
An Approximation for Performance Evaluation of Stationary Single 
Server Queues 

Ronald G. Addie 

The University of Southern Queensland 
Darling Heights 
Queensland 4350, Australia 

Abstract 

This paper provides a method for approzimating the 
probability distributions of stationary statistics in 
FIFO single server queues. The method is based on the 
Wiener Hopf factorization technique, and is applied to 
semi-Markov queues where the underlying state space 
is of unlimited size. A particularly important case is a 
model for a statistical multiplezer where the net input 
process forms a stationary ergodic Gaussian discrete- 
time stochastic process. 

1 Introduction 

Stationary FIFO single server queues have been used 
to model a wide range of telecommunications systems 
and networks serving various bursty traffic streams. 
Unfortunately, however, the complexity arising from 
the need to represent real life situations often leads 
to models with a large (or infinite) underlying state 
space, which are analytically and computationally in- 
tractable by conventional methods. In this paper, we 
introduce a method for analyzing such queues. The 
method leads, in some cases, to simple, closed form 
formulae which are sufficiently accurate for dimension- 
ing purposes. 
It has been suggested by Maglaris et al. [15] that 
an autoregressive process, which may be viewed as a 
semi-Markov sequence with an underlying process of 
infinite state space, is a good model for Variable Bit- 
Rate (VBR) video telephony. However, it is claimed 
in [lo] and [15], that no analytical solution is available 
for queues involving autoregressive processes. This 
queueing problem is a special case of the one solved 
approximately in this paper. 
Problems related to bursty traffic characterization and 
performance evaluation of statistical multiplexers have 
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been considered amongst the most important teletraf- 
fic problems in the last 15 years. See for example [9], 
[lo], [12], [14], [15], (201, [24] and references therein. 
The traffic models that have been proposed so far have 
been based on renewal, batch Poisson, and Markov 
modulated Poisson processes, their discrete counter- 
parts, and on fluid flow approximations. However, 
none of these models is general enough to capture the 
full range of second order statistics (i.e. variance and 
autocovariance), and at the same time lead to explicit 
performance results. 
A general stationary single server queue can be mod- 
elled as a semi-Markov queue with an underlying 
Markov process with infinite state space. Where nec- 
essary, such an underlying process can contain infor- 
mation about the entire history of the queue. The 
analysis of such semi-Markov queues, presented in this 
paper, can get us closer to solutions for queues fed by 
a general stationary process which in turn can be ap- 
plied to the open problems described above. 
A general solution for the stationary waiting time 
distribution for semi-Markov queues based on spec- 
tral factorization was originally developed by Miller 
[16,17,18]. Miller considered cases with finite under- 
lying state space. This work has been extended in 
[1,5,6,7] to include cases where the state space of the 
underlying Markov process is infinite. However, no in- 
dication of computational methods is given in [5,6,7], 
while the method in [l] is seldom practical for prob- 
lems with a large state space. 
It has been observed in [18,23] that under quite general 
conditions, the tail of the stationary complementary 
waiting time distribution (which is the part of most in- 
terest in many applications) is of the form c e d * t ,  where 
s* is obtainable as the negative real root of a certain 
functional equation which lies closest to the origin. 
In this paper we extend this result to semi-Markov 
queues where the underlying state space is infinite. In 
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[4], an approximate formula for the coefficient c was 
derived and checked by means of simulation. In this 
paper a new method for evaluating c is introduced. 
An important application of the method presented 
here is to a single server queue where the net input 
process to the queue forms a stationary ergodic Gaus- 
sian discretetime process. The net input process is 
defined, in this paper, as the difference between the 
arrival process and the process representing the c i ~  
pacity of the server to render service. We derive an 
exact analytical solution for s* and an approximation 
for c based on the new method. Numerically, there 
is little difference between the formula in (41 and the 
formula presented here, however the new formula is 
simpler. 

2 TheModel 

We consider a single server FIFO queue with an infi- 
nite buffer. Let time be divided into consecutive inter- 
vals. The endpoints of these intervals are referred to as 
epochs. We say that the nth and the n+ls t  epochs are 
the endpoints of the nth interval. The epochs should 
correspond to sampling times that see time averages, 
or to all relevant time instants, e.g. the natural points 
of arrivals. 
A process (Xn,Yn) is said to be a semi-Murkou se- 
quence 1191 if 

P{Xn+1, Yn+lIXn, Yn, xn-1, Yn-1, - - e} 
= P{Xn+l,Yn+1Ixn}. 

