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Abstract- We will define a new class of real-number linear 
block codes using the discrete cosine transform (DCT). We will 
also show that a subclass with a BCH-like structure can be defined 
and, therefore, encoding/decoding algorithms for BCH codes can 
be applied. A (16,lO) DCT code is given as an example. 

I. INTRODUCTION 
S RECOGNIZED by several authors [1]-[4], error con- A trol codes (ECCs) defined over a real or complex field 

could be advantageous in some aspects including 1) using 
realkomplex operations which are widely available in standard 
programmable digital signal processors, 2 )  not restricting to 
certain block lengths, 3) defining codes which can simultane- 
ously correct errors and reduce data rate, and 4) making error 
control coding more accessible to signal processing engineers. 
However, there are problems for a real-number code which are 
not presented in a finite field. For example, in addition to some 
impulse errors, the elements of a received code vector will 
also be contaminated by some unavoidable minor errors due 
to round-off. This background noise is uncorrectable and will 
affect decoding algorithms originally designed for codes over 
a finite field, or new decoding algorithms should be devised 
specially for codes over a real or complex field. As one of these 
works, Marshall defined some real-number codes including 
those based on the discrete Fourier transform (DFT) and the 
Hadamard transform, and had shown that a DFT code can 
be decoded by a modified error trapping decoder which is 
originally used for cyclic code over a finite field [l]. 

As suggested by Marshall [I], an ( N ,  K )  real-number block 
code based on a unitary transform can be defined as follows. 
First, a generating matrix, G is formed by selecting K rows 
from the unitary transform. The codeword of y of a K-tuple 
information vector z is calculated as 

The codeword will then be transmitted over a channel and 
received as another N-tuple, say r .  The received vector r is 
related to the codeword y as 

r = y S  q f  e ,  
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where q is the minor error vector due to the background noise, 
and e is the impulse error vector due to the channel noise. A 
decoder is devised at the receiving side to estimate e based on 
the redundancy carried in r. This estimation procedure will be 
perturbed by the presence of the background noise. 

As long as the background noise is small compared to the 
information symbols and/or the channel noise, a decoding 
algorithm originally designed for a code over a finite field 
can be modified by simply setting a threshold on the accuracy 
of identifying syndrome patterns. The modified decoding algo- 
rithm is then applied to a real-number code in the hope that it 
will be stable to those small perturbations. The error trapping 
decoder discussed in [ l ]  serves as an example of this idea. 
Another example, which is a modified decoding algorithm 
for real-number BCH codes, will be presented in this paper. 
Results from numerical evaluations in [l], [3] and here show 
that there is a good chance for these algorithms to be stable. 

The use of the discrete cosine transform (DCT) for defining 
a class of real-number block codes is presented. As a result 
not presented here, a nontrivial cyclic subclass can not be 
defined because that the DCT does not possess the DFT-like 
translation property. However, it will be shown in this paper 
that despite the non-cyclic nature of the DCT codes, a set of 
modified syndromes can be defined with which a modified 
BCH decoding algorithm can be performed. 

This paper consists of three sections. The general definition 
of the DCT codes is given in Section 11. In Section 111 subclass 
of these linear block codes with BCH-like structure is defined 
which can be decoded by some modified decoding algorithms 
originally designed for BCH codes over a finite field. Finally 
a (16,lO) DCT code which can correct 3 or fewer errors is 
presented in Section IV as example. 

11. DCT LINEAR CODES 

As defined in [5], the DCT of a data sequence z = 
[ZO, 5 1 ,  ' . ' , zk-l] is 

where 
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Theorem: (The orthogonal property of the DCT) 

(3) 

The N equations of (1) can be written in matrix form, using 
the N-point DCT matrix: 

TO(0) TO(1) . . .  To(N - 1) 

Select any K rows of the N-point DCT matrix, say 
j o ,  j1, . . .  , j ~ - 1 ,  as the rows of a K x N matrix G. Since 
G is a matrix of rank K, it will generate an (N, K) 
linear block code [lo]. The remaining (N - K )  rows, say 
rows j ~ ,  j ~ + l , . . .  , j ~ - 1  which are called parities, form a 
( N K )  x K matrix A. By (3), it is easy to verify that 

G . H ~ = O  

G . G ~  = I ~ .  ( 5 )  

Thus, by the definition of linear block codes, one can recognize 
that matrix H is the parity check matrix of the code, and matrix 
GT is the right inverse of the generator matrix G. 

111. A BCH-LIKE SUBCLASS OF DCT LINEAR CODES 

Now we define a subclass of the above DCT linear codes 
and show how to decode with existing BCH decoding algo- 
rithms. It should be noticed that this BCH-like subclass of 
codes is defined directly from the class of the DCT linear 
codes, but not conventionally from a cyclic subclass of them. 

