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HIGH RATE PUNCTURED CONVOLUTIONAL CODES;

STRUCTURE PROPERTIES AND CONSTRUCTION TECHNIQUE

by

Guy BE61N and David HACCOUN

ABSTRACT

This paper présents some properties of punctured convolutional codes

and provides a construction method and a 1ist of new good high rate long

memory punctured codes. The structure of punctured codes is examined and an

upper bound on the free distance of punctured codes is derived, indicating

that punctured codes are gooct codes. A construction method that générâtes

the low rate original codes which duplicate given known high rate codes

through perforation is proposed. Tables of punctured codes that duplicate

the best Known non-systematic codes of rate 2/3 and 3/4 with memories

ranging from 3 to 23 and from 3 to 9 respectively are given, together with

the best known systematic codes for rates ranging from 2/3 to 7/8 with very

long memory (44-48).



l. Introduction

The use of convolutiona) coding and probabilistic decoding offers some

very attractive solutions to the problems of channel error correction and

détection. Much effort has been devoted to finding efficient schemes using

convolutional codes, for a wide range of applications [1]-[4]. However,

most of this worK has been devoted to low rate convolutional codes.

Relatively little work has been done to promote the use of high rate

convolutional codes, because in général, the usua) decoding techniques that

are suitable for 1ow rate convolutional codes become rapidly cumbersome

when used for high rate codes.

To alleviate this problem, a spécial class of high rate convolutional

codes called punctured convolutional codes has been proposed [5]. Thèse

high rate punctured codes are derived from low rate original codes and thus

maintain the simple underlying structure of low rate codes. They may

therefore easily be decoded by traditional techniques such as Viterbi

decoding, as was originally proposed [5]-[7], or more recently, by sequen-

tia1 decoding [8]-[10], An interesting feature of thèse codes is that they

allow the easy implementation of variable rate coding-decoding.

This paper présents some properties of punctured codes and provides a

construction method and a list of new good long memory punctured codes.

After presenting preliminary concepts in section 11, we examine in section

lit the structure of punctured codes by relating the paths of the low rate

original code to those of the resulting punctured code. This approach

yields useful properties that may guide the search for good punctured
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codes. Section IV pertains to the relationship that exists between the

Hamning weights o-f punctured and non punctured paths. Using a spécial class

of perforation patterns an upper bound on the free distance of punctured

codes is derived. In section V, the problem of constructing good long

memory punctured codes suitable for sequential decoding is considered. A

construction method that générâtes the low rate original codes which

duplicate given Known high rate codes through perforation is proposed.

Using this construction procédure, original low rate codes which duplicate

the best known high rate codes are found. Tables of punctured codes that

are équivalent to the best Known non-systematic codes of rate 2/3 and 3/4

with memories ranging from 3 to 23 and from 3 to 9 respective1y, are given

in section VI. Final1y, punctured codes that duplicate the best Known

systematic codes for rates ranging from 2/3 to 7/6 with memories about 50

are also g iven.

l l. Bas ic concepts

A punctured code is a high rate convolutional code obtained by

periodically deleting (i.e. puncturing) certain symbols from the output of

a low rate encoder. The resulting high rate code dépends on the low rate

code produced by the low rate encoder, called the original code, and on the

number and spécifie location of the deleted symbols. The pattern of

occurrence of the punctured symbols is called the perforation pattern and

it is conveniently expressed in matrix form.

Throughout this paper, we wi11 use the notation (V,B) to denote a

convolutional code produced by a B-input/V-output encoder. Whenever the
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memory of the encoder is to be specified, the code wi 1 l denoted as a (V,B)

code of memory M. The coding rate R of a (V,B) code is obviously B/V. The

spécifie convolutional code is spécifiée! by its generating matrix

G(D) of dimension B x V whose éléments are the generator polynomials;

mi
9ij(D) = E' gijKQk = g,j0 + Qj/D + ... + gijmDr"i; (1)

k=o

i =1, ..., B; j = 1, ..., V.

Whenever B = 1, i is dropped in this notation.

For a (V,B) convolutional code obtained from a (Vo,1) original code,

the perforation pattern is expressed as a B rows and Vo columns binary

matrix P with éléments

[p..] =
IJ

0 if symbol j of every i-th branch is punctured

1 if symbol j of every i-th branch is not punctured
(2)

To illustrate consider the rate 1/2 code whose trellis is shown in

•figure 1. If this code is punctured according to the perforation pattern

1 1

1 0
(3)

then we obtain a rate 2/3 code for which the trellis is shown in figure 2.

