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A Continuous State Space Model of Multiple
Service, Mutiple Resource Communication
Networks

Scott Jordan, Member, IEEE

Abstract - The merging of telephone and computer networks is
introducing multiple resources into networks, and information is
becoming increasingly distributed across the network. Related
services are being integrated onto a single network rather than
being offered on separate uncoordinated networks. We focus
upon communication networks that integrate multiple services
using multiple resources.

In previous work, such networks have been modeled by multi-
dimensional Markov chains with product form distributions. In
this paper, we approximate the distribution on the original dis-
crete state space by a similar product form distribution on a con-
tinuous state space. We consider access control of such a system
and prove that the resulting optimal coordinate-convex control
policy is convex. Based on this result, we suggest an algorithm for
finding a near-optimal policy for the discrete problem that has
much less complexity than existing methods for finding optimal or
near-optimal policies.

1. INTRODUCTION

In this paper, we focus upon communication networks that
integrate multiple services using multiple resources. We inves-
tigate resource allocation strategies and try to capture the
nature of controlling such a system. In particular, we present a
continuous state space model and characterize the optimal
coordinate convex access policy for this model. We show that
this characterization allows for simpler numerical computation
of a near-optimal policy than existing methods.

This work is motivated by several trends in networks. The
merging of telephone and computer networks is introducing
multiple resources into networks, and information is becoming
increasingly distributed across the network. Related services
are being integrated onto a single network rather than being
offered on separate uncoordinated networks.

These trends are made possible by the availability of fiber
and of inexpensive electronic storage, and by the introduction
of greater intelligence into the signaling system. Furthermore,
these trends are made profitable by the proliferation of desktop
computers and the increased demand for better information
transfer.
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Proposals for implementing services in these multiple ser-
vice, multiple resource (MSMR) networks abound. A few
examples of these services might be electronic/voice mail,
mixed media telephone calls, video conferencing, distributed
databases, hypertext systems, electronic catalogues, electronic
yellow pages, and coliaborative editors.

Our premise is that each service relies upon a number of
underlying resources in the network. Examples of these
resources might be communication links, databases, switches,
storage devices, special purpose hardware and software.
Although the precise meaning of “service” and “resource” and
the relationship between them is a topic for future research, we
assume in this paper that we have identified each service and
the set of resources on which it depends.

Integrated services will share resources both for functional-
ity and to decrease cost. Since these resources are limited, there
will be interaction among the services. What types of interac-
tion might we see? If you are the manager of a multiple ser-
vice, multiple resource system, what requests for service do
you accept? Based on what? If you base these decisions on
maximizing revenue, what prices do you charge? And what
resources should you acquire? The purpose of this research
effort is to address such resource allocation problems.

In [1], we investigated the nature of this interaction, and in
[2], we investigated control of a MSMR system. In this paper,
we introduce a continuous state space version of the model
used in the previous two papers in order to obtain a stronger
characterization of the optimal access control policy and to
suggest a simpler algorithm to numerically obtain it.

The MSMR model, and a simpler related multiple service
single resource (MSSR) model, were initially introduced and
shown to have a product form solution under a wider variety of
scenarios in Aein [3] and Kaufman [4].

Research pertinent to searches for optimal or near-optimal
policies for these systems fall into two categories: that con-
cerned with efficient numerical evaluation of a single policy,
and that concemned with algorithms to search through various
candidates.

For a single policy, the straightforward approach of solving
the balance equations to find the stationary distribution of the
Markov chain has a complexity that is exponential in the num-
ber of services. A good deal of recent literature has made sig-
nificant progress on reducing this complexity, for MSSR
systems, if the policy is of a threshold type (and hence convex).
See Kaufman [4], Kraimeche [5], Ross [6], and Tsang [7] for
various recursion schemes, and Dziong [8] and Mitra [9] for
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approximations. In addition, Whitt [10]} and Kelly [11] investi-
gate reduced-load approximations for MSMR systems.

Research on characterization of optimal control policies
and algorithms to find them has been more scarce. Ross [12]
characterizes optimal policies for a system with 2 service
types. Zachary [13], Ross [14], and Key [15] suggest dynamic
programming approaches. Kelly [11] suggests approximating a
MSMR system as a collection of MSSR systems.

