(y,(i)|x,)
,(")=1og [ i=l '"J ' J- —]-R (12)

'j " ' P(y(.ny;2),...,y(."))'

For example, for the BSC shown on Figure l. a, with a transition

probabi'lity p, the correspondi'ng apparent channel for n=2 répétitions is

shown on Figure l.b. For the BSC, the two possible symbol metn'cs used in

sequential decooh'ng with codi'ng rate R are gi'ven by

,(1)= log 2p - R ;
(13)

y^i'= log 2 (1-p) - R

When sequenti'al decoding is used with 2-repetition-code combi'm'ng, from the

apparent channel shown on Figure l.b, there are now three possible

2-repetition symbol metncs, gi'ven by



^1

Y2

^3

(2),

(2) ,

(2)=

log

R

log

2

2

-Pi-

(l-p)2+p2

î

n-p)2

(l-p)2 + p2

(14)

- R

B. Computational Distribution of Sequential Decodi'ng

with n-Repetition-Code Combimng

In accordance wi'th our model of both the apparent encoder and the

apparent channel, the number of computati'ons per decoded bit C of sequen-

ti'al decodi'ng wi'th n-repeti'ti'on-code combim'ng sti'll follows the usual

Pareto distribution but with a substanti'ally reduced vanabili'ty. Here a

computation is sti'll defined as in [12], that is the extension of a node one

step further- into the tree of the code. We can therefore wnte

P(C(n) ? N) < j3 N ", N » l (15)

where p is a fi ni te constant indépendant of N, and where a is the apparent

Pareto exponent relative to the n-repeti'tion apparent channel, gi'ven by the

parametric équation

E0(nl <%'
R = ° . _ '"n' (16)

an

where R is the rate of the original code in bits/symbol and where E^1 (a)

is the Gallager fLinction of the apparent channel gi'ven by
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l
n î+a l+a

E,tn;(a) = -log I X ... ï [l P(k) [^P(j,|k)] ~] (17)^uu(") = -log I X ... l [ï P(k) [.HP(Ji|k)]
° " •-ÎIJ2 3, Lk • • trl •""

The letters k and j refer to the channel input and output symbols respecti-

vely and where n is the number of répétitions of each symbol. Clearly for n

= l, (17) corresponds to the usual Gallager Functi'on (5).

Even though a Pareto distnbuti'on still prevai'ls, the advantage of

usi'ng code combim'ng on the vanabi'lity of the computational effort of

sequenti'al decoding appears as an increase of the apparent Pareto exponent,

and hence as a réduction of the computational variabi'lity. Using the

following Lemma, this is proven in the theorem below and its corollary.

Lemma

The Gallager function relative to a n-repetiti'on apparent channel

monotonely increases with n.

Eo(n) (a) > Eo(j) (a) ' n > j

The proof of this lemma is given in the appendix.

Theorem

The apparent Pareto exponent a^ of the distribution of the compu-

tational effort of sequenti'al decoding with n-repetition-code

combim'ng monotonely increases with n.

ce, > a, , n > j (18)
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It is known that E (a) is a non-decreasi'ng function of a [13].

Now from the lemma above E^ (a) incr'eases monotonely with n,

therefore fr-om (16) a ai so increases monotonely with n.

The Pareto distn'bution of sequenti'al decoding decreases wi'th a.

In (15) the constant p is independent of N and is less than l. Therefore

as a corollar.y to the theorem above we can wn'te

Corollary l

The van'abi'lity of the computational effort of sequenti'al decoding

with n-repeti'ti'on-code combimng decreases wi'th n.

C. Error Probabi'lity of Sequential Decoding

wi'th n-Repetition-Code Combim'ng

Following [12], the error probabi'li'ty P (e) of sequential deco-

ding wi'th n-repetiti'on-code combimng is bounded by

P(n)(e) <

A^ exp [-bK a^ R] , R < E^(n) (l)

A^ exp [-bK E^(n)(D] , R > E^(n) (l)

(19)

Where A^ isa fim'te constant independent of K, bK is the constraint length

of the code, R is the rate of the original code, a^ is the apparent Pareto

exponent given by (16), and E v"/(l) is the value at a = l of the Gallager

function of the n-repetition apparent channel gi'ven by (17).
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The error probabi'lity of sequential decoding decreases with a or

wi th E (l) depench'ng on whether R < Eo(l)> or R > Eo^1^' In ^19) the

constant A^, is independent of K and is smaller than l. Therefore from (19)

and as a corollary to the above lemma and theorem we can write

Corollary 2

The error probabi'lity of sequenti'al decoding wi'th n-repetition

code combim'ng decreases with n.