A convolutional encoder for a punctured code may be viewed as the

combination of the convolutional encoder for the original code and a

sampler that punctures the output séquence according to the perforation

pattern. By simply changing the perforation pattern, one readily can change

the coding rate of the resulting code.
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The decoding of high rate punctured codes using either Viterbi

decoding [5]-[7] or sequential decoding [8]-[10] is made easier because of

the fact that the high rate code can be considered as if it were a low rate

code. The perforation is taken into account by discarding or inhibiting the

metric évaluation of the punctured symbols. Decoding on the low rate

structure is much simpler since it involves only two new nodes at each step

instead of 2B as is normally the case for a (V,B) code.

III. Structure of punctured convolutional codes

In this section, we examine the structure of punctured convolutional

codes. Specifjcally, we are interested in the structure of paths of the

original and punctured codes and in the relationships that exist between

them.

To investigate the structure of punctured codes, one has to go bacK to

the process of generating such a code. Conceptually, a punctured code is

obtained through two différent opérations: a) grouping B consécutive

branches of a low rate code into "super branches" and b) deleting some code

symbols from thèse super branches. The first opération, the grouping o-f

branches, a-Ffects the way we looK at the original code. The grouped super

branches may be viewed as the output of the low rate (BVo,B) encoder

corresponding to the low rate original (Vo,1) code, where B is the number

of branches that are grouped together. Hence the paths of the original code

go through three différent stages leading to the génération of a high rate

punctured code, namely: 1) original low rate (Vo,1) code, 2) low rate



(BVo,B) code and 3) punctured high rate (V,B) code. In order to distinguish

between thèse stages, we introduce the following définitions.

Définitions:

E lementa r y co de :

Elementary brançh:

Elementary path:

B-code:

B-branch:

B-jaa th :

Punctured code:

Punctured branch;

The low-rate (VQ,I) original code.

A branch of the elementary code, consisting of VQ

s ymbol s.

A path of the elementary code, consisting elementary
branches.

The low-rate (BVg.B) code obtained by grouping every B
consécutive elementary branches of the elementary code
in a "super branch".

A "super branch" of the B-code, consisting of BVo

s ymbol s.

A path of the B-code, consisting of B-branches.

The (V,B) code obtained following the perforation of
symbols of the B-branches.

A branch of the punctured code, consisting of V

symbols, V < BVo.

To illustrate thèse définitions, the state diagram of the elementary code

of figure 3 is shown in figure 4 and the state diagram of the corresponding

2-code is shown in figure 5, The diagram of figure 4 depicts elementary

branches, elementary paths, etc., whereas the diagram of figure 5 depicts

B-branches» B-paths, etc.

We now turn to the analysis of the structure of the paths of punctured

codes. Consider the state diagram of a général convolutional code of memory

M. A state in this diagram will be denoted by



S, ; i € {0,.,.,2M-1].

A single transition from state S, to state Sj will be denoted

Sjj ; i, j € (0,...,aM-1î

and any path going through n transitions from state S, to state Sj but

without passing on state SQ will be denoted

Ijj<n) ; i, j € {0,...,2M-1Î.

Finally, a path consisting of n consécutive identical single transitions

S j j wi11 be denoted

(Sjj)" ; i, j € {0,...,aN-1}.

In the state ctiagram a, path that leaves the zéro state (SQ) at some

time t ancf remerges to this state for the first time at a later time

(t + L) i s sa i d to be a remerging path of length L of the code. Thèse paths

p1ay an important rôle in the determining of various Hanrning distances o-f

the code. We now state a theorem on the remerging paths of a B-code.

Theorem 1 ; To each remerging path in the trellis of an elementary code,

there correspond at least B remerging paths in the trellis of the B-code,

ai 1 comprising the elementary code séquence and possibly some additional

"0" symbols,



PROOF: Consider the state diagram of a B-code, as illustrated in •figure 5.

A remerging path of length (n + 2) may be expressed as;

S0i'iij(n)'8j0' where i, j /0 (4)

Observe that this path is described in terms of the states S, of the B-

code. The same path may a Iso be expressed in terms of the underlying

transitions between the states S, of the elementary code. A single transi-

tion leaving state Sj and reaching state Sp translates as the séquence:

sij>sjK>••••>smn'snp (5)
v

'B - 2)transitions

where j, k, m and n € (0,...,2M-1]. Hence the remerging path can be

translatée! as:

S0j>•••'SKm*••• '_snp*•••'sqr> ••••st0 (6)

B B ... B

where each brace spans B state transitions, Notice that in this séquence,

some of the states Sj may be allowed to be SQ, as long as none of them

occurs on a boundary between the groups of B state transitions, since this

would translate for the B-code as a transition to state SQ.

