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Absbacr-In this paper,  we  consider  parameter  estimation  for  a 
FIFO queue  with  deterministic  service  times  and  two  independent 
arrival  streams of “observed”  and  “unobserved”  packets.  The 
arrivals of unobserved  packets  are  Poisson  with an unknown  rate 
X while  the  arrivals of observed  packets  are  arbitrary.  Maximum 
likelihood  estimation of X is formulated  based on the  arrival 
times  and  waiting  times of k observed  packets.  The  likelihood 
function is derived  in  terms of the  transition  probabilities of 
the unfinished  work  process  which are calculated  recursively. 
Sac ient  conditions for consistency,  asymptotic  normality,  and 
asymptotic  efficiency are given.  The  mean  and  variance of the 
MLE are measured in simulation  experiments.  Numerical mnlts 
indicate  that  the MLE is consistent  and  asymptotically  normal. 

I 
I. INTRODUCTION 

N PRACTICE, it is sometimes difficult to directly observe 
an important aspect of behavior of a queueing system. 

For example, an automatic teller machine may  record  only 
the service times of each customer; it  is unable to observe 
directly the queue length or customers’ waiting times, which 
are the principal performance measures of the teller service, 
so instead, these performances measures must be statistically 
inferred from the available data (using an assumed system 
model). In such situations, the unknown system model pa- 
rameters may  be the arrival rate or service rate or both, and 
estimation of them leads to an inference about the performance 
measure of interest. In other cases, the available data may  be 
the queue length or waiting times, and the goal is estimation 
of the unknown system model parameters [l]. For instance, a 
subscriber to a packet switching network might inject a stream 
of packets and make an estimate of the network load based on 
their observed round-trip delays. 

Previous studies of parameter estimation have been mainly 
restricted to the MIMI1 queue [2]-[4]; assumed complete 
and continuous observations of the queueing system 121-[5]; 
or depended on approximations [6]. In this paper, we 
consider parameter estimation for a partially observed queue 
with a known deterministic service rate and two independent 
arrival streams of  “observed”  and “unobserved” packets. 
The arrivals of unobserved packets are Poisson with an 
unknown rate X while the arrivals of observed packets may 
be arbitrary. It is assumed that arrival times, waiting times, 
and departure times are known for observed packets only. 
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Fig. 1. ATM switched  speech. 

Maximum likelihood estimation of X is formulated based 
on the data for k observed packets. 

In Section II, the likelihood function is derived in terms 
of the transition probabilities of the unfinished work process; 
these transition probabilities are calculated recursively. Suf- 
ficient conditions are given for consistency, asymptotic nor- 
mality, and asymptotic efficiency of the maximum likelihood 
estimate (MLE). Section I11 presents simulation results indi- 
cating that the loglikelihood function is continuous, concave, 
unimodal, and approximately quadratic over short intervals. 
The results also indicate that the MLE is consistent and 
asymptotically normal. 

Applications of this estimation problem may exist in net- 
work control situations where the state of network queues 
cannot be continuously observed. Another possible applica- 
tion, if this problem is generalized to multiple queues in 
tandem, could be  in ATM switched speech as shown in Fig. 
1. ATM (asynchronous transfer mode) is a standardized fast 
packet switching technique based on 53 byte cells (fixed- 
length packets) for the Broadband Integrated Services Digital 
Network [7]. At the speaker, encoded speech is packetized into 
a stream of  ATM cells which are injected into the network. The 
cells travel through a number of queues in tandem and expe- 
rience random sojourn times {m} through the network due to 
contention with other network traffic (shown as dotted lines). 

At the listener, the cells are. stored in a buffer where 
additional delays { T ~ }  are imposed such that the total delay 

7, + T ,  = D (1) 

for every cell is the same constant D,  thereby compensating 
for the variability of  the {rn}, before the speech information 
is “played out” (decoded) [SI. Those cells with sojourn times 
r,, > D will exceed their “playout” times and are effectively 
lost. Performance measures are the end-to-end delay D and 
the probability of cell loss, P1,,,. Ideally, both D and PI,,, 
should be minimized but there is a direct trade-off (in general, 
a smaller D corresponds to a larger PI,,,,). 