Figure 2 shows the apparent Pareto exponent a^ as a function of

Ec/N^, the energy per channel input symbol-to noise ratio for n = l to 9

répétitions over a bi'nary symmetr'i'c channel (BSC) and for a code rate R =

h' Figure l shows that as n increases the apparent Pareto exponent in-

creases considerably. The range of Ec/N^ values over which a^ > l is

therefore increased, making sequential decoding possible for those values of

Ec/N^ over whi'ch it would be otherwi'se precluded. For example when E(../N^ =

-0.85 (dB) and n = l, a, is equal to 0.1; sequenti'al decoding is clearly not

practical for thi's value of a. However, when n = 2 the apparent Pareto

exponent a^> becomes equal to 1.3 making sequenti'al decoding feasi'ble.

Figure 3 shows the distn'bution of the number of computations per decoded

bit obtai'ned from simulation using the stack algon'thm for Ec./N^ = -0.85

(dB) and n = 2.

We have shown that when more than a single copy of a packet are

available at the receiver, the use of code combim'ng may be very helpful in

sequential decoding. It increases the apparent Pareto exponent, improvi'ng

thereby the sequential decoder behavior. Thi's situation of havi'ng more than

a single copy of a packet at the receiver is encountered in ARQ Systems

where a élever decoder does not discard those noi'sy packets that must be

repeated but combines them with their retransmitted copies.
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In the next section we analyze ARQ Systems with code combim'ng

using sequenti'al decoding under the time-out condition.

V SEQUENTIAL DECODING WITH ARQ AND CODE COMBINING

We consider now sequenti'al decoding with retransmissions under the

ti'me-out condition. Assumi'ng the decoding effort proporti'onal to the number

of computations, then whenever the total number of computations exceeds some

value C^,.,^, decoding is stopped and retransmission of the packet is reques-

ted. However-, the packet is not di'scarded, but combined with its retrans-

mitted copy. Should decoding sti'll fail, a retransmssion is requested

again and the three copies of the same packet are combined together and

decoding is attenpted anew. This procédure of retransnn'ssion-code combi'm'ng

i"s continuée! until decodi'ng succeeds. The combined packets are decoded in

the same manner as explai'ned in the previous section .

Let F(n) and S(n) denote the events "decoding failure" and

"decoding success" respectively, when decodi'ng n combi'ned copies of a gi'ven

packet. Me can wn'te

P(F(n)) = l-P(S(n)) = P(C,(n) > C^J (20)

where C, l s the total number of computations of sequential decoding

with n-copies-code combimng.

From (7) and (15) the probabi'lity of a decoding fai'lure P(F'"/)

can be approxi'mated by

p(F(n>> - L Pn c.ax-u" (21)

The average number of transmissions of a gi'ven packet Tr is given

by
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Tr = l P(S(1)) + 2 P (F(1),S(2)) + 3 P (F(l),F(2),S(3 ) ) +

... +nP (F(l),F(2),...,F(n-l),S(n))+ ... (22)

Me can express (22) as

Tr = l P(S(1)) + 2P(F(1),S(2)) + 2P(F(1),F(2)) - 2P(F(1),F(2))

. 3P(F'1>,F<2',S'3') + 3P(F'1',F'2>,F'3') - 3P(F'1>,F'2>,F'3')

. ... + nP(F(l),F(2),... F(n-l),S(n)) . nP(F(l),F(2^,.. F(n-l),F(n))

- nP(F(l),F(2),..., F(n-l),F(n)). ... (23)

Rearranging the terms in (23) we obtai'n

Tr=l+P(F(l)) +P(F(l),F(2))+P(Fm,F(2),F(3))

+ ... + P(F(l),F(2),...,F(n)) + ... (24)

Given a decodi'ng fai'lure at the (j-1)1'" attempt, the probability

of a decoding fai'lure at the j"" attempt is clearly larger than the

unconch'tional probabi'lity of having a failure when decoding j independent

combinée! copies of a packet, that is

P(F(j) | F(j-l)) > P(F(j)) (25)