In [2], we characterized the optimal coordinate convex pol-
icy for a MSMR system, and noted, as had earlier researchers,
that it is not guaranteed to be a convex policy. This lack of con-
vexity complicates both numerical evaluation of a single pol-
icy, and the search for the optimal policy. Section II displays
the model originally presented in [1] and the optimal control
policies derived in [2]. Section III proposes a continuous state
space model and proves that the optimal access control for this
model is convex. In sections IV and V, we discuss algorithms
suggested by the theoretical results and present a few exam-
ples.

II. THE MSMR MODEL

Consider the following model for resource allocation in
multiple service multiple resource (MSMR) communication
networks, originally presented in [1]:

Consider a system that offers n types of services using m
types of resources. Each service requires a set of resources,
dependent upon the service type, to process. If these resources
are available then the system manager may choose to accept a
service request, and then processing starts immediately; if the
necessary resources are unavailable, or if the system manager
denies the request, then the request is lost to the system.

Service requests arrive as independent Poisson processes.
Each request occupies each resource that it needs for the same
amount of time, and releases these resources simultaneously
upon service completion. This amount of time is exponentially
distributed, and independent of other service times.

Adopt the following notation:

A =am x nmatrix, with column i indicating the number of
each of m resources used by service i.

B =avector of length m indicating the number of each
resource type in the system.

Am (Ao A,) , the rates of incoming service requests.

W= (K, ..., 1), the rates of service.

p= (p-l, --» P,) , the loads, given by p; = xi/ui.

L=(Ly,...,L,), the rates of accepted service requests
(throughput).

x= (x;,...,x,) , the state of the system, where x; is the
number of type i requests being processed.

Z= {x|Ax<b, le. x can be simultaneously processed
with available resources}.

Fi={xlx€ Zbut Gponx+ 1, cuX,) € Z}, the full
set w.I.t. service type i.

E;={x]x€ Zbut (xy ..
set w.r.t. service type i.

1t (x) , the steady state probabilities.

N={1,.., n}, the set of all service types.

wx~=1, .., x,) € Z}, the empty

x,J €1 . )
xT1=(3), v = [0 iel for C S, a projection function.

C, (T = (ye ZyTI=xTI), an /I/ dimensional cross
section of Z.

r; = rate of revenue generated by servicing request type i,
per unit of time.

r(x) = rate of revenue generated while in state x = Zi}ir X

R = the average revenue per time unit generated by the sys-
tem = Er(X) = r(EX).

Z is coordinate convex (cc.) = if x€2Z andx; 2 1
then (x, ..., x;_,, ... x,) €Z

Eyr(X)=E[r(X)|X€ V]whereV<Z

Visannexableto ZesVNZ=@P andVuUZiscc.

Vis removable from ZsVCZ andZ~Visc.c.

ss(V) = {x¢ V|0<x;<v,Viforsomev€e V}, the sup-
porting set of V.

Our assumptions regarding the arrival and departure pro-
cesses give us a Markov chain on state space Z with transition
rates:

A ifx¢ Foandy = (x, ..., x;+1,...,x,)

er = {xiui, 1fx¢ Ei andy= (xi’ ""xi_

0, else
Assume that service completion is never blocked. This
implies that the state space Z is coordinate convex. We will
generally assume Z = {x/ Ax < b}, so that Z is also convex.
The uncontrolled Markov chain is time reversible with sta-
tionary distribution:

L..x)

" o
R =mO [ 80 = —
= Y Iei/x!
X€Zi=1

We now assume that the system manager can choose to
deny a service request even if the corresponding resources are
available. Since resources are limited, accepting a request of
one type may preclude the possibility of accepting a request of
another type in the near future. We restrict ourselves to control
policies that are coordinate convex (c.c.). In this class, admis-
sion decisions depend on the state the system would enter if the
request is granted. This is equivalent to restricting the state to
some subset of the original space. Since service completion
can not be realistically blocked, this subset, like the original
state space, must be coordinate convex. This class has the
property that the controlled system is the restriction of the
uncontrolled time reversible Markov chain to a subset, and is
thus itself time reversible, maintaining its product form station-
ary distribution.

Our goal is to maximize expected revenue. Our objective is
thus to choose the c.c. subset Z° ©Z, that maximizes
E[r(X)|XeZ].