The first component of a semi-Markov sequence 
(Xn, Yn)) namely the (Xn) process, will be called here 
the underlying Markov process. In the present con- 
text, the second component, the (Y,) process, is the 
abovementioned net input process. 
Let Vn represent the unfinished work at  the beginning 
of the nth sampling interval. Usually, the unfinished 
work process satisfies the recurrence relation: 

Vn+l= (Vn + Yn)+, n L 0, (1) 

Yn = An - Bn, n 2 0, (2) 

where VO = 0 and Yn is the net input process given by 

in which An denotes the additional new work arriving 
during the nth interval (or the nth customer service 
time), and Bn denotes the maximum work which can 
be processed during the nth interval (or inter-arrival 
time between the nth and the n + 1st customers). 
A queue in which V,, satisfies (1) for some semi- 
Markov sequence (Xn, Yn)nzo is referred to as a semi- 
Murkov queue. For any stochastic process {R,,}nzo, 
P{Rm E A} denotes the stationary probability of the 

events {R.,, E A}. Accordingly, the random variable 
V, represents the unfinished work in steady state. As 
usual, define the utilization by p = E{Am}/E{Bm}. 
We require for stability that E{Ym} < 0 or equiva- 
lently p < 1. 
In this paper we provide a method to obtain the statis- 
tics of V , .  Because the recurrence (1) is also appli- 
cable to the queue size process with An (Bn) as the 
number of customers arriving (can be served) during 
the nth interval, an equivalent treatment can be a p  
plied to queue size analysis by z-transform [l]. 
A general solution for the stationary distribution of 
Vn in a semi-Markov queue is given in the next sec- 
tion. This solution is very often extremely difficult to 
compute, however it leads to the useful approximate 
solution described in section 4. 

3 Theoretical Background 

In this section we provide background on the theory of 
Markov and semi-Markov kernels and spectral factor- 
ization of Laplace transforms of semi-Markov kernels 
as applied to the distribution of V,. 

3.1 Markov and Semi-Markov Kernels 

Denote the state space of Xn by E, with associated 
sigma algebra of measurable sets E. Let us denote 
by K the vector space of all bounded kernels, defined 
on E. That is to say, any K E K is a function from 
E x C to R (the real line) with the properties that for 
any x E 8, K ( x ,  -) is a measure on 8, and for any set 
A E E, K ( - ,  A)  is a measurable function on E, and 

where the I I . I I  on the Right Hand Side (RHS) denotes 
total variation (see Ill] for a definition of total varia- 
tion). 
If K E K and f is a bounded, real-valued, measurable 
function on H, Kf is defined t o  equal the bounded, 
real-valued, measurable function 

Here x H g(z) is used to denote the function which 
maps x to g(z), and this integral, and all others in this 
paper, are Lebesgue integrals 1111. If K E K and p is 
a finite, signed measure on 8, p K  is defined to equal 
the signed measure A H JS K ( x ,  A)p (dx) .  
These definitions allow us to interpret any kernel as 
a linear operator on the space of bounded measurable 
functions and on the space of finite signed measures. 
Notice that we write the kernel on the right of the 
operand when it is operating on a measure, and on 
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the left when it is operating on a bounded measurable 
function. 
A bounded measurable function f induces a linear 
functional on the space of finite signed measures by 
the mapping: p pf = s f d p .  Note that this map- 
ping can be interpreted as defining a product opera- 
tion between measures and measurable functions. 
Finally, we define the product of two kernels, K and 

With this product, K forms a Banach algebra (I]. Be- 
cause all the integrals in question are absolutely con- 
vergent, the product operations just defined amongst 
kernels, measures and functions is associative. We 
therefore write, for example, pKf instead of either 

The function Q ( z , A )  = P{X,+1 E AIX, = z} is a 
kernel in K referred to as the kernel of the Markov 
process {X,). Such kernels are called Markov ker- 
nels. Using the kernel product just defined, the kernel 
Q i ( z ,  A )  has the interpretation 

The kernel H of the semi-Markov process (X, ,  Y,) is 
defined by: 

A 

4 by W z ,  A )  = J* +, dY)L(Y, A).  

b K ) f  or P ( K f ) .  

P{Xn+j E AlXn = z}. 

