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HIGH RATE PUNCTURED CONVOLUTIONAL CODES:
STRUCTURE PROPERTIES AND CONSTRUCTION TECHNIQUE
by

Guy BEGIN and David HACCOUN

ABSTRACT

This paper presents some properties of punctured convolutional codes
and provides a construction method and a list of new good high rate long
memory punctured codes. The structure of punctured codes is examined and an
upper bound on the free distance of punctured codes is derived, indicating
that punctured codes are good codes. A construction method that generates
the low r‘ate original codes which duplicate given known high rate codes
through perforation is proposed. Tables of punctured codes that duplicate
the best known non-systematic codes of rate 2/3 and 3/4 with memories
ranging from 3 to 23 and from 3 to 9 respectively are given, together with
the best known systematic codes for rates ranging from 2/3 to T7/8 with very

long memory (44-48),



|. Introduction

The use of convolutional coding and probabilistic decoding offers some
very attractive solutions to the problems of channel error correction and
detection. Much effort has beén devoted to finding efficient schemes using
qonvolutional codes, for a wide range of applications [1}-[4]). However,
most of this work has been devoted to 1low rate convolutional codes.
Relatively little work has been done to promote the use of high rate
convoiutional codes, because in general, the usual decoding techniques that
are suitable for Jlow rate convolutional codes become rapidly cumbersome
when used for high rate codes,

To alleviate this problem, a special class of high rate convolutional
codes called punctured convolutional codes has been proposed [5]). These
high rate punctured codes are derived from low rate original codes and thus
maintain the simple underliying structure of. low rate codes. They may
therefore easily be decoded by +traditional! techniques such as Viterbi
decoding, as was originally proposed [5]-[7], or more recently, by sequen-
tial decoding [8]-[10). An interesting feature of these codes is that they
allow the easy implementation of variable rate coding-decoding.

This paper presents some properties of punctured codes and provides a
construction method and a 1list of new good 1long memory punctured codes.
After presentiﬁg preliminary concepts in section |1, we examine in section
It1 the structure of punctured codes by relating the paths of the low rate
original code to those of the resulting punctured code. This approach

yields useful properties that may guide the search for good punctured



codes, Section |V pertains to the relationship that exists between the
Hamming weights of punctured and non punctured paths. Using a special class
of perforation patterns an upper bound on the free distance of punctured
codes fs derived. In section V, the problem of constructing good long
memory punctured codes suitable for sequential decoding is considered. A
construction method that generates the low rafe original codes which
duplicate given known high rate codes through perforation is proposed.
Using this construction procedure, original low rate codes which duplicate
the best known high rate codes are found. Tables of punctured codes that
are equivalent to the best known non-systematic codes of rate 2/3 and 3/4
with memories ranging from 3 to 23 and from 3 to 9 respectively, are given
in section VI. Finally, punctured codes that duplicate the best Known
systematic codes for rates ranging from 2/3 to 7/8 with memories about 50

are also given,

Il. Basic concepts

A punctured code is a high rate convolutional code obtained by
periodically deleting (i.e. puncturing) certain symbols from the output of
a low rate encoder. The resulting high rate code depends on the low rate

code produced by the low rate encoder, called the original code, and on the

number and specific location of the deleted symbols. The pattern of

occurrence of the punctured symbols is called the perforation pattern and
it is conveniently expressed in matrix form.
Throughout this paper, we will use the notation (V,B) to denote a

convolutional code produced by a B-input/V-output encoder. Whenever the



memory of the encoder is to be specified, the code will denoted as a (v,B)
code of memory M. The coding rate R of a (V,B) code is obviously B/V. The
specific convolutional code is specified by its generating matrix

G(D) of dimension B x V whose elements are the generator polynomials:

m;
9ijd =5 gj;kok = g;;0 + gi5T0 + ... 4 g;;mOm; (1)
k=0

S FERRREE: AN P £

Whenever B = 1, i is dropped in this notation.