Consider the removal of a set V from Z. Since the Markov
chain is time reversible, the removal of a set V from Z affects
the distribution on Z-V only through the normalization constant
n(0). If E,r(x) <R, then removing V would proportionally
increase the rewards from other states because the new normal-
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ization constant would rise. Furthermore, the removal of V
from Z increases the average revenue on Z if and only if
Eyr(x) <R. We can therefore characterize an optimal c.c.
policy as a subset of Z to which nothing above average can be
added and nothing below average removed [16], i.e. a c.c. set
Z* ©Z is optimal iff

AV S Z >V is amexable toZ* &Eyr (x) > K

AV >V is removable from Z* & E,r (x) <R
where K" = E . r (X)

In [2], we characterized the optimal c.c. policy for our
MSMR model:

Theorem 2.!: There exist a set of constants {c;‘, ICN}
and a set of constants {ai’ L 1} such that the optimal coordi-
nate convex policy, Z*, for the MSMR model, can be repre-
sented as:

x¢Z"iffx¢Zor3k3;aiklxiZcf‘v’ICN @)
icr v

1II. A CONTINUOUS STATE SPACE MODEL

This characterization is weak, principally because the opti-
mal access control policy is not guaranteed to be a convex pol-
icy. This lack of convexity makes numerical evaluation of
policies more difficult, and makes the search for an optimal
policy extraordinarily difficult. For convex policies, (2) has a
much simpler form:

x€ Z'iffxe Z&xTI1e GVICN 3)

where Gy are convex sets.

Without any characterization, the optimal policy is found
by a exhaustive search among all c.c. subsets of the state space
Z. With (2), the set of candidate policies is reduced, but still
extremely large. If the optimal policy is also known to be con-
vex, then the set of candidate policies is much smaller.

The optimal ¢.c. policy of a similar MSSR queueing prob-
lem has been shown to always be convex [2]. We are thus lead
to investigate why convexity is not guaranteed in the MSMR
model. Consider a system with 2 services and 1 resource in
which service #1 requires 2 of the common resource and ser-
vice #2 requires 3 (Fig. 1).

X9

o—0—©

Xy
Fig. 1. A MSSR system with a non-convex optimal c.c. policy

Assume services 1 and 2 generate rates of revenue of 2 and
3, respectively and that the loads are proportional to the reve-
nues but very high. State (1,1) generates a rate of revenue of 5.
The overall average rate of revenue in the system, however, is
approximately 6, since almost ail the probability is in states

(0,2) and (3,0). Thus the optimal control policy would exclude
state (1,1), namely Z* = Z - {(1,1)}. Note that Z* is not convex.

The convexity of the optimal policy is caused by the non-
concavity of expected Tevenue on cross sections of type 2,
Ec(x‘[‘(z})r(x) It is not true that

Ecia,01 217X 2

1 1
sEcia,ot 2" ® +3Ecie,01 @n &)

This is in turn caused by the non-concave height of the state
space with respect to x; (Fig. 2), which is due to the non-inte-
ger multiple of resource usage.

X2

non-concave height

X1
Fig. 2. Non-concavity of Ec¢xpz)r(X)

This lack of concavity is a local effect, and of magnitude
given by the granularity of the resource usage. In systems
which can accommodate a moderate number of every service,
this should have a small effect on the optimal revenue. We
therefore propose approximating the discrete state space by a
continuous space, and consequently approximating the discrete
product form distribution by a continuous distribution:

n

n(x) =K Hfi(xi)

i=1

The state space is now a continuous region given by Ax<b.
The state is x, a vector of length n of non-negative real num-
bers: A is a mxn matrix of non-negative real numbers represent-
ing resource usage for each service type; b is a vector of length
m of positive real numbers representing total numbers of each
resource type.

We require that each additional resource added to the sys-
tem produces a non-negative but decreasing return to the opti-
mal revenue. This is equivalent to the following concavity
property on parallel cross sections of the optimal subset of the
state space [17]:

Property DR: For any two cross sections C; and G5,

C1=CZ* (xTI)andC2=CZk ((X+Bej)TI)sj€ 1,

f; (x;) continuous onx; 20 4

R[aC1+(1—a)C2]ZaR[C1]+(l_a)R[C2]Vi€I’ where
aC + (1-a)Cy=Cp ((x+ (1—a)Be) TN and ¢; is a

vector with all zeroes except for a 1 in the ™ position.