Now, using the fact that

P(F(l),F(2),...,F(j)) < P(F(j)) (26)
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we can therefore upper and lower bound Tr as

l + S Tt P(F(i)) < Tr <1 + s P(F(n)) (27)
n=l 1=1 n=l

In order to test the ti'ghtness of thèse two bounds, we have

evaluated them usi'ng the expression of P(F11"), gi'ven by (21), where the

value of the constant ?„ was fixed to l. Results are given for a packet of

size 500 information bits (a typi'cal choice for sequenti'al decoding), a

codi'ng rate R = h, and for a BSC.

Figure 4 shows the variation of the lower and upper bounds on.:Tr

as a functi'on of Cmax/L, for five values of signal to noi'se rati'o is/^o^sj:!-:

-6.0, -4.0, -2.0, 0.0 and 2.0 (dB). Figure 5 shows the variation of the two

bounds as a function of Es/No, for a fixed value of Cmax/L = 2. On both

figures, we can observe that the lower and upper bounds are very nearly

identi'cal, indicating that the bounds (27) are indeed very tight. »

)

Thi's behaviour of the lower and upper bounds may be explained as

follows. For large values of Es/No, or equi'valently for a > l, the dominant

term in both summati'ons of (27) is l + P(FV"I"/), the other terms are negli-

gible; thus both summations yield the same values. Each term (P(FVA<,

F(2),...,F(j)) in (24) can be wn'tten as

P(F<l',F'2',...,F'l') . P(F'1>|F'Z'....,F'.")P(F'2'|F'3'....,F"') ...

... P(F(j~l)]F(j)) P(F(j)) (28)

The term P(FVJ-'L ' |Fl>J/) is the probabi'lity of having a decoding failure when

(j-1) copies of a packet are combined together given a decodi'ng fai'lure has

occurred when those (j-1) copies are further combined wi'th an additional

copy. Now for small values of Es/No, that is for a,<:l, the decoding of

j-combined copies of a packet fai'ls wîth a hi'gh probabi'li'ty. Conversely,
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if a,.> l, the decoding of j-combi'ned copies of a packet fai'ls with a small

probabi'1 ity. Now from the theorem above, we have a,. _i <a,.. Therefore,

gi'ven a decodi'ng fai'lure when j copies of a packet are combi'ned, .then if

only (j-1) of those j copies are combinée! together, a decoding failure wi'll

occur with hi'gh probabi'lity, that is

P(F(j~l)|F(j)) - l (29)

Moreover, since a,, i <. a,. < l, we can assert that wi'th a hi'gh probabili'ty,

we have

P(F(j-l)|F(j)) = P(F(j~l)) » l (30)

The above discussion can be général ized to all condi'ti'onal probabi'lity terms

in (28). Therefore, we can wn'te (28) as

P(F(l),F(2),...,F(j)) ^ -K P(F(1)) = P(F(j)) (31)
1=1

and hence, usine? (31), both summati'ons of (27) yield nearly the same values.

As a conséquence of the tightness of the lower and upper bounds,

Tr can be very well approxi'mated by either bound.

Wi'thout code combim'ng, successive decodi'ng attempts of a gi'ven

packet are statiscally independent. The average number of transnn'ssions Tr*

1s then given by the summati'on on the left side of (27), where P(Fll/) is

substituted by P(Fl"L/). The summation then yi'elds

Tr* = —1 —— (32)
l - P(F(1))
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VI THROUGHPUT FOR THE IDEAL-SELECTIVE-REPEAT ARQ SCHEME

IN CONJUNCTION WITH CODE COMBINING

In thi's section we consider sequential decoding under the time-out

condition with the Idéal-Selective-Repeat ARQ scheme in conjunction with

code combimng. A noiseless feedback channel is assumed. In an Ideal-

Selective-Repeat ARQ scheme, a packet is retransmi'tted only if requested

[15].

In sequenti'al decoding, the time required to decode one infor-

mati'on bit i"s not constant. The aver-age throughput may be defined [7] as

e = î— bits/sec (33)

^

where tn is the average time required to successfulty receive an information

bit. However, thi's définition of the throughput is meamngful as long as

the decoder speed is such that it never stays idie. Hence it is the decoder

that imposes the rate at whi'ch information bits are delivered to the user.