In the process of selecting the target value of D,  it is 
important to estimate the (unknown) tradeoff between D and 
PI,,,, i.e.,  the cumulative probability distribution function of 
the { T ~ } .  At least, it is desirable to estimate the upper tail 
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Fig. 2. Partially observed queue. 

distribution of the { m } .  There are many possible approaches 
to estimating the distribution depending on the stochastic 
model assumed for the {r,,} (e.g., see [9]). One possible 
approach is to model the actual queueing processes, for 
example, by assuming the interfering traffic at each queue 
are Poisson. Clearly, this  would  be  an approximation to the 
actual arrival process but the Poisson approximation may 
be justifiable when the traffic is the aggregation of a large 
number (e.g., more than 10) of independent streams [lo]-[ 121. 
We may estimate the unknown arrival rates (by the method 
of maximum likelihood estimation, for instance) and then 
estimate the steady-state probability distribution of the (T,} 

by queueing theory analysis. The targct valuc of D may then 
be chosen, say, as the p-percentile of the {T,}. 

11. MAXIMUM LIKELIHOOD ESTIMATION 

A .  The Model 

Fig. 2 represents a FIFO queue with deterministic service 
times c and two independent arrival streams of packets. The 
arrivals of unobserved packets are Poisson with an unknown 
rate X while the arrivals of observed packets may be arbitrary. 
A hypothetical observer positioned at the output of the queue 
is able to monitor the departure times (d,} and sojourn 
times {T,} of the observed packets only (sojourn times are 
the sum of waiting times and service times, and  might  be 
recorded by timestamping 1131). Given d, and T,, the nth 
arrival time is simply a, = dn - T,, and the waiting time 
in the queue is w,, = T,, - c.  Thus, any of (d,,, T,,), 
( a n ,  T ~ , ) ,  or (a,, d,) can be regarded as a complete data 
record for the nth observed packet. Unobserved packets cannot 
be monitored by the hypothetical observer. However, their 
arrival rate X clearly has a statistical effect on the observed 
sojourn times (7,) because all packets must contend for 
service (in general, a larger X would imply larger {T~~}). We 
consider maximum likelihood estimation of X based on the 
observations {(a,, T,)} fur k observed packets. 

B. The Likelihood Function 
The likelihood function is the a priori probability of observ- 

ing the {(an, 7 , ) )  as  a function of the unknown parameter X. 
First note that the {a,} are independent of X and thus may 
be  regarded as constants in the likelihood function. The { T,%} 

are samples of  the  unfinished  work  in the system, denoted 
by U ( t ) ,  which is defined as the amount of time required 

Fig. 3. A realization of the unfinished work in the system 

to complete service for all the packets in the system at time 
t .  The unfinished work is also called virtual waiting time 
[14],  [15] because a hypothetical packet arriving at time t 
would experience a waiting time of U ( t )  in the queue. It is 
a continuous-time, right-continuous process with nonnegative 
real values. As shown in Fig. 3, upward instantaneous jumps 
of magnitude c occur at each arrival time. Otherwise, U(b) 
decreases with a slope of -1 until it reaches zero where it 
remains until the next arrival. 

A few remarks should be made about U(t ) .  First, note 
that T~~ is the value of U ( t )  sampled at the  time t = a,. 
Thus, the observations imply [](a,) = T,, and U(a,-) = 
limtTa,,U(t) = 7, - c. Second, only the jump times of U ( t )  
are random; otherwise, the behavior of U(t)  is deterministic. 
Hence, U(a,) = T~ depends only on U(a,-l)  = T,-~ and 
the amval times of unobserved packets in the  time interval 
(an-l, ur,) which are Poisson with rate X. Third, the sequence 
{T,,} is a Markov process. 