For a (V,B) convolutional code obtained from a (Vo,1) original code,
the perforation pattern is expressed as a B rows and Vo columns binary
matrix P with elements

O if symbol j of every i-th branch is punctured
p 1= (2)
Hd 1 if symbol j of every i-th branch is not punctured
To illustrate consider the rate 1/2 code whose trellis is shown in
figure 1. If this code is punctured according to the perforation pattern
11
P = (3)
10
then‘we obtain a rate 2/3 code for which the trellis is shown in figure 2.

A convolutional encoder for a punctured code may be viewed as the
combination of the convolutional encoder for the original code and a
sampler that punctures the output sequence according to the perforation
pattern. By simply changing the perforation pattern, one readily can change

the coding rate of the resulting code.



The decoding of high rate punctured codes using either Viterbi
decoding [5}-[7] or sequential decoding [8]-[10] is made easier because of
~the fact that the high rate code can be considered as if it were a low rate
code. The perforation is taken into account by discarding or inhibiting the
metric evaluation of the punctured symbols. Decoding on the low rate
structur'e.is much simpler since it involves only two new nodes at each step

instead of 2B as is normally the case for a (V,B) code.

. Structure of punctured convolutional codes

In this section, we examine the structure of punctured convolutional
codes. Specifically, we are interested in the structure of paths of the
original and punctured codes and in the relationships that exist between
them.

To investigate the structure of punctured codes, one has to go back to
the process of generating s.uch a code. Conceptually, a punctured code is
obtained through two different operations: a) grouping B consecutive
branches of a low rate code into "super branches" and b) deleting some code
symbols from these super branches. The first operation, the grouping of
branches, affects the way we look at the original code. The grouped super
branches may be viewed as the output of the low rate (BVy,B) encoder
corresponding to the low rate original (V,1) code, where B is the number
of branches that are grouped together. Hence the paths of the original code
go through three different stages leading to the generation of s high rate

punctured code, namely: 1) original low rate (Vos1) code, 2) low rate



(BVy,B) code and 3) punctured high rate (V,B) code. In order to distinguish

between these stages, we introduce the following definitions.

Definitions:

Elementary code: The low-rate (V,,1) original code.

Elementary branch: A branch of the elementary code, consisting of Vg,

symbols,

Elementary path: A path of the elementary code, consisting elementary
branches.

B-code: The low-rate (BV,,B) code obtained by grouping every B

consecutive elementary branches of the elementary code
in a "super branch",

B-branch: A "super branch" of the B-code, consisting of BV,
symbols,

B-path: A path of the B-code, consisting of B-branches.

Punctured code: The (V,B) code obtained following the perforation of

symbols of the B-branches.

Punctured branch: A branch of the punctured code, consisting of Vv = —
symbols, V < BV,.

To illustrate these definitions, the state diagram of the elementary code
of figure 3 is shown in figure 4 and the state diagram of the corresponding
2-code is shown in figure 5. The diagram of figure 4 depicts elementary
branches, elementary paths, etc., whereas the diagram of figure 5 depicts
B-branches, B-paths, etc.

We now turn to the analysis of the structure of the pakhs of punctured
codes. Consider the state diagram of a general convolutional code of memory

M. A state in this diagram will be denoted by



Si s i€ 10,...,2"17,

A single transition from state §; to state SJ will be denoted
Siji iy € o,...,2"1

and any path going through n transitions from state 8; to state SJ but

without passing on state Sp will be denoted
sii{M ; i, je t0,...,2M-47,

Finally, a path consisting of n consecutive identical single transitions

$ij will be denoted
(i i, € 0,...,2"11.

In the state diagram a path that leaves the zero state (Sp) at some
time t and remerges to this state for the +first time at a later time
(t + L) is said to be a remerging path of length L of the code. These paths
play an important role in the determining of various Hamming distances of

the code. We now state a theorem on the remerging paths of a B-code.