But if thi's were not the case, that is if the decoder speed is so high that

it is wai'ting most of the ti'me for a new packet to process, then the rate at

whi'ch information bits are deli'vered to the user is imposed by the channel.

In the latter case, a more meam'ngful defi'm'ti'on of the throughput would be

the throughput efficiency given by

n = l- —L— bits/symbol (34)
Tr L + (K-l)

where the factor —'=— is the loss in throughput due to the tail of
L + (K-l)

(K-l) known bits appended to each packet. This factor may be ignored if

(K-l) « L.
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A more précise définition of the throughput takes into consi'der-

ation both the channel transnn'ssion rate and the decoder speed [6].

In this paper we assume that the decoder speed is not a li'miting

factor on the throughput. The second defim'tion of the throughput, gi'ven by

(34) is thus adopted. Thi's assumption is not unreali'stic since in practice

it is desirable to have a decoder- speed high enough so that eventual over-

flows of the decoder input buffer are mimmized.

The computati'on of the throughput can be conducted by the use of

the expression of P(P } given by (21). Now since in (21) the constant

p^ < l, it can be approxi'mated by l and hence a lower bound on the through-

put can be calculated.

VU NUMERICAL AND SIMUALTION RESULTS

Computer simulation with the stack algonthm bas been used in

order to ven'fy the theoretical results. The code used was a rate h opti'mum

distance profile systematic code of constraint length 24, défined by its

octal generator 67 11 51 43 [16]. The data l's organized in packets of

length 500 information bits to which a ta il of 23 known bits is appended.

For every run, the simulation was conti'nued unti'1 at least 1000 packets had

been decoded and accepted, and at least 25 retransmission requests had been

made.
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Sélection of C_,.,/L value

In both computer simulation and numen'cal évaluation of the

throughput the rati'o C^^^/L must be properly chosen. As indicated by (21),
mâx

the decodi'ng failure probability decr-eases as C^^^/L increases. Thus, one

may be tempted to choose a large value of C^^/t- in order to maximize the

throughput. However, letting C^,,/L becoming too large involves a large and

wasted decodi'ng time before a r'etransnn'ssi'on is requested. This may allow a

queue to form at the input buffer of the decoder, leadi'ng eventually to its

overflow. Moreover as we menti'oned ear'lier, packets requi'nng too much

decoding time are often decoded in error. Hence a large value of C^^^/L may
ÏTlôX

also dégrade the error performance. A reasonable choice of C^^^/L would be
IT13X

slightly larger than the average number of computations per- decoded bit in

normal opération of sequenti'al decoding (a > l). Wi'th a such choi'ce, in

good channel conditions, decoding of a packet proceeds normally. On the

other hand, when the channel becomes very noisy, a reasonable value of

C^.,^/1- wi'11 prevent the decoder from wasting too much time attempting to

decode packets that wlll be most probably retransnn'tted. Thi's procédure

wi'11 prevent possible overflows of the input buffer of the decoder and

possi'bly also decoding errors. In the sequel all results are given for a

va1ueofcmax/L =2-°-

Numencal values and simulti'on results for the throughput are

presented in figure 6. We can observe that the theoreti'cal values of the

throughput closely agrée with the simulation results. For large values of

ES/No' ES/No > 1-6 (dB)a corresponding to R < R^p ^ ^^ ,^ combimng

does not yield a -throughput improvement over ARQ alone. However as the

channel dégrades, the throughput wi'thout code combi'm'ng drops rapi'dly to

zéro, whereas with code combi'mng a sigm'ficant throughput is still achieved

even at very small values of Ec/N^.
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Figure 7 compares the throughput of fixed rates 1/4, 1/6, 1/8

decodi'ng without code combimng wi'th a rate .1/2 decoding with code combi-

ning. In certain ranges of Ep/N^, low rates decoding yi'elds a sli'ghtly

better throughput than rate 1/2 decodi'ng wi'th code combimng. However the

différence is relatively small, wi'th the advantage of rate 1/2 decoding with

code combi'm'ng of being adaptive to channel conditions. This is a very

interesti'ng point of code combim'ng. In some situations, selecti'ng the

appropn'ate coding rate to use may be a difficult problem. Wi'th code combi-

m'ng an arbitrary coding rate may be chosen to start wi'th, yieldi'ng a very

li'ttle throughput dégradation.