It  may  be seen  then that the likelihood of the observations 
{ ( a l !  T ~ ) !  ' ' .  , ( a k ,  ~ k ) }  can be written as the product 

le 

&(X)  = I - I P n ( T n  I7n-1; X) (2) 
n=2 

where p,(z I y; X) is the probability density function of 
Cr(art) conditional on U ( C L ~ , - ~ )  = y. Strictly speaking, &(X) 
is a conditional likelihood function because it neglects the 
probability of the first observation 71. However, the probability 
of the first observation can be ignored since it becomes 
unimportant as k -+ c o ,  and  we shall refer to &(X) as the 
likelihood function with  the understanding that there is little 
difference for asymptotic results. 

The difficulty is the determination of the transition proba- 
bilities of U(t). Define a process V ( t )  as shown in Fig. 4; 
the jump times of V ( t )  are Poisson with rate X, and otherwise 
V ( t )  decreases with a slope of -1 until it reaches zero. Let 
F(zc.. t I 20: X) be the transition distribution function of V ( t ) ,  

and f(x, t I 20; X) be the transition density function. 
Since U ( t )  and V(t) behave identically in any interval 

( a n p 1 ,  a,) conditional on U(u,-l) = V-(a,-,),  we can see 
that 

P,(Z I y: X) = f(. - c, an - a,-1 I Y; X). (4) 
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Poisson arrivals 

Fig. 4. A realization of V ( t ) .  

The likelihood function may then be written as 
I. 1 

L k ( X )  = l-Jf(T, - c. a, - an-1 1 Tn-1: X). (5) 
Tl=2 

In fact, this is not the exact Likelihood function we  will  use 
because the density function f (z ,  t I zo; X) may contain 
singularities, i.e., delta functions. It is easier to evaluate the 
likelihood function defined as 

i 

; 

F(x,t.xo) xo= X$C 

i 

- F ( T ~  - c - A, an - an-l I T,-I;  X)] (6) 

for some very small A, which can be derived by approximating 
f (z ,  t I zo; X) with a central difference with approximation 
error of O(A2)). That is, we are making the approximation 

* .... &...& 

c ~ P r { z - A < V ( t ) < x + A I V ( 0 ) = z o }  (7) 

and the likelihood function (6) can be interpreted as the 
probability of a small volume around the observation point 
(71 ,  ...,~k). The value of A affects the likelihood function 
only by a constant scaling factor and does not affect its 
extrema if A is sufficiently small, e.g., A << c. Maximization 
of the likelihood function (6) avoids the difficulty with delta 
functions in f(z, 1 I zo; X). The maximum-likelihood estimate 
(MLE) & will be  defined as the value of X maximizing the 
likelihood function (6) or the log-likelihood function Zk(X) = 

The final step consists of finding the transition distribution 
function F ( z ,  t I zo; X). It is known to satisfy the Takacs 
integrodifferential equation [ 141, [ 151: 

43 a 
at d X  

2A 

lWLk(X). 

- F ( z ,  t I zo; X) = --F(z, t 1 zo ;  X) 

- XF(Z, t I zo; X) + XF(z - c: t I zo; X)I(z 2 c) (8) 

where I {  .} is the indicator function assuming the value 1 when 
its argument is true. However, the solution has not been known 
except in terms of Laplace transforms which are difficult to 
invert. One of our main results is a recursion formula for 
F ( z :  t I zo; X): 

Proposition 1: The transition distribution function is 

1 & .... * .... .! 
x0=2c 

(9) 

for t ,  z, x[) 2 0 where u(y) Ly/cJ, and LyJ denotes the 
greatest integer less than or equal to y. 

Proof: See Appendix A. 0 
Examples of F(z,  t I zo; X) for Xc = 0.5 are shown in Figs. 

5 and 6. It can be seen that F(z, t 1 ZO; X) would be difficult 
to obtain from inverse transforms because it is irregular and 
discontinuous in z and t. 