Let SQ, ,^jj(n),Sjo be a reconverging path of the elementary code. Then

a1l the following paths translate as valid reconverging B-paths;



- S0i 's.u 'sj0' ts00' • • • •SOOÎ

S00's0i >.si j ^ >sj0' ^S00' ••••S0ol

(SOQ)a.SGi•li j(n).8j0> CSOO.---.SOO] (7)

(Soo)B-1,Soj,Ijj(n),Sjo, [SQO,...,SOQ]

In thèse expressions, the SQQ transitions enclosed in bracKets bring the

total number o-f transitions to a multiple of B. The actua! number of thèse

transitions is différent for every path and varies from 0 to B-1. For

example, for the 2-code alr.eady considered, there are 2 2-paths correspon-

ding to a given elementary path. The relationship between thèse 2 2-paths

is illustrated in figure 6. Note the présence of SQO transitions at the

beginning and at the end of the state transition séquence.

Since no SQQ transition occurs on a boundary between the B-branches,

all the B-paths are valid remerging paths, and clearly there are B distinct

such B-paths. They all include the séquence Soj,Sjj(n),Sjo, which gives the

original code séquence, and since the additional SQQ transitions result in

branches of VQ "0" symbols, then ait the B-paths consist of the original

code séquence and some (maybe none) "0" symbols actded at the beginning and

at the end. Q.E.D

The lengths of the B-paths dépend on the actual number of SQO transi-

tions appended to the original séquence, and hence not all the B-paths have

the same length. However, the lengths do not differ by more than 1, since

no more than 2(B - 1) SQQ transitions may be appended to a path.



We now examine certain relationships that exist between the coding

rat-e o-f the original code and that of the resulting punctured code.

Theorem 2: A high-rate (V,B) punctured code may be obtained by puncturing

an original low rate (Vpil) code. However, a punctured code obtained from a

(Vo,1) original code cannot, in général, be obtained from a (VQ-'.I) code if

V(/ < Vo.

PROOF: This can be demonstrated with a simple example. Without loss of

generality, assume that a punctured rate 2/3 code is obtained from an

original (3,1), memory 2 code, with generator polynomials gi(D), 82(0),

93(D), and using the perforation pattern

p =
1 1 0

0 0 1

Let the impulse response of the original (3,1) code be

91° 9a° 83° 9l1 9£1 931 9^ 9a2 gg2 (8)

The impulse response of the corresponding 2-code is written as

91° 92° 93° 9l1 921 93 91 Sa2 932 0 0 0

0 0 0 gi° 92° 93° 911 921 931 91£ 9aa 932
(9)

and that of the resulting punctured code becomes
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91° 92° 931 912 922 °
(10)

0 0 93° 9l1 921 932

Observe that ait the non-zero entries in this impulse response are indepen-

dent of each other. This is true in général of any (3,1) code used in this

situation.

Now consider a (2,1) memory 2 code with impulse response;

91° 92° 911 921 Si2 9Z2- (11)

The impulse response of the corresponding 2-code would then be

91° 92° 9l1 921 9^ 92a 0 0
(12)

0 0 gi° 92° gi1 gg1 g^2 g^2

Now in order to obtain a rate 2/3 code from this 2-code, one symbol must be

punctured on every 2-branch. But regardless o-F the way this perforation is

performed, the non-zero entries of the resulting impulse response will

never be independent of each other. Therefore it is not possible in général

to obtain the same punctured code as obtained from the (3,1) code. Observe

that this property is due solely to the rates of the original codes, and

does not dépend at all on the memories of the original codes. Q.E.D,

Intuitivety, we see that with a large VQ, there is more freedom in

choosing the generators that will yield the particular punctured code, so

that some punctured codes that are possible from a low rate 1/Vo code could

not otherwise be obtained -from a a code with a smaller VQ. This result

suggests that a very large VQ should be used to générale the best punctured
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code possible. However, there is a limit above which it becomes useless to

increase the VQ of the original code, as we shall see in the next theorem.

Jheof_em ^: To generate any (V,B) punctured code, the rate of the original

code is no 1ower than that of a (V,1) code.

PROOF: Assume that some original (VQ,I) code is punctured to make a (V,B)

punctured code, with VQ > V. The total number of symbols to be punctured in

every B-branch of the B-code is W = BVQ-V. The possible perforation

patterns are given by B X VQ binary matrices that have V "1" entries and W

"0" entries, Therefore there wi11 be at least (VQ - V) rows o-f the perfora-

tion matrix that conta in no entry "l". Thèse rows, and the corresponding

generators of the original code, may be eliminated from the description of

the punctured code without any effect on the resulting code, bringing the

original code to a (V,1) code. Therefore, V generators are sufficient to

obtain any possible (V,B) punctured code. Q.E.D.