The optimal c.c. access policy for the continuous model
given by (4) satisfying (DR) can now be shown to be convex,
and hence characterized in the form of (3). Furthermore, we
can characterize the convex sets Gy that define the policy.
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Adopt the following notation:
M, (R) ={x€Zr (Ecz(le)X) >R}

BM(R) =M, (R) +s5s(M/(R))

MR) is the set of states in “I” type cross-sections generat-
ing above average rates of revenue. BM;(R) consists of M,(R)
and those states supporting M (R). BM{R) is thus coordinate
convex.

Theorem 3.1: If X has a distribution on Ax<b given by (4)
satisfying (DR), then the optimal c.c. subset Z* € Z is defined
by:

x€ Z'iffxe ZandxTI€ G* VICN )
where G;* =BM;(R") T/andR" =E . r (X)

The proof can be found in the Appendix.

Theorem 3.1 implies that we should cut back on services of
lesser value (the N-/ services) to get increased throughput of
some services of high value (the I services). More precisely, it
states that if extreme points of the state space generate a below
average rate of revenue, then we can do better by restricting the
system from entering the regions near these points. We investi-
gate the algorithmic implications in the next section.

IV. ALGORITHMS

A. An Outline

Consider the task of finding the optimal c.c. access control
policy for a particular MSMR system specified by a service to
resource map A and a resource vector b, with stationary distri-
bution given by (1). If no characterization of the optimal c.c.
policy is known, we would use the following algorithm:

Algorithm A:

1) Find all coordinate convex subsets of Z.

2) Find the average revenue generated by each subset.

3) Choose the subset that generates the highest average reve-
nue.

The number of coordinate convex subsets, however,
becomes prohibitively large when the number of services is
greater than one and the number of states is still relatively
small.

In the previous section, we have found that the optimal c.c.
access control policy for the continuous MSMR model must be
convex, while the optimal c.c. policy for the discrete MSMR
model need not be. Furthermore, this convexity is lost due to
granularity in resource usage. For systems that accommodate
moderate numbers of each service type, we therefore propose
restricting our search for optimal policies to convex c.c. poli-
cies, i.e. of the form (5). We could use the following algorithm:

Algorithm B:

1) Approximate the discrete product form distribution (1) by
a continuous system (4), with:

(x) ——ﬁp?
fitx) = Gamma (x, + 1) ©
2) Find the optimal c.c. policy for this system by repeatedly
removing type “I” sets that produce below average revernue
from the exterior of the state space:

outer loop:
calculate average revenue
find all extreme points of the state space
introduce a new constraint tangent to the state space
at the extreme point with the lowest revenue
calculate average revenue on the intersection of
the constraint with the state space
lower the constraint by control_step
until average revenue on constraint exceeds
average revenue of state space
until no constraint with below average revenue can be
found.
We investigate the complexity of these algorithms in the
next subsection.

B. Complexity

Define the following quantities:

z = number of states in the state space Z.

g = maximum of x; such that x € Z, for square state spaces.

s =number of c.c. subsets of Z.

sc = number of convex c.c. subsets of Z considered in algo-
rithm B.

CA = complexity of algorithm A.

CB = complexity of algorithm B.

The complexity of algorithm A is proportional to the num-
ber of candidate c.c. policies:

CA ~ s (complexity of evaluating each subset)

The number of such subsets, s, is dependent upon the struc-
ture of the state space. In general', we can only say that
z<s<2°7 14 1. Consider, however, a system with 2 service
types and a square state space. For this system, it can be shown
that?:

_ 20/

The complexity of evaluating each subset depends on the
amount of recursion and reuse of information used in finding
the first moments of the Markov chain. At most, this is O(zn).
The complexity of algorithm A is therefore dominated by s.

For algorithm B:

CB ~ sc (complexity of evaluating each subset )

The number of policies examined, sc, is reduced from s for
two reasons. First, only convex c.c. subsets are legal policies.
Second, in a continuous product form space, the difference in
average revenue produced by two simultaneous infinitesimal
changes to the state space is equal to the sum of the differences
if these two changes were taken separately. Boundary changes
(removable sets) can thus be considered individually, rather
than as pairs.