Unfortunately, it is difficult to maximize the log-likelihood 
function Zk(X) directly, and we must resort to numerical opti- 
mization methods [16], [17]. Numerical methods search for the 
maximum over a range of X by evaluating the log-likelihood 
function at various points (hopefully with the fewest number 
of evaluations as possible). Numerical optimization methods 
are effective if the function is sufficiently well-behaved, e.g., 
continuous, unimodal, and concave. These characteristics of 
the log-likelihood function are investigated in Section III. Note 
that each evaluation of  the log-likelihood function involves the 
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Fig. 6 .  F(s, t I .EO: X) as a function of t for (a) T~ = 0, (h) x. = c, 
and (c) 10 = PC. 

calculation of k - 1 terms, hence the complexity of parameter 
estimation performed for a particular k is linearly proportional 
to k. For sequential cstimation performed for multiple values 
of k, however, this complexity might be reduced by storing the 
evaluations of the log-likelihood function involved in obtain- 
ing i k ;  then when q + l  is observed, these evaluations might 
be  used to save some amount of calculations for finding & + I .  

C. Asymptotic  Properties of the MLE' 

In the case of independent observations, it is well known 
that maximum likelihood estimates are consistent under certain 
"regularity" conditions, and asymptotically normal and  effi- 
cient under additional conditions [18]-[20]. The point here, 
however, is that the observations { T ~ }  are not independent. 
Sufficient conditions for these asymptotic properties may also 
be found for dependent (Markovian) observations (e.g., see 
[18]). The traditional approach is to show: (1) that the like- 
lihood equation has a consistent root, (2) the asymptotic 
distribution of the  "total  score" at the true parameter is normal, 
and (3) then the higher terms of a Taylor expansion of the total 

score around the true parameter become negligible for large 
samples with high probability. Most likely, these conditions 
are unnecessarily restrictive; the  difficulty lies in  finding the 
necessary and sufficient conditions, which is a challenging 
problem for future study. 

Let X0 denote the true value of X (we will  use X as a 
variable). Define the scores, 

the total score, 

and the Fisher information, 

The MLE i k  is the solution of the likelihood equation Sk(X) = 
0. A probability density function p ( z ;  X) is called regular with 
respect to its mth X-derivative if 

Roughly speaking, regularity means that there are no discon- 
tinuities of p ( z ;  X )  in x that are dependent on X. 

Consistency of  the MLE is established first. 
Theorem I: Suppose for n 2 2, 
i )  pn(., I ~ ~ - 1 :  X) is regular with respect to its first 

ii) E[ui(Xo)] < m, 
iii) un,(X) is continuous in X for all values of 7,. 

X-derivative, 

If is the unique solution of the likelihood equation &(X) = 
0 for k 2 some ko, then the MLE i k  is a consistent estimator 

Proofi By Lemma 1 (in Appendix B) and a law of large 
of Xo. 

numbers for martingales [21, p. 2431, 
1 

k - 1  - s k ( X o )  -+ 0 

with probability one as k -+ 00. With condition iii), it 
implies there exists a sequence of solutions of Sk(X) = 0 
that converges to x. 120, p. 3591. If X, is the unique solution 
for k 2 ko, then the sequence {&} must converge to XO. 0 

The regularity condition i) and continuity condition iii) are 
a matter of verification from (9). Condition ii) is difficult 
to confirm but may  be justified. It would be sufficient to 
establish that I& logf(x, t I zo ;  X)( is bounded for all 
admissible values of X wherever f ( z ,  t I Q; X) > 0. 
Assuming I &-(x, t 1 xu; X)i is bounded, the only points 
where i&logf(z, t I ZO; X)[ is unbounded are those points 
where f(z, t I 50;  X) = 0. The final condition, that the 
MLE is the unique maximum of the log-likelihood function, 
is indicated by the results in Section 111. 