We now introduce a class of perforation patterns cal1ed orthogonal

perforation patterns. Thèse patterns play an important rôle in the establi-

shing of further results concerning punctured codes.

Définition: A perforation pattern in which the symbols that are not

puncturect on one elementary branch of the B-branch are punctured on every

other elementary branch of the B-branch is catled an orthogonal perforation

pattern. For example, the following perforation pattern is orthogonal:
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p =
0

1
0
0

1
0
0

0
1
0

0
0
1

(13)

Conversely, a non-orthogonal perforation pattern is a pattern in which the

symbols of at least one modulo-2 adder are used in more than one of the B

elementary branches of the B-branch. An orthogonal per-foration pattern is

an "efficient" pattern in the sense that it uses all the potential (diffe-

rent generators) of the original code. The foUowing theorem establishes

the theoretical importance of the orthogonal perforation patterns for

determining any punctured code.

Theorem 4: Any punctured code can be obtained by means of an orthogonal

perforation pattern.

PROOF: Assume, without loss of generality (see Theorem 3) that a (V,1)

original code is used to obtain a (V,B) punctured code. Let 9j(D), J = 1,

2, ...,V be the generator polynomials of the original code. Assume further

that the perforation pattern Ppo used is non-orthogona). Then, one or more

of the columns of the perforation matrix contain more than one entry "l",

But Pno is a V columns matrix with a total of V entries "l". Thus, at least

one of the columns of PpO that has no entry "l",

Assume -for the moment that only column K contains no entry "1" and

that column m contains 2 entries "1". (This wi1l be generalized later.) The

(V,B) punctured code obtained from PnO and this original code may be

obtained with an orthogonal per-foration pattern provided that we select

another original code.
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The new original code to use is identical to the one above except for

generator g^(D). Since Ppo never uses the symbols from g^(D) we can change

g^(D) without changing the resulting punctured code. Suppose we substitute

a copy of 9m(D) for 9k([:))- The new original code, together with Pno, would

yield the same punctured code as before.

We now transform PpO into an orthogonal perforation pattern, PQ. PQ

will be identical to P^Q except for columns K and m. Column k of Pc wi11

have one entry "1" and column m wi11 have only one entry "l", the second

entry "1" of column m being "replaced" by the new entry in column k. Hence,

instead of using 9^(0) twice, the new pattern will use it only once, using

the new generator g^(D) for the second symbol. After a possible shuffling

of the columns of PQ and of the generators of the new original code to

préserve the order of the code symbols, the resulting punctured code will

be exact 1 y the same as before.

This result may be généralized easily if we consider the following

extensions. First, if more than one column has 2 entries -l*', the construc-

tion given above may be applied separately to each column, Second, if some

columns have more than 2 entries "1", then the construction can also be

app1 ied for each one of the "1" entries in excess of one, hence proving the

theorem. Q.E.D.

Observe that the converse is générally not true; one cannot obtain al 1

the possible (B,V) punctured codes with non-orthogonal perforation pat-

terns. The class of orthogonal perforation patterns is thus complète in the

sense that a 11 the punctured codes may be obtained by using members of this

class.
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IV. Distance properties of the punctured paths

We have already seen that every elementary remerging path o-f the

original code gives rise to B distinct B-paths for the B-code. Let us now

see how puncturing the code affects the Hamning weights of thèse remerging

paths. Since we are dealing with linear convolutiona) codes, thèse Hamning

weights will yie1d the différent Hanrning distances of the punctured codes.

Consider a remerging B-path of L B-branches of the B-code correspon-

ding to a (VQ,I) original code. In order to détermine the weight of this B-

path after perforation, it is useful to consider separately the contribu-

tiens to the total weight of symbots occupying each one of the BVo posi-

tions of the B-branches.

Let us form a vector D o-F distance contributions of a remerging B-

path, Each of the BVo components of this vector will be the sum of the

weights of the symbols occupying the corresponding position in the B-

branches. Formally, let Xj be the i-th élément of the encodect séquence^ of

the B-path o-f length L B-branches, i = 0, 1,..., LBVo - 1. The components

dt< of a are then 9iv®n by

du = E x; ; k =0, .,., BVç- 1. (14)
i s K (mod BVo)

We may also represent the perforation pattern by a vector P^ of BVç binary

components pj given by

p
j

0 if the i-th symbol of the B-branch is punctured

1 if the i-th symbol of the B-branch is not punctured
(15)
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P is in fact the concatenation of al 1 the rows of the perforation matrix.