For the same 2 service type system considered above, there
are (g+1 )’ convex policies satisfying (3), and algorithm B con-

§ = 20(11)

1. A one dimensional system would have s=z. The z-/ dimensional
system Z = {x Zf; llx’. < 1} would have s=271+1.

2. For this system, z= q2 . The complexity is found by simple combi-
natorial arguments.
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siders at most 2%(g+1)/control_step removable sets. If we set
control_step = I.

sc =0(q) = 0(2)

Furthermore, the complexity of evaluating each subset can
be reduced by using numerical integration on the continuous
state space, rather than sums on the discrete state space. If we
choose an integration step size equal to the standard deviation
of x; = O(q""?), then the complexity of evaluating each subset
is further reduced.! This component, however, is still likely to
be exponential in .2

In our versions of these algorithms, which were not coded
for efficiency, we found that algorithm A had a running time
that was exponential in the number of states in the system, and
progressed from infinitesimal to impractical® at about 30 states
(and 3 service types). We found that algorithm B had a running
time that was exponential in the number of service types, and
progressed from infinitesimal to impractical at about 7 service
types (and millions of states).

V. EXAMPLES

In this section, we discuss access control in a system with 2
services X and Y and 2 resources A and B. Assume service X
occupies 2A4s and 1B and service Y occupies 1A and 2Bs.
Assume there are 60 As and 60 Bs in the system. The state
space for this system is shown in Fig. 3.

o
(]

15 20 25
H

Number of Service Y

10

T T T T T T T

0 5 10 15 20 25 30
Number of Service X
Fig. 3. The state space.

The example was chosen to include a moderate number of
states, so that moments could be calculated by either the dis-

1. If the complexity of evaluating each subset is proportional to the
number of elements in the subset, then this reduction is from O(q") to
O(q"/2 ). This suggests that numerical integration, or equivalently dis-
crete state grouping, increases the dimension of practical problems by
a factor of 2.

2. Use of recursion techniques proposed for MSSR systems may
significantly reduce this complexity if they can be extended to MSMR
systems.

3. Since these complexities are exponential, running times quickly
increased from sub-second to days as the appropriate parameter
increased past the noted value.

481

crete or continuous algorithms, but so that optimal control pol-
icies could only be calculated in reasonable time by the
continuous algorithms.

A. Blocking Probabilities and Average Revenue

The majority of the work in the numerical integration rou-
tine is in calculating the density at each integration point.
Therefore, rather than calling the integration routine separately
to find each moment, we chose to have the integration routine
keep one running sum for the normalization constant, plus one
running sum for each first moment. One call thus returns all of
the first moments. This suffices to find throughputs, blocking
probabilities, and average revenue*:

L; = pEX;
P(F) =1-EX/p,;
R=YrEX.

; 13 ]

If we chose to also calculate second moments, then we
could have found sensitivities using these results and others
from [1]:

b oy

aL, xjcov (xl-,xj),lz j
oA, H; 5w i
xvar(xi),l i=j

t

To help illustrate the use of first moments and to demon-
strate the need for control, consider our 2-service 2-resource
example with r=(1,3) and with a load of py=20. What happens
as we vary py?

At low py, there is very little blocking of either service. As
the load on service X starts to increase, EX increases with it,
and EY decreases slightly since services X and Y are substitutes
(Fig. 4). As the probability of blocking of service Y becomes
significant, the trade-off becomes more severe and EY drops
precipitously.

Since ry > ry, we should be concemned about this drop.
Indeed, in the uncontrolled system, average revenue (Fig. 5)
increases only until py = 23 and then drops off with increasing
Px-

Allowing control of the system corrects this problem. Since
ry > ry, the optimal control for the continuous model is simply
a restriction on the number of service X in the system. With
py=20, as py increases, this restriction becomes more severe,
eventually allowing only states with X < 20 (Fig. 4). As we
would demand of the controlled system, revenue no longer
dips at high py (Fig. 4).