H ( z ,  A x B )  = P{X,+1 E A,  Yn+l E BIX, = z}. 

It is a function from H x C x R to  R with the natu- 
ral measurability properties, in which R denotes the 
sigma algebra of Bore1 sets on R. Kernels of this type 
are known as semi-Markov kernels. The product of 
two semi-Markov kernels H and J is defined by: 

H(z ,  d y x d z ) J ( y ,  Ax(B-2) ) .  
L x R  

H J ( s , A x B )  = 

The collection of all bounded semi-Markov kernels also 
forms a Banach algebra [I]. We say that a semi- 
Markov kernel H is concentrated on the set S E R 
if H ( s ,  A x U )  = 0 whenever U n S  = 4 (4 denotes the 
empty set). The Laplace transform of a semi-Markov 
kernel H is the kernel-valued function 8 ( 3 )  such that 

The domain of this function includes the imaginary 
axis. There exist two real numbers 6- 5 0 and 6+ 2 0, 
such that the integral in (3) is absolutely convergent 
for x(3) (the real part of s) in the interval [6-, 6+], for 
all z E E, A E C .  We shall assume that 6- # 0 # 6,; 
this will be the case when the measures H ( z , A  x .) 
have tails which are uniformly dominated by nega- 
tive exponential measures with coefficients 6- and 6+. 
This assumption holds for :he example we consider 
in Section 5. Notice that H ( 0 )  = Q, the kernel of 
{ X, 1 fb> 0 .  

3.2 A Formula for the Distribution of V, 

We say that a kernel valued function F ( s )  is analytic 
for 3 E D if p F ( s ) f  is analytic for s E D, for any 
choice of measure p and boundei measurable function 
f. Now suppose 9(3 )  = I - H ( s )  has the spectral 
factorization 

@(3) = @+(3)@-(3), 6- 5 %(S) 5 6+ (4) 

in which @+ (3) and its inverse is analytic and bounded 
as a function of 3 in %(s) 2 6- (i.e., the right half of 
the complex plane plus a strip), and @- (3) is analytic 
and bounded as a function of 3 in %(s) 5 6+ (i.e., the 
left half of the complex plane plus a strip). We shall 
refer to the properties of the function @+(s) in the 
region SZ(3) < 6- also. In this case, we are referring 
to the analytic continuation of O+(s) in this region. 
As a normalization condition, we further assume that 

Normally a spectral factorization would also have the 
properties that @I1($) is analytic and bounded as a 
function of s in %(s) 2 6-. In the present case OT1(s) 
has this sort of property but OZ'(3) does not because 
it has a pole at the origin. This minor transgression 
does not inhibit the Wiener-Hopf method [22] from 
applying in the present case. 
An alternative characterization of this factorization is 
that @+ (3) is the Laplace transform of a semi-Markov 
kernel which is concentrated on ( O , c o ) ,  with an in- 
verse which is also concentrated on (0, m), and 9- (3) 
is the Laplace transform of a semi-Markov kernel con- 
centrated on (-oo,O]. 
Denote the stationary distribution of the underlying 
Markov process by x. We shall assume that {X,},?o 
is an ergodic Markov prEcess, so x is the unique so- 
lution of the equation x H ( 0 )  = ?r. Then the solution 
which we seek [l] (formally equivalent solutions are 
also presented in [5,6,7] with a different definition of 
spectral factorization) may be expressed in the form 

@+(O) = I .  

E{ ,-VosS. , X m  E A }  = ( q ( s ) )  ( A ) ,  

8 ( 3 )  2 0, A E E, (5) 

where we define E{R; B} = E{RXB}, for any random 
variable R and event B, with XB denoting the func- 
tion (random variable) which takes the value 1 on B 
and equals zero elsewhere. Notice that the solution is 
expressed purely in terms of @T1(s). Note also that 
although the domain of ( 5 )  is W(3) 2 0, the singulari- 
ties of OT'(s) which lies in W(3)  < 0 will prove to  be 
of critical significance in the sequel. 
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3.3 Elementary Factors 4 The Tail Distribution of V, 