Theorem 1: To each remerging path in the trellis of an elementary code,
there correspond at least B remerging paths in the trellis of the B-code,
all comprising the elementary code sequence and possibly some additional

"O" symbols,



PROOF: Consider the state diagram of a B-code, as illustrated in figure 5.

A remerging path of length (n + 2) may be expressed as:
$0i:8i;(M,Sjo, where i, j #0 ”

Observe that this path s described in terms of the states S; of the B-
code. The same path may also be expressed in terms of the underlying
transitions between the states $; of the elementary code. A single transi-

tion leaving state §; and reaching state Sp translates as the sequence:

8ii1Sjksr+++»S S (5)
Jrojke ' °mn+ °np
\w

(B - 2)transitions

where j, kK, mand n € {0,...,2”-1]. Hence the remerging path can be

translated as:

SQjr e« rSkms e 1Snps e+ 18qrse 1510 (6)
VJ P q ,

B B N B

where each brace spans B state transitions. Notice that in this sequence,
some of the states SJ may be aliowed to be Sp, as. long as none of them
occurs on a boundary between the groups of B state transitions, since this
would translate for the B-code as a transition to state S0+

Let SOi'§iJ(n)»sjo be a reconverging path of the elementary code. Then

all the following paths translate as valid reconverging B-paths:



h SO!'§!J(n)'SJOi[SO();"-pSOO]

SOO'SOH.§.|J (n) ’SJO) [SOO) LR ,SOO]
(SOO)E.SOj,_S_iJ-(n),sJ'o,[Soo,...,soo] %)
(SOO) B-1’SO| ’§|J (n) ) SJOD [SOO) e )SOO]

In  these expressions, the $pg transitions enclosed in brackets bring the
total number of transitions to a multiple of B. The actual number of these
transitions is different for every path and varies from O to B-{. For
example, for the 2-code aiready considered, there are 2 2-paths correspon-
ding to a given elementary path. The relationship between these 2 2-paths
is illustrated in figure 6. Note the presence of S$gyq transitions at the
beginning and at the end of the state transition sequence.

Since no Spp transition occurs on a boundary between the B—br‘anchgs,
all the B-paths are valid remerging paths, and clearly there are B distinct
such B-paths. They all include the sequence SOi,giJ(“),SJO, which gives the
original code sequence, and since the additional Sgpg transitions result in
branches of Vg, "O" symbols, then all the B-paths consist of the original
code sequence and some (maybe none) "O" symbols added at the beginning and
at the end. QE.D

The lengths of the B-paths depend on the actual number of Sgo transi-
tions appended to the original sequence, and hence not all the B-paths have
the same length. However, the lengths do not differ by more than 1, since

no more than 2(B - 1) Spp transitions may be appended to a path.



wWe now examine certain relationships that exist between the coding

rate of the original code and that of the resulting punctured code.

Theorem 2: A high-rate (V,B) punctured code may be obtained by puncturing
an original low rate (Vq,1) code. However, a punctured code obtained from a
(Vo) original code cannot, in general, be obtained from a (Vo's1) code if

VOI < VOt

PROOF: This can be demonstrated with a simple example. Without loss of
generality, assume that a punctured rate 2/3 code is obtained from an
original (3,1, memory 2 code, with generator polynomials g4(D), g2(D),

93(D), and using the perforation pattern

110

001

Let the impulse response of the original (3,1) code be
910 920 930 911 921 931 912 932 932 (8)
The impulse response of the corresponding 2-code is written as

9% 929 939 gy @' 93! 98 922 932 0 0 0O
(9)

and that of the resulting punctured code becomes



91 950 g3! 9 g52 0
(10)
Observe that all the non-zero entries in this impulse response are indepen-
dent of each other. This is true in general of any (3,) code used in this

situation.