Asymptotic normality of  the MLE is a stronger property 
than consistency and requires additional assumptions. We 
will use the following proposition about the limiting normal 
distribution of the total score. 
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Proposition 2: Suppose, in addition to the conditions in 

i) C k , z u ~ ( X ~ ) / I k ( X o )  + 1 in probability, 
ii) ~ : ~ m a x z ~ , ~ k u ~ ( , ~ o ) l  / I k ( X o )  --+ 0. 

Theorem 1, as IC + 30, 

then  as k --f c a ,  

S k ( X ” ) d r n  + N(O, 1) (15) 

in distribution where N ( 0 ,  1) denotes the standard normal 
distribution. 

Proof: From Lemma 1, we have I k ( X 0 )  = 
C , : = 2 E [ ~ ~ i ( A O ) ] .  The final result follows directly from 
a martingale limit theorem [18, p. 3851. 

The asymptotic normality of the MLE follows from a Taylor 
expansion of  the total score around X = X,. 

Theorem 2: Suppose, in addition to the conditions in Propo- 
sition 2, 

i) p , ( ~ ,  I T ~ - ~ ;  X) is regular with respect t o  its second 

ii) Sl:(Xo)/E[SL(Xo)] --t 1 in probability as k + XI, 
iii) Sl(X) is bounded in neighborhood of X = X0 by some 

X-derivative, 

integrable function g(71, . . . Q), 
then as k --+ 30, 

v m m i k  - X,) -+ N(O, 1). (1 6) 

Proof: The consistency of the MLE i k  allows the Taylor 
expansion 

S k ( X k )  := S k ( X 0 )  + (ik - XO)SL(XO) 
1 -  + Z(Xk - XO)~S[(X*) (17) 

where IX‘ - Xo( < I;\k - Xol. By definition S k ( i k )  = 0, and 
hence 

From Lemma 2 (in Appendix B) and conditions ii) anqiii), 
the right-hand side converges in probability to d m (  XI, - 

A o ) ( l + e k )  where lek(  5 IXf-Xo(g(~~,.. . ,7k)/I~(Xo).Note 
X* is necessarily consistent, and thus (ck 1 5 o( 1) in probability 
[ 19, p. 2941. The final result follows after applying Proposition 
2 on the left hand side of (18). 0 

We observe that the variance of the asymptotic distribution 
of Xk achieves the Cramer-Rao bound, and therefore: 

Corollary I :  Under the conditions of Theorem 2, the MLE 
i k  is asymptotically efficient. 

It is rather difficult to verify the conditions for asymptotic 
normality and efficiency which essentially rely on some er- 
godic properties of the { u n ( A o ) } .  As the {un(Xo)} are random 
variables in the (TI , .  e . ,  .r,)-space, it might be conjectured 
that  the conditions hold  if the { T ~ }  are ergodic, for example, 
whcn  the observed arrivals are periodic. However, the precise 
interpretation of the conditions in verifiable terms is not 
altogether clear. The simulation results in the  next section 
indicate that the MLE is asymptotically normal when the 
observed arrivals are deterministic. 

Poisson 

t0 
I 
\ 
\ 

deterministic ‘L 
R -  

> . 
\ 
\ 

i 
Fig. 7. Simulated queueing model. 

111. SIMULATION RESULTS 

A. The Likelihood Function 
In this section, we investigate the log-likelihood function in 

sim$ation experiments. Another issue concerns the accuracy 
of X k  as a function of k. Although asymptotic properties of the 
MLE can be established under certain conditions, they make 
no statement about the mean and variance of the MLE for 
small samples. Below we present some numerical results on 
the accuracy of the  MLE as a function of k. 