Figure 8 shows the variations of the throughput as a function of

Eç./N^ for différent coding rates with the use of code combim'ng. We can

observe that code combimng makes the use of hi'gh coding rates attractive in

varying channel conditions. For large values of Eç/N^ a system wi'th a high

codi'ng rate yi'elds a better throughput performance over a System with a low

coding rate. However, for smaller values of Eç./N^, code combim'ng makes the

throughput dégradation relatively small.

VU CONCLUSION

In thi's paper we analyzed sequential decoding wi'th ARQ and code

combi'm'ng under the time-out condition. Me have shown that the use of code

combi'mng increases the Pareto exponent at each subsequent decoding attempt

of the same packet, thus allowi'ng sequenti'al decodi'ng to operate effi'ci'ently

even when the coding rate R exceeds the computational cut-off rate R,^„.
comp

Usi'ng an approximate expression for the decodi'ng failure probability, we

have den'ved ti'ght upper and lower bounds on the average number of trans-

missions. Application to the Idéal-Sel ecti've-Repeat ARQ scheme bas shown

that at R < R^,^ the use of code combimng does not yi'eld a throughput

improvement over ARQ alone. However, as the channel dégrades, the through-

put without code combim'ng drops rapidly to zéro, whereas, wi'th code
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combim'ng a sigm'ficant throughput is stin achieved even at very high

channel error rates. Therefore, code combim'ng allows the System to be

adaptive to channel conditions, making the use of high codi'ng rates attrac-

tive even under- sévère channel dégradations. Furthermore, si'nce the use of

code combimng reduces the average number of retransmissions, the probabi-

li'ty of an overflow of the buffen'ng resources of the system is aiso redu-

ced, thus making the System very robust. Computer simulation have consi's-

tently confirmed thèse theoretical results.
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APPENDIX

We pr-ove in this appendix that

Eo(n) (a) > Eo(j) (a) ' n > j (A1)

To prove (Al), one needs to prove that

Eo(n)(a) >Eo(n-l)(a) <A2)

from (14)

l

^ (n)^^ ^ _-^ y y...y fy p(|<) fjj p(.i.|k)1 ^+a

1+a

Eouu(a) = -log l l...l [l p(K) [np(j^k)] lTa]
0 • ' ' ^ ^ J, Lk " ' i=l""1l

Usi'ng the inequali'ty (variant of Minkowski inequality) [17] p. 199

Hp, [»y]^ < [p.IX.y]1]1 (A3)
J

in which we subtitute,

J by j^, Q|^ by p(k), a^. by H P(J^|k) and \ by l / 1+a
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we can then wn'te

^,..,.Til+a
ï [jp(k) [^p(JJk)] l+a] <
j^r- • w'

[I P(k) [I [np(^.jk)] lTa]
Lk " ' Lj^ i=l"~1l

-!- 1+a

1+a-

and therefore we have

l

Eo(n) (") > -tog I I...I [Ep(k) H .np(Ji|k)] l+a]
jl j2 jn-l k -)n i=l

1+a

n-1 — l+a
n;1^ .1^ 1+a

-log i ^...^ [Ip(k) [n p(j,|k)
jl j2 jn-l k i=l

- E^(n-l)(a) Q.E.D,
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Figures

la : Binary symmetn'c channel .

Ib : 2-Repetiti'on apparent channel .

2 : n-Repetition apparent Pareto exponent.

3 : Empi'ncal distribution of the number of computations per decoded bit of

sequential decoch'ng wi'th 2- repeti'ti'on-code combim'ng.

4 : Variation of the lower and upper bounds on the average number of

transmissions Tr as a function of C_.../L.

5 : Variation of the lower and upper bounds on the average number of

transmissions Tr as a function of Ec./N^ .

6 : Numen'cal and simulation results for the throughput.

7 : Throughput companson of fixed rates 1/4, 1/6, 1/8 decodi'ng without

code combim'ng, wi'th a rate 1/2 decoding using code combimng.

8 : Throughput for différent coch'ng rates wi'th code combi'mng.
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