Now consider a (2,4) memory 2 code with impulse response:

910 an 911 921 912 gaa (t1)

The impulse response of the corresponding 2-code would then be

90 920 g' gt ¢ g2 0 0
(12)
0 0 g ga0 911 921 912 922
Now in order to obtain a rate 2/3 code from this 2-code, one symbol must be
punctured on every 2-branch. But regardless of the way this perforation is
performed, the non-zero entries of the resulting impulse response will
never be independent of each other. Therefore it is not possible in general
to obtain the same punctured code as obtained from the (3,1) code. Observe
that this property is due solely to the rates of the original codes, and
does not depend at all on the memories of the original codes. Q.E.D.
Intuitively, we see that with a large Vo, there is more freedom in
choosing the generators that will yield the particular punctured code, so
that some punctured codes that are possible from a low rate 1/V, code could
not otherwise be obtained from a a code with a smaller Vg,  This result

suggests that a very large V, should be used to generate the best punctured

10



code possible. However, there is a limit above which it becomes useless to

increase the V, of the original code, as we shall see in the next theorem.

Theorem 3: To generate any (V,B) punctured code, the rate of the original

code is no lower than that of a (V,1) code.

PROOF: Assume that some original (Vg,s1) code is punctured to make a (V,B)
punctured code, with Vo, > V, The total number of symbols to be punctured in
every B-branch of the B-code is W = BVo-V. The possible perforation
patterns are given by B X V, binary matrices that have V "1" entries and W
"O" entries. Therefore there will be at least (Vg - V) rows of the perfora-
tion matrix that contain no entry "i". These rows, and the corresponding
generators of the original code, may be eliminated from the description of
the punctured code without any effect on the resulting code, bringing the
original code to a (V,1) code. Therefore, V generators are sufficient to
obtain any possible (V,B) punctured code. Q.E.D.

We now introduce a class of perforation patterns called orthogonal

perforation patterns. These patterns play an important role in the establi-

shing of further results concerning punctured codes,

Definition: A perforation pattern in which the symbols that are not
punctured on one elementary branch of the B-branch are punctured on every

other elementary branch of the B-branch is called an orthogonal perforation

pattern. For example, the following perforation pattern is orthogonal:

1



1100
P =f0010 (13)
0001

Conversely, a non-orthogonal perforation pattern is a pattern in which the
symbols of at least one modulo-2 adder are used in more than one of the B
elementary branches of the B-branch. An orthogonal perforation pattern is
an "efficient" pattern in the sense that it uses all the potential (diffe-
rent generators) of the original code. The following theorem establishes
the theoretical importance of the orthogonal perforation patterns for

determining any punctured code,

Theorem 4: Any punctured code can be obtained by means of an orthogonal

perforation pattern,

PROOF: Assume, without 1loss of generality (see Theorem 3) that a (V1)
original code is used to obtain a (V,B) punctured code., Let gJ-(D), J = 4
2, .,V be the generator polynomials of the original code,. Assume further
that the perforation pattern P,, used is non-orthogonal. Then, one or more
of the columns of the perforation matrix contain more than one entry ™",
But Ppno is a V columns matrix with a total of V entries "". Thus, at least
one of the columns of Pho that has no entry "t

Assume for the moment that only column Kk contains no entry ™" and
that column m contains 2 entries ™", (This will be generalized later.) The
(V,B) punctured code obtained from Phno and this original code may be
obtained with an orthogonal perforation pattern provided that we select

another original code.

12



The new original code to use is identical to the one above except for
generator gk (D). Since P,y never uses ihe symbols from gy (D) we can change
gk (D) without changing the resulting punctured code. Suppose we substitute
a copy of gp(D) for gy (D). The new original code, together with Pnos would
yield the same punctured code as before.

we now transform Pno into an orthogonal perforation pattern, Po: Po
will be identical to Pp, except for columns k and m. Column k of Py will
have one entry "1" and column m will have only one entry "{*, the second
entry "1" of column m being "replaced" by the new entry in column k. Hence,
instead of wusing gy(D) twice, the new pattern will use it only once, using
the new generator gy (D) for the second symbol. After a possible shuffling
of the columns of P, and of the generators of the new original code to
preserve the order of the code symbols, the resulting punctured code will
be exactly the same as before,

This result may be generalized easily if we consider the following
extensions, First, if more than one column has 2 entries "1", the construc-
tion given above may be applied separately to each column. Second, if some
columns have more than 2 entries "1", then the construction can also be
applied for each one of the "{" entries in excess of one, hence proving the
theorem. Q.E.D.