It is shown in 111 that if O(s) is rational, both spectral 
factors O+ (9) and O- (s) can be represented as a prod- 
uct of elementary factors. We shall refer to this prod- 
uct as the product representation of the function O+(s) 
or O-(s). An elementary factor is a kernel valued 
function F ( s )  which has only one pole, at 8 say, and 
for which the space S = { f : for any measure p, p F ( s )  
is bounded at 8 =+ pf = 0 )  is onedimensional. Note 
that the product pf is defined in Subsection 3.1. An 
elementary factor can have at most one aero, where 
a zero is defined to  be a complex number < such that 
F ( < )  is singular. Furthermore, in this case, the dimen- 
sion of the space 
T = { p  : p F ( s )  = 0 )  must also be one. The space 
S is referred to  as the characteristic space of the pole 
of F at 8, and the space T is referred to as the char- 
acteristic space of the zero of F at <. The definition 
of the characteristic space of a pole or zero applies to 
any kernel valued function and not just an elementary 
factor [I]. 
The pole or the aero or both can be at 00 or 0, but 
in this paper we can restrict consideration to the case 
where 0 < l8(,1<1 < 00 and 8 # $. In this case, an 
elementary factor which takes the value I at the origin 
takes the form 

where f E S and p E T. Since S and T are one- 
dimensional the choice of f and p does not affect F 
because it is normalized by the factor p f (defined in 
$3.1) in the quotient of its definition. The notation 
f Q p denotes the tensor product of f and p which is 
defined in this context to be the kernel 

The exact spectral factorization can seldom be ob- 
tained. Nevertheless, the factorization can be used 
to derive an approximation in several ways. The tech- 
nique we introduced in [2,3] is suitable for queues with 
high load. In this section we describe an extension of 
this approach which is, in the cases we have investi- 
gated numerically, sufficiently accurate, for dimension- 
ing purposes, over the full range of server utilization. 
As discussed in the introduction, it is known that un- 
der quite general conditions P{V= 2 t}e-'*' + c as 
t + 00 for some real number c. (Note that s* is neg- 
ative.) In this section we outline a proof of this limit, 
and we show how s* can be computed. We shall also 
describe by a moment matching argument for calcu- 
lating c. 
In [2,3] we used a single, dominant, elementary factor 
from a product representation of Or'(s) as an ap- 
proximation for a:'(.). In this paper we still use an 
elementary factor with a pole of similar form (same 
location and same characteristic space) to the zero of 
O+(s) which lies closest to 0. This zero is referred 
to as the dominant zero. Note that a aero of O+(s) 
becomes a pole in @T1(s) and conversely. The exact 
form of the aero of O+(s) (its location and its char- 
acteristic space) can be determined by examination 
of @(s); this means that we do not need to compute 
O+(s) in order to completely characterize its zero. 
In order to fully define the elementary factor, denoted 
here by E(s) ,  we also need information about its zero. 
In [2] this information was obtained by matching the 
zero to  a pole of O(s). In [4] a truncation of a series 
expression for @T'(s) was used to choose the param- 
eters of this zero. In this paper a moment matching 
argument is used to complete the definition of E(s) .  

An elementary factor is uniquely identified, up to mul- 
tiplication by a kernel, by the location and character- 
istic spaces of its aero and pole. The inverse of an 
elementary factor is also an elementary factor, and it 
is useful to note that the inverse of a function such as 
F in (6) can be obtained simply by interchanging 8 
and g. 
The kernels we consider in this paper are not rational 
and 80 we cannot expect OT' to be representable as 
a finite product of elementary factors. Nevertheless, 
it will be useful to express 0;' as a product of an 
elementary factor and another non elementary factor. 
If the elementary factor is chosen appropriately it can 
be regarded as an approximation to Oil. 

In the finite dimensional case it has been shown 
[16,17,18] that there is an isolated simple real aero 
of @(s) (which has characteristic space of dimension 
1) in the region {s : W(s) < 0) with the least value of 
I%(s)l among all other zeros. 
The zero occurs when the largest eigenvalue of H ( s )  
(the Perron eigenvalue) takes the value 1, and hence 
coincides with a solution of 

h 

(7) 