Suppose that the first d rows, Le., 0, l , . . . , d  - 1, are 
selected as parities, that is 

(7) 

where we assume that each element of q is much smaller as 
compared to that of e. By moving the normalization factor of 
Ti(.) to left hand side, the entries of S become 

for i = 0, 1, 2 , .  . . , d  - 1, (8) 

where fi = for i = 0, and for i = 
1, 2 , .  . . , N - 1. This equation can be written as S' = S . P 
where P is a diagonal matrix with fZr1 as its main diagonal. 
Before going on, a lemma will be stated. The proof of this 
lemma can be found in [9]. 

Lemma: 
k 

cos kw = c c k >  n . (cos W ) n  

n=O 
(9) 

where 

C k , n  = 

(" k - n odd 

Assume that 21 errors occur, or equivalently, there are only 
21 nonzero terms in the impulse error vector e. Suppose that 
rl, 7-2, . . . , T ,  be the locations of these nonzero terms. Then, 
by the above lemma, (8) becomes 

1=1 n=O \ 

= [Yl Y2 . . . Y,] 

1 x, x," . . .  xi 

where, for 1 = 1, 2, . . .  , v , x  = e,, is the error magnitude at 
location r l ,  and X1 = cos (273 + 1)7r/2N is the error location 
number for r l .  Writing the N - K syndromes as a vector, 
we have 
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Fig. 1. A (16,lO) DCT code with fast decoding algorithm. 

e L i  Forney algorithm 
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Fig. 2. BerlekampMassey and Forney algorithms 

where Y = [YI YZ Yo 1. Denote the d x d upper 
triangular matrix in (1 1) by C,  which is always invertible. 
Then 

. . . 

s" = SIC-1 

L1 xu x," . . .  x y J  
By the Peterson-Gorenstein-Zierier algorithm described in 
[lo], it follows that X i ,  K ,  1 5 i 5 w can be found by the 
algorithm provided that 

or, in other words, the correction capacity of this code is t. 
This is also implies that, the DCT codes are maximum distance 
separable (MDS) under the Hamming distance measure. 

As shown in Fig. 1, by introducing the Berlekamp-Massey 
algorithm [lo] and the Fomey algorithm [lo] with minor 
modifications, one can have fast decoding algorithm for this 
subclass of DCT codes. As shown in Fig. 2, a threshold THl 
should be set for testing the ith discrepancy d; which is the 
difference between the ith output of the ( i-  1)th autoregressive 
filter A(z) and the ith syndrome Si. This threshold should be 
small enough to get a better autoregressive model and should 
be large enough to cope with the background noise. A search 
loop is included in the part of Fomey algorithm in Fig. 2, to 
find out all legal roots of the error locator polynomial. A legal 

root is one of the N error locator numbers defined in (10). 
By this way, a complex procedure for solving the roots of 
the error locator polynomial is avoided, and the illegal roots 
due to background noise or an improper value of THl are 
filtered out. The threshold TH2 is set for the accuracy of the 
evaluation of the error locator polynomial. TH2 should be set 
large enough to cope with the inaccuracy of the previously 
synthesized autoregressive filter and small enough to avoid 
illegal roots. 

v. COMPARISONS AND DISCUSSIONS 

Since the proposed DCT codes have nearly the same param- 
eters as the DFT codes defined in [l], the following question 
arises naturally: whether the DCT codes have any advantages 
or disadvantages as compared with the DFT codes. In the 
following, our views on this question are presented. 

The DFT codes are defined by using consecutively in- 
dexed powers of the Nth complex root of unity. To 
generate codewords with real coefficients, the index set 
included for the generating matrix must be symmetric 
about 0 (including 0) or about N / 2  (and including N J 2  
if N is even). This restriction narrows the range of 
parameters permitted in the codes slightly. On the other 
hand, the BCH-like subclass of the DCT codes does not 
have this restriction. 
It was established in [ I ]  that real-number maximum 
distance separable DFT codes exists for all choices of 
parameters. Since there is no specific restrictions in the 
construction of the DCT codes, it follows that the DCT 
codes exist for all ( N .  K )  and the codes can detect errors 
equal in number to the rank of H ,  the maximum permitted 
by the Singleton bound [lo]. 
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1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 
1.0, 

0.99518460, 
0.95694029, 
0.88192135, 
0.77301055, 
0.63439327, 
0.47139668, 
0.29028457, 
0.09801 716, 

-0.09801 716, 
-0.29028457, 
-0.47139668, 
-0.63439327, 
-0.77301055, 
-0.88192135, 
-0.95694029, 
-0.99518460, 

0.99039268, 
0.9 1573477, 
0.77778506, 
0.59754509, 
0.40245491, 
0.22221494, 
0.08426523, 
0.00960732, 
0.00960732, 
0.08426523, 
0.22221494, 
0.40245476, 
0.59754509, 
0.77778506, 
0.91573477, 
0.99039268, 