The total Hanrning distance D resulting from the perforation of a B-

path X with distance contribution vector _D by the perforation pattern P_ is

then given by the scalar product:

D = D-P (16)

Using this formulation, we consider once again the B B-paths corres-

ponding to an elementary remerging path X according to Theorem 1. Let us

denote the B-paths yr, where r is the number of additional SQQ transitions

at the beginning of the code séquence (r = 0, 1, ...,B - 1). Due to thèse

SQQ transitions, the codesymbols of the elementary code séquence ^X appear

in différent positions within the B-paths. For thèse symbols, we have;

^rvo = xî.tVo ; r-. 1=0. ...• B- 1. (17)

Since -thèse are the only symbols that contribute to the Hamming distances,

we can relate the components of vector D° and Dr, corresponding respecti-

vely to the B-paths X° and Xr> as -follows

<ss.. xo.
i=k (mod'BVo)

-- E

i=K (mod'êW

=E

i=k+rVo ^mod BVo)

p
= dK+rVo (mod BVo) ( )

and therefore

dK = dK+rVo (mod BVo)= dk+tVo (mod BVo) ( )
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Equation (19) means that al) the B distance contribution vectors of the B-

paths corresponding to a given elementary path have the same components,

thèse components being cyclically shifted by groups of Vo from one vector

to the next.

The first conséquence of this observation is that perforation patterns

which are likewise shifted versions of each other wi1l yield the same

ensemble of B total distances for the B puncturect paths corresponding to a

given elementary path. Hence, all the punctured codes obtained from thèse

différent perforation patterns with the same original code have the same

distance properties: free distance, distance profile, etc. The perforation

patterns are thus said to be équivalent.

The second conséquence of this observation will be the formulation of

an upper bound on the free distance of punctured codes. Assume D°, D1,...,

DB-1 are the B distance contribution vectors of the B B-paths corresponding

to an elementary remerging path of Hamming distance Dopg of an original

(V,1) code. Pc is an orthogonal perforation pattern used to obtain a (V,B)

punctured code.

Since Vo = V, each column of PQ contains exactly one entry "l". Let PQ

be the vector form of Pc, and let Po°, Po1,..., PQ be the B cyclic

shifts of this perforation pattern (but shifted in the opposite direction

from the distance contribution vectors). We can write

B-1

S £oK =£0° +£o1 + ••• + ^oB-1 = (11... D (20)
K=0

where (11...1) is the all "1" vector. The total distances o-f the B punctu-

red paths are
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DÛ =

Dl --

DB-1 =

PO-

?0

PO

DO

•D1

.[)B-I

or, equivatently,

DO =

Dl =

D^-1 =

PO°'D°

Po1-D°

p^B-l.pO

(21)

(22)

then, for the sum of the B punctured distances,

D° +Dl + ..+ DB-1 = PQO.DO + p^l.gO + ... + ^-1.00

= (PO° + po1 + - + POB-I)-DO

(11...D-D0

= Dorg (Z3)

We can therefore conclude that the largest punctured distances satisfy the

bound

D i Dg£A (24)

Now if the original path is such that Dppg = Dfo, that is, the original

path is at free distance D-fo, then we obtain the upper bound

Dfp î —Ja— (25)

where D^p is the free distance of the resulting punctured code.

To generalize this result, 1et us recall the hypothesis that lead to

the formulation of this upper bound. First, the original code has to be a
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(V,1^ code for a (V,B) punctured code. This condition is easily relaxed by

virtue o-f Theorem 3 which states that any (V,B) punctured code may be

obtained -from a (V,1) original code. The second hypothesis is that the

perforation pattern is orthogonal. This condition may also be relaxed if we

recall that any puncturect code may be obtained using an orthogonal perfora-

tion pattern, provided the original code is changed (see theorem 4). Since

changing the original code could change the value of Dfç, in order to

extend the validity of (25), we replace Dfç by a tight upper bound on the

free distance o-f an original code of the same memory and coding rate. We

thus obtain the following

Theorem 5;

The free distance of a (V,B) punctured convolutional code is upper bounded

by

Dfp <- ^ (Z6)

where <Dfo> is an upper bound on the freè distance of any convolutional

code of the same rate and memory as the original code.

As a final remarK, this upper bound agrées with bounds obtained

without the hypothesis of a puncturect code structure [11]. Therefore, we

may conclude that punctured codes are not necessarily worse than normal

high rate codes, at least not in the sense of having a lower free distance.
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V. Finding good long memory high rate punctured codes