The queueing model shown in Fig. 7 was simulated. The 
arrivals of unobserved packets are Poisson with rate X0 while 
the arrivals of observed packets are deterministic with rate R. 
For convenience, the deterministic service rate was normalized 
to 1/c = 1. We used  the method of independent rcplications 
[22] ,  [23]. On each simulation run, the observations {(an, 7,)) 
for k observed packets were recorded after the queue was 
allowed to approach steady-state (with observed packets ab- 
sent). Let M denote the number of replicated simulation 
runs. On the mth simulation run, let l k , 7 7 z ( X )  denote the log- 
likelihood function and i k , m  be the MLE calculated from 
Zk,m(X). Since the replicated runs are identical and indepen- 
dent, {&, . . ’ ,  i k , & f }  are i.i.d. samples of  the MLE i k .  

The mean of i k  is estimated by the  usual sample mean 
. M 

and the variance of i k  is estimated by the usual sample 
variance 

The Y5% confidence interval of the sample mean is 

and the 95% confidence interval of s2 is 

(22)  

where t ~ - l , ~  is the p-percentile of the 2-distribution  with 
A4 - 1 degrees of freedom, and X L - ~ , ,  is the p-percentile 
of  the X2-distribution with M - 1 degrees of freedom. 

Numerical optimization methods are effective if l k ( X )  is 
sufficiently “well-behaved,’’ Le., continuous, unimodal, and 
concave [16], [17]. Even better, if I k ( X )  is quadratic or 
nearly quadratic over X, there are well-known efficient search 

X L - 1 ,  975 X.W-1, ,025 
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(C) 

Fig. 8. Examples of r.h(X. X O )  for R = U . l ,  (a) k = 4, (b) k = 16, and 
( c )  k = 64. 

methods using quadratic interpolation. Such characteristics are 
difficult to prove analytically because F ( z ;  b I 20; X)  is a com- 
plicated expression. These characteristics were investigated 
for many independent realizations of Ik(X) over a range of 
parameters. Examples are shown in Fig. 8 of the log-likelihood 
ratio 

0.5 

0.7 I I I I I I I I 
10 20 30 40 50 60 70 80 

Ik 

(C) 

Fig. 9. Measured mean of the MLE i~. with Y5% confidence intervals for 
R = 0.1, (a) X0 = 0.2,  (b) AO = 0.5, and (c) Xa = 0.8. 

which is simply the log-likelihood function normalized by its 
value at X = X0 (we set A = 10-3c but the exact value of A is 
unimportant). Fig. 8 is typical in the sense that all realizations 
of I k ( X )  observed in the experiments were similarly found to 
be continuous, unimodal, and concave in X. In addition, it was 
found that l k  (X) is approximately quadratic over short intervals 
of X, and Powell’s quadratic interpolation method [16], [I71 
performed well for finding the maximum of l&(X). 

B. Accuracy of the MLE 
Fig. 8 indicates that I k ( X )  is unimodal and continuous 

in X, and hence we  would expect that the MLE ;\k is a 
consistent estimator. In addition, since the observed arrivals 
are periodic, Xk might be expected to be asymptotically normal 
and efficient. 

The mean of & measured with M = 8 is shown in Fig. 9 for 
R = 0.1. A slight bias, perhaps due to the effect of the initial 
observation, can be seen for small k .  However, as expectep, 
the bias diminishes as k --j 00. The standard deviation of XI, 
measured with M = 8 is plotted in Fig. 10. It can be seen 
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sample stan. dev. = 0.0967 
sample mean = 0.1948 

I \ 
0 . 1 1  ...A 

k 

(C) 

Fig. 10. Measured  standard deviation of the MLE i k  with 95% confidence 
intervals for R = 0.1, (a) X0 = 0.2, (b) X0 = 0.8. and (cl AO = 0.8. 