where ur,d(A) denotes the spectral radius (in the 
present case, the magnitude of largest eigenvalue) of 
A. This zero lies on the real axis. All this also holds 
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true when the state space is infinite so long as g ( s )  
satisfies appropriate regularity conditions - for exam- 
ple uniform recurrence [l] or recurrence of degree 2 
(see [21] for definition) for all s E (-oo,O]. The loca- 
tion of this aero is denoted by s*. 
Recalling that OZ'(s) is bounded in R(s) < 0, by 
(4), this aero will also be the aero of O+(s) which lies 
closest to the imaginary axis, and hence the function 
@T'(s) will have a simple pole at this location with 
characteristic space of dimension 1 and the function 
s I-+ (s - s*)OT'(s) must be analytic in a region of 
the form R(s) > < for some < such that R(<) < s*. 
We shall denote by A* a vector of unit length in the 
characteristic space of the pole of OT'(s) at s*. The 
existence of this pole of @T1(s) at s* explains why this 
zero of O(s) has a dominant influence on the tail of the 
distribution of V,. Note that A* is also a vector of 
unit length in the characteristic space of the Bero of 
@(s) at s*, i.e. A* satisfies n*O(s*) = 0. 

4.2 The Tail is Exponential 

Let 1 denote the function from E to R which is iden- 
tically 1. The Laplace Transform of the distribu- 
tion of V ,  is A @ ; ' ( s ) ~ ,  so the Laplace transform of 
V ( t )  = P{V,  2 t }  is 
P(s) = (1  - 9r@;'(s)l)/s = (1 - ?r@-1(s)O-(s)1)/s. 
Since @-(s) is analytic and bounded in %(s) 5 0, 
and OT'(s) is analytic in R(s) > s*, we can con- 
clude that ?(s) has an isolated pole at s*, it is an- 
alytic for %(s) > s* and, like a(~ ) ,  inf{l%(s)I : s # 
s* is a pole of 8 ( s ) }  > Is*I. In other words, the other 
poles of P(s) are further away from the imaginary axis 
than s*. It follows that 

A 

V(S)  = 2- +?(s) 
s - 3' 

for some real number c where ?(s) is the Laplace trans- 
form of some bounded function g ( t )  which is concen- 
trated on [0,00). The function ?(s) is analytic in 
W(s) 2 U for some U < s*. By (8), V ( t )  = cedo t  + g( t )  
and from the basic theory of Laplace transforms [8], 
e-6'tg(t) -+ 0 as t -+ 00, and therefore 

v( t )e - -s* t  -+ c as t -+ 00. (9) 

4.3 An Approximation for c 

In [3] we simply used (in effect) 1 or p as an estimate 
for c .  This was shown to be asymptotically accurate 
for high load because actually c -+ 1 as p -+ 1. Sim- 
ulation experiments indicate that this overestimates c 
for low load. 

A method for improving on this estimate by using a 
truncation of a series for O;'(S) has been described 
in [4]. In this paper we describe a simpler method (a 
sort of moment matching technique) which seems to 
produce a formula of similar accuracy. 
In the new method we substitute the approximate so- 
lution on the RHS in equation (1) to obtain approxi- 
mate stationary distributions on the left and the right. 
By requiring that these two stationary distributions 
have the same mean, we obtain a single equation in a 
single unknown, which we can then solve to obtain an 
approximate value for the free parameter. 

5 A Gaussian Queueing Model 

In [4] we introduced the Gaussian traffic model and 
presented performance results for a single server queue 
fed by a Gaussian net input process. Here we derive 
the formula for s* given in [4] and use a new approach 
to derive a formula for 'E. The resulting formula is 
simpler but appears to give similar numerical values. 

5.1 Model Description 

Let Z denote the set of integers, and assume that 
the net input process, denoted (Y,,),,,-z, is a station- 
ary, ergodic, Gaussian discrete-time stochastic pro- 
cess. Any such process has a one sided moving average 
representation [ 131: 

00 

Y,, = m+ c u k U n - k ,  f l  E z, (10) 
k=O 

where the U,, are mutually independent Gaussian ran- 
dom variables with mean 0 and variance 1, and m and 
ak, k 2 0 are real numbers. It follows that for all n, 

E{Y,} = m and u2 = Var(Y,,) = a i .  Based on 
[l], a sufficient and necessary condition for queueing 
stability is m < 0. Define the autocovariance sum as 

A 

00 

k = l  

It can be shown, using (lo), that 

5.2 Derivation of a Formula for s* 

Let X,, denote the infinite series (U,, U,,-l,. . .), n E 
Z. Then (X,,, Y,,)nEz is a semi-Markov sequence. Let 
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(Vn),Ez be the stationary process such that The coefficients 60, b l ,  . . . , can be recursively deter- 
mined by using (14) and (16): 