B. Control Policies

Consider the same 2 service type system with r=(1,3),
px=30, and py=20. How sensitive is the system to the amount

4. 1t should be noted that use of recursion techniques proposed for
MSSR systems may significantly reduce this complexity if they can
be extended to MSMR systems.
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30

- w/o control

*  w/ control

Number of Service Y
15 20 25
1 1 1

10
1

T T T T T T
0 5 10 15 20 25 30
Number of Service X
Fig. 4. Increasing load on X: state space
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18 T,
w | -
10 -
- w/o control
.
o | w/ control
[To]
T T T T
20 40 60 80 100
Load on X

Fig. 5. Increasing load on X: revenue

of control exercised? As we vary the maximum number of ser-
vice X allowed, revenue moves as shown in Fig. 6. The vertical
difference at py=30 on Fig. 5 shows up here as the difference
between the peak value of R and the value at maximum X = 30,
Here the peak is prominent and the control algorithm can find it
easily in 3 iterations of the outer control loop.

The optimal control point becomes much more sensitive at
slightly higher ry/ry. If we set r=(1,8), the peak is rounder
(Fig. 7). The optimal control is stronger, but is also tougher to
find.

VI. PARTING THOUGHTS

In this paper, we have approximated the MSMR product
form stationary distribution by a similar distribution on a con-
tinuous space. We have shown that the resulting optimal coor-
dinate convex control policy is convex, and presented a
characterization of it. We have presented an al gorithm to find a
near-optimal control policy for the original MSMR problem
that is less complex than existing methods.

‘&
» o,

Revenue
62 66
1 1

60
1

T T T T T T

0 5 10 15 20 25 30
Maximum # of Service X
Fig. 6. Varying control of service X: low revenue ratio

Revenue
185 160
1 1
»

150
1

145
1
N

T T T T T T

0 5 10 15 20 25 30
Maximum # of Service X
Fig. 7. Varying control of service X: high revenue ratio

This analysis, however, is limited by the requirement that
resource usage is simultaneous. A service may not need two
types of resources simultaneously, but first one and then the
other. This latter type of sharing can not be addressed by the
models in this paper, but instead require a model cognizant of
changes in time.
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APPENDIX
PROOFS

The proof falls into three parts. First, we show if the opti-
mal policy is convex, then it must exclude all states excluded
from Z*. Second, we show if the optimal policy is convex, then
it must include all states included in Z*. Finally, we show the
optimal policy must be convex.
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Lemma 1: Tf X has a distribution on Ax<b given by (4), and
the optimal policy is of the form of (3), then G, <G," VI,
where G, is given by (5).

Proof: The proof proceeds by showing that removed states
form removable sets of type “I” cross-sections generating
below average revenue.

Consider G,;* =BM(R*) TI forsome/ CN. The set of
states in “I” type cross sections that have been removed is:

V= {xeZxTI¢ G/}

By construction, V; is removable from Z. Furthermore, the

expected rate of revenue on Vj is:

Eyr(X) = Jr (Ec, 1 nX) 7(Cq D) dThn
I
and r(E c,ct pX) < R* on V;since the cross section contains

none of the above average type “I” cross sections, namely
V,AM,(R*) = @.

Thus Z* should not contain V}, i.e. Z* 2 V,VI, or namely

G, <G, VI
O

Lemma 2: If X has a distribution on Ax<b given by (4) satis-
fying (DR), and the optimal policy is of the form of (3), then
G,2G;" VI, where G is given by (5). Furthermore, G is
COnvex.

Proof: The proof proceeds by showing that the concavity
property (DR) implies that any additional removable sets of
type “I” would generate an above average rate of revenue.

Suppose that there exists an I such that G, € G,* . Define

A = boundary (G,) - boundary (G;")
and
A' = boundary (G;*) - boundary (G)) .

Now R [+ xTI€ A] 2R"; any average revenue less than
R* would justify removal of the set. Similarly,
R[x/xTI€ A'] 2", from the construction of G, . Now
since r(+) is linear, i.e. R[set] = r(E, X), using property (DR)
we can conclude that

R [convex hull of (4 xTI€ A) & (x|xTI€ A")] 2R*.

But since this convex hull is annexable, this would imply
that Gy was not optimal.

Similarly, we can conclude that G; must be convex, since a
similar construction could be made by setting G ,* to be the
convex hull of G;.

O

Theorem 3.1: If X has a distribution on Ax<b given by (4)
satisfying (DR), then the optimal c.c. subset Z* < Z is convex
and defined by (5).

Proof: The proof proceeds by showing:

1) Any set V removable from Z* must contain both above
average and below average states, and thus must contain aver-
age states.