In a separate paper [10], we have considérée! the search for good high

rate punctured codes with long memory for use with sequential decoding. The

basic approach consists of selecting the best Known rate 1/2 code o-f a

given memory as original code and deriving several punctured codes for

différent coding rates from this same original code, This approach is very

attractive, especially for variable rate coding-decoding, and it has indeed

yielded a number of good punctured codes suitable for thèse applications

[6], [7], [10]. However, thèse codes are not in général optimal; they do

not meet or come close to the upper bound on the free distance, and

furthermore they are not as good as the best Known high rate codes. This

observation is further supportée! by the theoretical results obtained here

concerning the incidence of the rate of the original code and of the type

of perforation pattern to be usect on the resulting punctured code. Intuiti-

vely, a (V,1) original code shoutd be used in conjunction with an orthogo-

nal perforation pattem as to provide as much freedom as possible in the

spécification of a given (V,B) punctured code,

A natural question arises: can optimal (or nearly optimal) high rate

codes be obtained by perforation? This question has lead us to investigate

the conditions under which a given high rate code can be obtained by

perforating a low rate code. In order to establish thèse conditions, we

first recall the différence between an arbitrary high rate code and a

punctured high rate code.

An encoder for an arbitrary (V,B) code is a B-input/V-output machine:

at each encoding cycle, B information bits enter the machine and V code

symbols are delivered to the output. Any one of the V output symbols may
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thus dépend on any of the B input bits, as well as on the state of the

machine.

With a punctured code, the information bits actually enter the encoder

one at a time and the output symbols are produced by small groups of Vo.

Since an encoder must be a causai machine, certain dependencies are thus

forbidden between the input and the output streams. No output symbo) at

time t^ may dépend on an input bit at time t^+Q, ô > 0, that is, no output

symbol can dépend on an input bit that has not yet entered the encoder.

This constraint may be translated in terms of the impulse response of

the high rate code as follows. Let g-^ be the components of the impulse

response of the encoder. Then

9ij = 0 for i > j ; i = 1, ..., B; j = 0, 1,...,rr)j (Z7)

insures that the corresponding high rate code respects the causality

constraint, and thus, it may be obtained by per-foration of a low rate code.

It is therefore an easy tasK to verify that a given high rate code

respects this condition, by the simple observation of its impulse -response.

Once this vérification is performed, an original code that wi1l yield this

particular high rate code may be constructed. In order to get all the

possible freedom in the choice of the generators, the original code that

must be used to obtain a (V,B) code wil1 be a (V,1) code, punctured by an

orthogonal perforation pattern.

The choice of the spécifie perforation pattern to use is dictated by

the impulse response of the target high rate code. If, for example, B = V-

1, as is frequently the case for a great number of high rate codes, then
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the perforation matrix bas V - 1 rows and V columns, so one of the rows

wi1l contain 2 entries "1". The spécification of which rows has 2 entries

"1" spécifies the perforation to use. For sequential decoding purposes,

perforation patterns that have 2 entries "1" on the first row are desira-

b1e, since they will tend to yield codes with a rapidly increasing column

distance function [12]. Such a perforation pattern may be selected if the

impulse response satisfies the stronger condition;

g, j = 0 for i >. j ; i = à, .... B; j =0, 1,....mj (28)

Otherwise, a perforation pattern with on1y entry "1" on the first row must

be selected.

Construction of the original code

The construction of the original (V,1) code that wi11 yield a spécifie

(V,B) code through perforation is easy to perform. Let ^ through ^3 denote

the B rows of the impulse response of the target code. Let Kg be the length

of this code;

Kg = 1 + max (m,] ; i=1, Z. ... B (89)

where rrij is the memory of the i-th shift register of the (V,B) encoder. The

B rows of the impulse response are vectors o-f KBV components. The construc-

tion algorithm involves the following steps:

1. Select the perforation pattern P according to équation (28).
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2. Form vector Py by repeating the vector form of the perforation pattern

f^ Kg times. For exemple 1 et

^=10001 1 and Kg = Z
then tr=10001 1 10001 1

3. "Expand" the rows ^j, j= 1, 2, ... B, into rows j^je according to JPr.
The "expansion" is done through the following algorithmic procédure;

For each component i of Pj» do:

Beg in

a) If component i of J^. = "O", component i of j^jg = "O".

b) If component i of P.r = "1"> component i of j^jg = next unused
component of ^j. Mark this component of ^j as used.

End

5, For a)1 rows j, row j^g is shifted (j-1)V positions to the left. The
first row is not shi-fted, the second row is shifted V positions to the
left, etc. Components are 1ost to the left and "0" are inserted to the

r ight.

6. Sum the B resulting rows together (component-wise).

7, The resulting vector is the impulse response of the desired original
(V,1) code.

VI. Good long punctured codes

The above procédure has been used to dérive the original codes which

yield through perforation the best Known rate 2/3 and 3/4 codes of memory 3

î M < 23 and 3 l Mi 9 respective)y.