0.98562348, 
0.8 7630355, 
0.68594533, 
0.46190876, 
0.25531465, 
0.10475 136, 
0.02446079, 
0.000941 73, 

-0.000941 73, 
-0.02446079, 
- 0.10475136, 
-0.25531465, 
-0.46190876, 
-0.68594533, 
-0.87630355, 
-0.98562348, 

0.98087764, 
0.83857018, 
0.60494965, 
0.35706016, 
0.16196999, 
0.04937952, 
0.00710065, 
0.00009224, 
0.00009224, 
0.00710065, 
0.04937952, 
0.16196984, 
0.35706016, 
0.60494965, 
0.83857018, 
0.98087764, 

0.97615433 
0.80246162 
0.53351808 
0.27601138 
0.10275258 
0.02327732 
0.00206111 
0.00000909 

-0.00000909 
-0.00206111 
-0.02327732 
-0.10275258 
- 0.2760 1138 
- 0.53351808 
-0.80246162 
-0.97615427 

X 

Block 1 : A 
0.2000000 

-0 3000000 
0.1000000 

-0.3000000 
0 2000000 
0.3000000 
0.1000000 
0.3000000 

-0.1000000 
-0.2000000 

Block 2 : A 
0.2000000 

-0.3000000 
0.1000000 

-0.3000000 
0.2000000 
0.3000000 
0.1000000 
0.3000000 

-0.1000000 
-0.2000000 

Bloc4 3 : I 
0.2000000 

-0.3000000 
0.1000000 

-0.3000000 
0.2000000 
0.3000000 
0.1000000 
0.3000000 

-0.1000000 
-0.2000000 

TABLE I 
SIMULATION RESULT 

: = 1 - 0.7701839~- 1. 
0.0542908 -0 0400000 

-0.1446468 -0.0000010 
0.1945084 0.9000000 

-0.0681906 -0.0000010 
-0.2440337 0.0000030 
0.3180752 -0.0000020 

-0 0751739 0.0000010 
0.0109734 0.0000010 

-0,1162757 -0.0000010 
0.0868550 0.0000010 

-0 1328392 -0.0000010 
0 1586038 0.0000010 
0 1995009 0.0000010 

-0.3490881 0.0000030 
-0.0976906 -0.0000010 I 0.2051310 -0.0000060 

-0.1328492 
0.1586138 
0.1995019 

-0.3486435 

0.1586138 
0.1995109 

-0.3490581 
-0.0976916 

0.0580504 
-0.1446478 
0.1945902 

-0.0681916 
-0.2440307 
0.3180732 

-0.0751729 
0.0109744 

-0.1162767 
0.0868560 

-0.1328402 
0.1586048 
0 1995019 

-0 3490851 
-0.0976916 
0 2051250 

0 2010740 
-0 2989975 
0 1009189 

-0 2991634 
0 2007435 
0 3006435 
0 1005340 
0 3004157 

-0 0997131 
-0 1998558 

Since only real arithmetic is involved for the computa- 
tion of the DCT codes, it implies not only the lower 
computation complexity but also less computation error. 
As shown in [12, Section 9.81, the output error of a 
direct computation of the DFT using fixed-point b-bit 
arithemetic is (N/32)-26 where N is the length of the 

transform. Under similar conditions, the output error 
of the DCT is ( ( N  - 1)/4N + O(1/N))2T2& [13]. In 
other words, under comparable computation precision, 
the DCT codes can be decoded more accurately since 
they suffer less from background noise, mainly due to 
the computation error. 

From the above discussions, it is apparent that the DCT 
codes do not have some advantages over the DFT codes. 
Moreover, we would like to point out, in the following, our 
motivation for this study. 

In transform coding applications, there are many consecu- 
tive zeros above the cutofflthreshold frequency of a signal, 
due to the energy packing property of orthogonal discrete 
transforms [6], [ l l ] .  Wolf [3] suggested that these zeros 
can be viewed as redundancy in the signal and used for 
cancelling impulse noise. Since the DCT leads to the best 
performance (in transform coding) among the known fast- 
computable transforms [ l l ] ,  it is our belief that the DCT 
provides a good opportunity and as a useful tool for unifying 
the problems of source coding and channel coding. 

VI. CONCLUSION 

We have defined a new class of real-number linear codes 
and shown that a subclass of them has similar structure to 
the BCH codes defined over a finite field. The BCH bound 
on code capacity and conventional BCH decoding algorithms 
can be applied to this new subclass. However, there is no way 
to describe a nontrivial cyclic subclass of this linear code (a 
result not shown in this work). This result contrasts the well- 
known concept: BCH codes are a subclass of cyclic codes. 
This is simply a difference between codes over the two finite 
fields and the real field. 
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