V,+l = (V, + Y,)+, n E z. 
bo = -900, 

By the theory outlined previously we can find an a p  
proximation for the tail of the distribution of (X,, V,) 

solution of the equation: 

k + l  

bk+l  = bk - sak+l = -3 O j .  

if we can solve (7), or, in particular, if we can find a i=O 

Also, 

v ( s ) f i ( s )  = a ( s ) v ( s )  (12) 

where v(s )  is a positive measure on the state space of 
X,, Q is a real convex function of s in some neighbour- 
hood of 0, and Q(S) = 1 in two places: when s = 0, 
and when s = s*, for some s* < 0. 
Let 7 b , o  denote a Gaussian measure with mean 6 and 
standard deviation U ,  let 7 b  denote the Gaussian mea- 
sure with mean b and variance l. Let 6u be the mea- 
sure on R with unit mass concentrated at y. Accord- 
ingly, &(U) = 1 if y E U, 0 otherwise. For any mea- 
sure p, on R, define .(") by 

m 
= e - a m + ( . W ) 3 / 2  e -dbkak+1+(aak+1)3/2  

k = O  

- - e - d t 7 1 + d 3 ( s + i U 3 )  9 

where we have used (11). It follows that 

s* = 2m/(u2 + 2 s )  < 0. (18) 

As required, a(0)  = a ( s * )  = 1, and a ( s )  # 0 for other 
values of s. 

5.3 The Approximation for c 

~ ( u ) ( A )  = e"zp(dz). (13) Recalling the definition of R* at the end of Subsection 
4.1, by (12) and (17), we obtain 

In the case where p = 7 6 , ~  we obtain the more explicit 
result: 

(14) 

r* = v(a*)  = 7 b o  8 y b l  8.. . . 
It follows that E(s) ,  our approximation for 0,' takes (4  = ebu+u3a3/2 

7 b . a  7 b + u o 3 , a *  
the form 

For any measure 4 on R", 4 2 ( s )  is, by definition, the sf 8 ? r *  E(s )  = I - - 
measure (s - s*) 

B I-+ E{e-aY1;X1 E BlXo = z}4(dz), B E R". 

In the case where 4 is the unit mass concentrated on 
the point (20, z1, . . .) E R", we have 
4fi(s) = 1c) such that 
$(CO x C1 x . . .) = E{e-dY1; U1 E CO, U0 E C1, U-1 E 

= E{exp{-s(m + aoUi + x:=lakzk-l)}; Vi E 

- - e - d ( m + x b l  a k z k - 1 )  E{e-aaOLI1;U1 E CO} 

(15) 

c2,. . . IUO = 20 ,  U-1 = 21,. . .} 

CO, U0 E c1, U-1 E c2,. . . I U0 = 2 0 ,  U-1 = z1,. . .} 

6zo(C1)621(C2). . . . So, using (13), 
1c) = e-a(m+Cr=l a k z k - 1 )  70 ( - O O a )  8 6 z o @ 6 z 1 8 - - -  

for some function f such that R* f = f ( z )R* (dz )  # 
0. The precise form of f is not important in the a p  
proximation which results from substituting E(s)  for 
OJ1 in (5). All that matters is that the product Rf, 
denoted Z, is correct. 
The result which follows from substituting E(s )  for 
@T'(s) in (5) is the following Laplace-Stieltjes trans- 
form of the approximate joint stationary distribution 
of X, and V,: 

E{e-'"";X, E A }  w r ( A )  - ;,*(A): s - s* 

= r ( A )  -&*(A) - -%*(A)-, S* (19) s - 3* 
(Note that the use of ';' & expectations was defined 
in Subsection 3.2.) Hence, using (15), 

hence 

P{X, E A&V, = 0 )  w R(A) - Zn*(A), (20) 
7 b o  8 7 b l  8 - * * 2 ( s )  

= e--ma 70 ( - 0 8 )  87L,a1d) @...  . 
and 

(16) P { X ,  E A&V, > z} w Zn*(A)eao2, z 2 0. (21) 

These formulae appear to assert that (1) E is an a p  
proximation for c, and (2) the joint probability mea- 
sure of X, and V, is a mixture of two separate cases: 