2) The set of average states of Z* is contained in the union
of the M I

3) Any such V must contain sets in the M; that generate a
below average rate of revenue.

4) (DR) concavity implies that no such sets exist.

This proof of the convexity of Z* relies upon lemmas 1 and
2. We suspect that there is probably a simpler, shorter proof
that does not rely upon these but instead shows directly that
any optimal Z* must be convex.

Consider Z* as defined in (5). If Z* is not optimal, then
there exists a set V removable from Z* with E,r (X) <R* .

By construction, the Z* proposed in (5) has already
stripped off all removable sets on the exterior of Z with below
average rates of revenue. Therefore, if V is removable and if
E_r(X) <R*,then V must contain both sets on the exterior of
Z¥ generating above average rates of revenue and sets further
in Z* generating below average rates of revenue. We will use
the concavity property (DR) to show that the above average
states in V outweigh the below average states in V and result in
E,r(X) 2R".

Consider the set of states generating an average rate of rev-
enue:

T= (r(x)=R') nZ"

By continuity, if V contains both below average and above
average states, V must contain average states, namely
VN T#@. We will show that T is contained in M; regions and
that no such V can exist in Mj regions.

Assume for now that T < UICNMr This will be shown

later. If this is so, then VAT # @ and V removable implies
that V must contain sets in the M; that generate a below average
rate of revenue i.e.

IV, EME,r (X) <K

Let V; be the largest such set, i.e. ss(M;=V,) NM; = ()]
Now on My, r (E¢_ (1 pX) >R* . But V; can be represented

as an integral over xT/, and
r(Ey tyX) 21 (Ec ot pX) > R

at every point in this integral, since V, (xT1) is the upper part
of C(xT1), so Ev,’ (X) > K", namely no such V; can exist, i.e.

BV, S M;3Ey r(X) <R &ss(M;-V) nM; =D
It only remains to show that TS\, o NM ; to establish

that there exists no set V removable from Z° with
Eyr(X) <R" and prove the theorem.

To help visualize these regions, consider Fig. 8, which
depicts a two service, one resource system. In this picture, the
M;do not cover T.

We will show that T is contained in \_UM; by partitioning T
into T}, each of which is contained in the corresponding M.
Consider the boundary of 7. All points x on the boundary either
belong to E; for some i, corresponding to points that are on the
boundary of Z, or xT/ € boundary of G, for some I, corre-
sponding to points that are on the boundary of Z* but not on
the boundary of Z. Therefore we can partition the boundary of
T into

{T,} >x€ T;= xis on the boundary of T &
TIe G/l in>1
.

TIeG " orx€ E, 1= {i}
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E(X5/X;)

Fig. 8. A proposed system contradicting convexity

Now note that EX € T since r(£X) = Er(X) = R. From EX to
the boundary of T, we can partition 7 in a linear fashion into
{T}}5(xeN& x=0EX+ (1-a)y

for some 0 a<1&y€ 7,

where the multiplication is taken component-wise.
In Fig. 9, for our example, with a different T shown from
Fig. 8 for purposes of illustration

T,y = line segment fromT  to EX
&T{z} = line segment from T{Z} to EX

z* Ty = boundary of T at boundary of G ,,,*

\\\\\\\\\\\\\\\\\\\\\\\\\\

Grt07722000270000000707022. LIIIEII ISP PI 127572777777

Fig. 9. Partition of T

We will show that TS (U M, by showing that T; € M;
VL ICN
First note that EX € chull (Ecz‘ (x? ,)X) V1, since

EX = [Ec apX n(Cp xTD) d(xTD
and Ect (xt X is concave with respect to xTI from (DR).

Thus EXe M VI, since EX must be both in T and in the
convex hull of Ecz- «t I)X .

For our example, EX € M;;; because EX must be both on T
and in the convex hull of E(X,/X;) and hence on the line seg-
ment AB in Fig. 10.

Furthermore the “I” boundary of 7, 71 € M,, from its def-
inition.

We have shown that EX € M, and that T, € M,. From con-
struction of 77 and from concavity (DR), it follows that all of T
from EX to T, must be in M}, namely, T,cM\VI.

Fig. 10. Showing that EX € M,

Thus T = (UT,;) © (\UM,), and the proof is complete.
O
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