Non-sYstemat i e codes:

We have found that ai l the best known high rate non-systematic codes

for rate 2/3 and 3/4 ([13], [14]} satisfy condition (27). We have thus
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constructed the )ow rate original codes corresponding to ai 1 of thèse high

rate codes. They are )isted in Table 1. As expected, the (3,2) codes are

obtained by puncturing (3,1) codes and the (4,3) codes are obtained from

(4,1) codes. LacK of knowledge of other good long memory high rate codes

for other coding rate and memories has prevented us from expanding this

1ist further.

11 is interesting to observe that, for most of the cases, the memory

of the required original code is larger than that of the resulting punctu-

red code. This is Mlustrated in figure 7 where the relationship between

original and punctured memories for the punctured (3,2) codes of Table 1 is

plotted. The memory différence is quite small, usually one or two, and it

is independent of the overall memory of the code. Therefore, its importance

decreases as the memory of the code increases. For large memory codes, this

memory increment is of no conséquence whatsoever since thèse codes are to

be decoded by sequential decoding methods.

Although the punctured codes found here are not suitable for variable

rate decoding, they do provide a practical method of using the best Known

codes of rate 2/3 and 3/4 with sequential decoding. The decoding of thèse

codes by the normal (non punctured) approach is difficult because of the

large number (2B) of nodes stemning from a single node in the tree struc-

ture of a high rate (V,B) code. However, with the punctured codes approach,

the decoding proceeds on the low rate structure, so the number of nodes

sterrming from a single node is always Z, regardless of the actual coding

rate. This regularity of the decoding opération is a very desirable feature

in decoder implementations.
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The existence of punctured codes that dup1 icate the best Known high

rate codes is a gooct indication o-f the validity of the punctured approach

to the génération of high rate codes. It certainly invalidâtes the daim

that punctured codes are necessarily sub-optimal. Figures 8 and 9 plot the

free distances of some of the rate 2/3 and 3/4 codes found in comparison

with the upper bound of (26), as a function of the memory length. 11

clearly shows that thèse codes do achieve a good free distance.
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or iginal R = 1/3

M
0|

4l

5|

6|

7|

81

9|

10)

11

12|

G1

Z6

54

172

314

424

1634

3162

6738

17444

62

28

47

137

Z71

455

1Z33

8553

4617

11051

G3

35

67

152

317

747

1431

3612

7153

17457

puncturect R

M

3|

4l

5|

61

7|

8|

9|

10|

11

611
612

6
1

6
1

14
07

1Z
05

26
00

3Z
13

54
25

53
36

162
064

681
Gaa

2
4

3
5

06
17

05
16

14
23

05
33

16
71

£3
53

054
101

2/3

631
632

4
7

7
5

16
10

13
13

32
33

25
22

66
60

51
67

156
163

Per-Poration pattern P = 1 0 0
0 1 1

Table 1. Original codes that yield the
PaasKe [13] (in octal).

(3,2) codes of Johannesson and
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or iginal R = 1/3

M
01

16|

16|

16|

16|

18j

18)

19|

201

201

22|

24|

24|

G1

377052

274100

163376

370414

1£77142

1066424

2667576

4600614

1Z400344

Z4613606

117356622

106172264

G2

221320

B33221

101657

203175

1144571

1373146

ai536B5

4773271

13365473

ZZ226172

126100341

130463065

63

3143Z1

331745

153006

3B1523

1526370

1471Z65

3502436

6275153

15646505

35045681

151373474

141108467

punctured R = 2/3

1

12|

13|

14|

15|

16|

17|

18|

19|

201

21

2Z|

£3|

G11
612

740
367

710
140

337
127

732
302.

1750
0165

1866
0140

1567
0337

2428
0412

3414
0005

6562
0431

13764
03251

12346
01314

GB1
G22

2.60
414

260
545

023
237

054
457

0514
1235

0652
1758

0367
1230

1674
3745

162Ï
3367

a3i6
4454

OB430
16011

05250
14B47

631
G32

5£0
515

670
533

348
£21

648
435

1734
1054

1870
1307

1066
1603

2356
B711

3673
2440

4160
7BZ5

14654
11766

10412
11067

Perforation pattern

Table 1.(cont.)

p = 11 0 0
ItO 1 1

Original codes that yield the (3,2)
Johannesson and PaasKe [13] (in octal).

codes of
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or iginal R = 1/3

M
01

3|

4l

6|

7|

8|

9|

10|

11

61

16

B2

72

138

368

552

2146

743Z

62

11

22

43

112

266

457

3512

5163

G3

15

37

72

177

373

736

3355

70Z6

punctured R

M

2|

3|

4l

5|

6|

7|

9|

10|

611
G12

3
1

4
1

7
a

14
03

15
06

30
07

52
05

63
32

621
62B

1
a

2
4

1
5

06
10

06
15

16
23

06
70

15
65

a/3

031
G32

3
2

6
7

4
7

16
17

15
17

26
36

74
53

46
61

Perforation pattern P = 1 0 0
0 1 1

Table 2. Original
octa1).