An appropriate form for v(s)  is therefore 

v(3)  = 7 b o  8 7 b 1  8 a.. . (17) 
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one in which V, = 0 and one in which V, > 0. F‘uther- 
more, in each separate case V, and X, are (condition- 
ally) independent. We must recall that (19) is only 
approximately correct, and the sense in which it is ap- 
proximately correct is fairly loose. One glaring defect 
in (20) is the fact that the RHS can take negative val- 
ues for some choices of the set A. Equations (20) and 
(21) cannot be interpreted too literally, however if are 
treated as exact, it follows that V, and Y, are condi- 
tionally independent given V, > 0, and given V, > 0, 
Y, has a Gaussian probability distribution with mean 

U = m + Ukbk = U 2 ” / ( U 2  + 2s) ,  (22) 
k z O  

and standard deviation U. Note that this result has 
the intuitively reasonable implication that in a sys- 
tem with positive correlation (specifically, S > O), the 
mean of Y,, given V, > 0, is larger than the uncondi- 
tional stationary mean for this same process. 
Let us now apply the method of subsection 4.3 to de- 
rive a formula for ;. It will be useful to introduce the 
following definition: 

Then 

from which it follows that the approximation for the 
mass of the negative exponential tail is 

(23) 

Numerical comparisons show that c estimates ob- 
tained by the latter are close to those obtained by 
EQ. (14) of [4]. 

5.4 The Statistics of V, 

Having formulae for s* and E ,  we can approximate the 
distribution of V, by 

P{V, > t }  w ;e8**. (24) 

Consequently, the mean is approximated by 

E{V,} = --L. 
S* 

(25) 

Let t, be the pth percentile of the stationary distribu- 
tion of V,. Assuming i: > 1 - p/100, we obtain 

t, w -In((l-  1 p/IOO)/E). 
S* 

If E 5 1 - p/100 then t, = 0. 
These results have been tested by simulations. Simu- 
lation results obtained over a wide range of parameter 
values agree with their analytical counterparts. 

5.5 A Queue with Autoregressive Input 

Consider the case where A, is a first-order autoregres- 
sive process, i.e., 

I 

A, = aA,-1 +bun, (27) 

where 0, is Gaussian with mean q and variance Z2, 
and la1 < 1. This model was proposed in [15] for a 
VBR traffic stream generated by a single source video 
telephony. (In [I51 6’ = 1.) By (27), 
E{A,} = qb/( l -  a), and Var{A,} = b28’/(1 - U’). 

Assume that the service rate is fixed and let r = 
E{&} for all n. Clearly, in this case, 
Var{Y,} = Var{A,}. 
As usual, p = E{A,}/E{B,} = qb/( l -  a):. 
Eq. (27Lcan be written as A, = b 
where { uk}k>O is a sequence of i.i.d. Gaussian random 
variables each with mean q and variance 8’. 
Define the net input process as YE = A, - r ,  and the 
sequence {Uk}k>O, by Un-k = (Un-k - q)/8.  Then 
{ Uk}k>O is a sequence of i.i.d. Gaussian random vari- 
ables with mean 0 and variance 1. Hence, 

UkUn-k, 

00 

y,=-- 
k=O 

1 - a  

which is, in fact, a special case of (10) with m = 
bq/(l - a) - r and ak = b8ak. Substituting these 
ak values in (11) we obtain 

ab’8’ 
S =  (1 - a)2(1+ a) ’  

Hence, by (18), we obtain 

S* = 2(1- a ) ( p  - 1)‘ 
(1 + a)Var{A,}’ 

(29) 

which is identical to Eq. (6) in [3] where this case 
is considered specifically. (Note also that a small er- 
ror appeared in (21 in this formula.) Applying these 
formulae for m, Var{Y,}, S and s*, as well as Eq. 
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(22) for U,  in (23) through (26)) approximations for 
the statistics of V, can be obtained. 

Acknowledgement: The permission of the ~ i -  
rector of Research, Telecom Research Laboratories to 
publish this paper is hereby acknowledged. 

[13] J. Lamperti, Stochastic Processes - a Survey of 
the Mathematical Theory, Springer-Verlag, 1977. 

114) s- Q- Li and c. L. Hwang, “Queue response to in- 
put correlation functions: discrete spectral anal- 
ysis” Proc., INFOCOM ’92, Florence, May 1992. 