that the variance of I,+ diminishes with IC, which implies that 
A,+ converges to j t s  asymptotic mean. This agrees with the 
expectation that X,+ is consistent. Results for R = 0.05 were 
found to be very similar. In general, the results were not found 
to be very sensitive to the exact values of R or Xo. 
In Figs. 11-13, the empirical density functions (histograms) 

of Xk are shown for k = 16 and k = 64 (based on M = 88 
samples). For ic = 16, it is apparent that Xk i? not normally 
distributed. But for k = 64, the histogram of Xk resembles a 
normal density. The usual x2 goodness-of-fit test was used to 
test the hypothesis that for k = 64, XI, is normally distributed 
with the observed means and variances. A significance level 
of a = 0.05 was chosen. For X0 = 0.2, the observed statistic 

= 3.62 was much less than the critical value xi, .95 = 
15.51. For X0 = 0.5. the observed statistic x:bs = 1.20 
was also much less than the critical value xi, .95 = 11.07. 
For X0 = 0.8, the observed statistic = 5.64 was again 
less than the critical value xi, ,95 = 9.49. Thus, the test led 
to acceptance of the hyppthesis, which supported our initial 
conjecture that the MLE XI ,  is asymptotically normal. Results 
for R = 0.05 were found to be very similar. 

(a) 

sample mean = 0.2” 
sample sm. dev. = 0.0467 

0 u 
0.2 

In 
n n  x 

0.4 

(b) 

Fig. 1 1. Empirical probability density function (histograms) of the MLE f i k  
for R = 0.1, X0 = 0.2, (a) E = 16, and (b) IC = 64. 

sample sm. dev. = 0.1023 
sample mean = 0.4742 

0 
i l h  

0.5 
0.7 

sample sun. dev. = 0.05 12 
sample mean = 0.4907 

(b) 

for R = 0.1, X0 = 0.5. (a) k = 16.  and (h) k = 64. 
Fig. 12. Empirical probability density function (histograms) of the MLE ik 

IV. CONCLUSIONS 
This paper has considered parameter estimation for partially 

observed queues with a known deterministic service rate and 
unobserved Poisson traffic. Maximum likelihood estimation 
of the unobserved arrival rate was formulated in terms of 
the transition probabilities of the unfinished work process 
which are calculated recursively. Sufficient (but probably un- 
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sample stan. dev. = 0.0858 
sample mean = 0.8043 
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sample  mean = 0.7991 
sample stan. dev. = 0.0407 

1 .o 

r 
0.8 

(b) 

Fig. 13. Empirical probability density function  (histograms) of the MLE i k  
for R = 0.1, X0 = 0.8, (a) k = 16. and (b) k = 64. 

necessarily restrictive) conditions for consistency, asymptotic 
normality, and asymptotic efficiency were given. A question 
for future research is the necessary and sufficient conditions 
for these asymptotic properties. In simulation experiments, the 
log-likelihood function was found to be continuous, unimodal, 
concave, and approximately quadratic over short intervals. 
Powell's quadratic interpolation method performed well for 
maximizing the log-likelihood function. Numerical results 
indicated agreement with the consistency and asymptotically 
normality of the MLE. Another question for future research is 
the accuracy (mean and variance) of the MLE for any IC. 

While the discussion here has been restricted to  the 
continuous-time context, obviously the same problem can 
also be formulated in discrete-time which might be more 
appropriate for some applications. The results in discrete-time 
may  be expected to  be entirely similar, which seems to be 
the case [24]. 

The maximum likelihood estimation method presented here 
shows promise for extensions to other queueing models, 
although the appropriate method for each statistical inference 
problem will depend on the available data. Possible applica- 
tions may exist in network control situations where the state 
of a particular queue cannot be continuously observed. Such 
estimation problems have been hitherto largely neglected in 
classical queueing theory. 