codes that yield the (3,2) codes of Paaske [14] (in
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M
0

6

7

8

10

11

or iginal

G
1

100 l

284

750

2274

6Z30|

6_2

170

270

513

£170

4426

R =

6_
3

ia5

aoô

446

3262

4711

1/4

G
4

161

357

731

3411

7724

punctured R =

M

3

5

6

6

9

G
G11
GIZ

4
0
0

6
1
0

6
3
2

16
03
01

10
01
07

G
GZ1
GZZ
A:
4
6
2

2
6
2

1
4
3

06
la
02

03
15
00

3/4

6
G31
G32

4
2
5

a
0
5

0
1
7

04
00
17

07
04
14

6
G41
G4£

4
4
5

6
7
5

7
6
4

10
13
10

14
16
15

Perforation pattern P =
11000
||0 0 0 1
ItO 0 1 1

Table 3. Original codes that yield the
o c~t a 1 ) .

(4,3) codes of Paaske [14] (in
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Systematic codes;

It is quite clear from the very définition of systematic codes that

they all meet condition (27). Thus, al) systematic codes, whether known or

to be discovered, may be obtained by puncturing a low rate original

(systematic) code. Furthermore, -For any (V,B) target code, the original

code need only be a (2,1) systematic code since the information is conveyed

by B code symbols, and any parity symbol may be obtained from the B remai-

ning code symbols of the B-branches,

The construction technique for deriving the original codes from the

target codes is a simple adaptation of the one présentée! for non-systematic

codes. We have thus obtained original codes for all the systematic codes of

Hagenauer [15]. Thèse codes are listed in Table 4.

The possibility of generating thèse codes cby perforation allows once

again their easy and practical decoding by sequentia) decoding. For

instance, it would be quite impractical to decode a rate 7/6 code by the

straightforward sequential decoding approach. In contrast, by the punctured

approach, this code may be decoded as simply as a rate 1/2 code.

Just liKe the non-systematic codes, the systematic punctured codes

found here do not readily tend themselves to variable rate decoding.

However, families of good punctured systematic codes with différent coding

rate could be obtained from single original systematic codes.
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R

2/3

3/4

4/5

5/6

7/8

PT

1 1
0 1

1 1 1
0 0 1

1111
0001

11111
00001

1111111
000000 1

G
3_

33875606556377737

756730246717030774725

74754644665Z1133456725475223

171751131171â£772a33670106777

1773634453774014541375437553121

AU G^ = 100...0 and Gg is given in octa) (right justification).

Table 4. Systematic punctured codes obtained from original (2,1) codes.

VII. Conclusion

In this paper, a number of properties o-f high rate punctured convolu-

tional codes have been présentée!. Thèse properties provide a better

understanding of this spécial dass of high rate codes and give useful

indications -for guiding the search for good punctured codes. A Relationship

between the paths of the original code and those of the resulting punctured

code have been establishect. An upper bound on the free distance of punctu-

red codes has been derived, indicating that punctured codes are indeed good

codes.
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Furthermore, conditions that insure that a given high rate code may be

obtained by perforating a low rate code have been formulated. A construc-

tion procédure has been established for deriving the low rate original code

corresponding to a target high rate code. Using this procédure, a number of

good long punctured codes that are suitable for sequential decoding have

been founct. Thèse codes duplicate the best Known usual high rate codes of

same memory length.
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LIS T 0F FIGURE CAPTIONS

Figure 1. Trellis of a rate 1/2 convolutional code.

Figure 2. Trellis o-f the rate 2/3 punctured convolutional code.

Figure 3. A encoder -for a (3,1) memory 2 original code.

Figure 4. State diagram of the elementary code produced by the encoder of
figure 3.

Figure 5. State diagram of the 2-code produced by the encoder of figure 3.

Figure 6. Relationship between 2-paths corresponding to the same elementary

remerging path.

Figure 7. Relationship between original and punctured memories for the
punctured (3,2) codes of Table 1.

Figure 8, Free distances of some of the rate 2/3 codes found in comparison

with the upper bound of (26), as a function of the memory.

Figure 9. Free distances of some of the rate 3/4 codes found in comparison

with the upper bound of (26), as a function of the memory.
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Table 4. Systematic puncturect codes obtained from original (2,1) codes.
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Figure 1. Trellis of a rate 1/2 convolutional code.

Figure 2. Trellis of the rate 2/3 punctured convolutional code.
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Figure 5. State diagram of the 2-code produced by the encoder of figure 3,
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