[15] B. Maglaris, D. Anastassiou, P. Sen, G. Karla- 
son, and J. Robbins, “Performance models of sta- 
tistical multiplexing in packet video communica- References 

R. G. Addie, Theory and Applications of Dis- 
crete Time Markov Additive Processes, PhD the- 
sis, Monash University, August 1986. 
R. G. Addie and M. Zukerman, “An approximate 
solution of a semi-Markov queue with large state 
space,” Proc., 19th ITC Copenhagen, June 1991. 
R. G. Addie, and M. Zukerman, “An asymptoti- 
cally accurate method for performance evaluation 
of semi-Markov queues with large state space,” 
Proc., 6th ATRS, Wollongong, Australia, Novem- 
ber 1991. 

R. G. Addie and M. Zukerman, “A Gaussian 
Traffic Model for a BISDN Statistical Mul- 
tiplexer,’ Proc., GLOBECOM ’SE, Orlando, 
Florida, December 1992. 

E. Arjas, “On a fundamental identity in the the- 
ory of semi-Markov processes,” Advances in Ap- 
plied Probability, vol. 4, pp. 258-270, 1972. 
E. Arjas, “On the use of a fundamental identity 
in the theory of semi-Markov queues,” Advances 
in Applied Probability, vol. 4, pp. 271-284, 1972. 

E. Arjas and T. P. Speed, “Symmetric Wiener- 
Hopf factorizations in Markov-additive pro- 
cesses,” 2. Wahrscheinlichkeitstheorie und Ver- 
wandt Gebeite, vol26, pp. 105-118, 1973. 

G. Doetsch, Introduction to the Theory and Ap- 
plications of the Laplace Transforms, Springer 
Verlag, 1970. 
K. W. Fendick, V. R. Saksena and W. Whitt, 
“Dependence in packet queues,” IEEE Trans. 
Commun., vol. 37, no. 11, November 1989. 

0. Gihr and P. llan-Gia, “A layered description 
of ATM cell traffic streams and correlation anal- 
ysis,” ATR, vol. 24, no. 2, pp. 9-18, 1990. 

- -  

tions,” IEEE-Trans. Commun., vol. 36, no. 7, pp. 

[ 161 H. D. Miller, “A convexity property in the theory 
of random variables defined on a finite Markov 
chain,” Ann. Math. Statist., vol. 32, pp. 126G 
1270, 1961. 

[17] H. D. Miller, “A matrix factorization problem 
in the theory of random variables Defined on a 
Finite Markov Chain,” Proc. Cambridge Philos. 
Soc. math. phys., vol. 58, pp. 268-285, 1962. 

[18] H. D. Miller, “Absorption probabilities for sums 
of random variables defined on a finite Markov 
chain,” Proc. Cambridge Philos. Soc. math. phys., 
vol. 58, pp. 286-298, 1962. 

[19] M. F. Neuts, “The single server queue with Pois- 
son input and semi-Markov service times,” J. 

[20] I. Norros, J. W. Roberts, A. Simonian and J. T. 
Virtamo, “The superposition of variable bit rate 
sources in an ATM multiplexer,” IEEE JSAC, 
vol. 9, pp. 378-387, April 1991. 

[21] E. Nummelin, General Irreducible Markov Chains 
and Non-negative Operators, Cambridge Univer- 
sity Press, 1984. 

[22] R. E. A. C. Paley and N. Wiener, Fourier Bans- 
forms in the Complez Domain, American Math- 
ematical Society, 1934. 

[23] E. L. Presman, ‘Factorisation methods and 
boundary problems for sums of random variables 
given on a Markov chain,” Math. USSR Izvestiya, 
vol. 3, no. 4, pp. 815-852, 1969. 

(241 K. Sriram and W. Whitt, “Characterizing super- 
position arrival processes in packet multiplexers 
for voice and data,” IEEE JSAC, vol. SAC-4, pp. 

834-844, July 1988. 

Appl. Prob., vol. 3, pp. 202-230, 1966. 

833-846. Sept. 1986. . -  
‘e R’ Halmoss Measure Theory, Springer-Ver1ag* 
New York, 1974. 

H. Heffes and D. Lucantoni, “A Markov mod- 
ulated characterisation of voice and data traffic 
and related statistical multiplexer performance,” 
IEEE JSAC, vol. SAC-4, Sept. 1986. 

[25] L. Takacs, “A Banach space of matrix functions 
and its application in the theory of queues,” 
Sankhya, vol. 38, pp 201-211, 1976. 

7c.2.8 
842 