APPENDIX A 

We take the same approach as the derivation of  the Takacs 
equation and begin with the appropriate random walk process 
[14]. Instead of deriving the Takacs equation however, we 
will seek a recursive expression for the probability distribution 
function for the random walk  and  then take the limit as  the 

time increment At becomes very small. We approximate V ( t )  
by a random walk X,, w V(nAt)  with a reflecting barrier at 
z = 0, where At < c.  The meaning of reflecting barrier [14] 
here is not to be confused with reflecting bamers  for diffusion 
processes. It means that whenever X ,  goes to z = 0 or below, 
it stays at z = 0 until the next upward transition. The random 
walk proceeds as 

Xn+l = ( X ,  + yn)+ = max(Xn + yn, 0) (A.l )  

where the {yn} are i.i.d., and y, = ic - At if there are i 
arrivals in a time increment. There are i arrivals in At with 
probability 

f .  2 -  - , -xAt-  ( XAt)i , 2 = 0, 1, 2, 
i! 

and therefore 

Pr { y7& = ic - At} = f; . (A.3) 

It is known that the probability distribution function of X,, 

&(x )  Pr{X, 5 z} (A.4) 

obeys the recurrence relationship 

where f ( 9 )  is the probability density function of the {yT,}. 
Notice that this is almost a convolution except that H,(z) = 0 
for z < 0. By substitution, the basic recurrence relationship 
becomes 

H,(z )  = foHn-l(z + At ) I ( z  2 0) 

+ X f , H n - 1 ( z  + At - i c ) l ( z  2 ic - At}. (A.6) 

We now use transforms to  find H n ( x )  from any initial 

oc 

i= l  

condition &(x) = I{z 2 20). The Laplace transform 

H ~ ( Q )  = L-e-"H,iz) dz (-4.7) 

exists for Re(s) > 0 because H,(z) 5 1 (all x). The 
recurrence relationship in terms  of transforms becomes 

foeszHn-l(z + At) dz 
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if At < c where we define 
At 

?lfn(s) E Jd fOe-S(z-At)Hn(z) dz (A.9) 

for convenience. Notice that the first term of H;(s) represents 
a convolution of H,-l(y) and f(y),  and the last term is  a 
correction due to the bamer. 

Repeating this recurrence from the initial condition 
H i  (8) = s-le-sra leads to 

H;t(s) = exp {nAt(s - X + X e ~ S c ) } s ~ l e - S x O  
n-1 

- E exp { i ~ t ( . y  - X + h2-“c)}?j,n-i- I (s). (A.~o)  
i=O 

This can be inverted without difficulty for 5 2 0 to get 

(A . l l )  

i=O i = 2  

for v. 2 2 where 

(A.13) 

When At becomes very small, H n ( z )  should converge 

note that the indicator function has nonzero values only 
when (z + , iA t ) / c  has integer values from L(z + c)/cJ to 
L(. + ~/.At)/c:]. If (x + i A t ) / c  = j for some integer j ,  
then fo(l)fZz(i - 1) converges to v e - ( J p - A z j  where 

p Xc. Also, fi(n) converges to y e - A t .  Thus for very 
small At. the equation for Hn(z) can be simplified, leading 
to  the recursion equation: 

to F ( z ,  t I LO; X) = F ( z ,  nAt 1 ZO;X). AS At + 0, 

u(z+t+zo)  u(x+tj 

F ( z ,  t I :GO; X) = c 
i=O i=u(z+c) 

for t > 0 where u(y) Lz//c]. Notice that F(O, t I :KO; X) = 
Pr{V( t )  = 0 I V(0)  = LO}, and hence F(0: t I LO; X) = 0 
for t < q,. Thus, the upper bound on the second summation 
can be lowered Lo u(z  + t + I O ) ,  leading to the final result. 

APPENDIX B 

Lemma I: If pn(7 ,  I ~ ~ - 1 ;  A)  is regular with respect to its 
first  X-derivative, then 

and the { u n ( X o ) }  are uncorrelated 

Proofr 

E[un(Xo) 17,-11 = 0 
is implied by the regularity assumption. (B.2) 

Lemma 2: If pn(7,  I ~ ~ - 1 ;  X) is regular with respect to its 
second X-derivative, then 

Ik(X0) = E[-Sh(Xo)]. (J3.5) 

Proof: 

implied by regularity 
. . ”  
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