Observe that the converse is generally not true: one cannot 6btain all
the possible (B,V) punctured codes with non-orthogonal perforation pat-
terns. The class of orthogonal perforation patterns is thus complete in the
sense that all the punctured codes may be obtained by using members of this

class.

13



IV. Distance properties of the punctured paths

We have already seen that every elementary remerging path of the
original code gives rise to B distinct B-paths for the B-code. Let us now
see how puncturing the code affects the Hamming weights of these remerging
paths. Since we are dealing with linear convolutional codes, these Hamming
weights will yieid the different Hanming distances of the punctured codes.

Consider a remerging B-path of L B-branches of the B-code correspon-
ding to a (Vy,1) original code. In order to determine the weight of this B-
path after perforation, it is useful to consider separately the contribu-
tions to the total weight of symbols occupying each one of the BV, posi-
tiohs of the B-branches,

Let us form a vector D of distance contributions of a remerging B-
péth. Each of the BV, components of this vector will be the sum of the
weights of the symbols occupying the corresponding position in the B-
branches, Formally, let x; be the i-th element of the encoded sequence X of
the B-path of length L B-branches, i = 0, 1,..., LBVg ~ 1. The components
dg of D are then given by

dk: X ; ; K:O, ey Bvo"‘- » . (14)

1
K (mod BV,)

11 e ]

We may also represent the perforation pattern by a vector P of BV, binary .

components p; given by

0 if the i-th symbol of the B-branch is punctured
P, = (15)
! 1 if the i-th symbol of the B-branch is not punctured

14
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P is in fact the concatenation of all the rows of the perforation matrix.
The total Hamming dfstance D resuiting from the perforation of a B-
path X with distance contribution vector D by the perforation pattern P is

then given by the scalar product:
D=DP (16)

Using this formulation, we consider once again the B B-paths corres-
ponding to an elementary remerging path X according to Theorem 1. Let us
denote the B-paths 5?, where r is the number of additional Spp transitions
at the beginning of the code sequence (r = 0, {, ...,B - 1). Due to these
Spp transitions, the code symbols of the elementary code sequence X appear
in different positions within the B-paths, For these symbols, we have:

_xj+rv° = xj+tv° S or, =0, ..., B - 1. (17
Since these are the only symbols that contribute to the Hamming distances,
we can relate the components of vector QO and D', corresponding respecti-

vely to the B-paths X0 and X' as follows

dg:E x?
i=k (mod BVo)

r

= I X,
i=k (moa 'BUST

= I xr.‘

i=k+rVo {mod BVo)

r
- dk+rVo (mod BVo) (18)

and therefore

dO - dr t

K k+rVo (mod Bvo)~ %k+tvo (mod BVo) (19



Equation (19) means that all the B distance contribution vectors of the B-
paths corresponding to a given elementary path have the same components,
these components being cyclically shifted by groups of Vo from one vector
to the next.

The first consequence of this observation is that ‘perfor‘ati’on patterns
which are likewise shifted versions of each other will yield the same
ensemble of B total distances for the B punctured paths corresponding to a
given elementary path. Hence, all the punctured codes obtained from these
different perforation patterns with the same original code have the same
distance properties: free distance, distance profile, etc., The perforation
patterns are thus said to be eguivalent.

The second consequence of this observation will be the formulation of
an upper bound on the free distance of punctured codes. Assume Qo. Q',...,
93‘1 are the B distance contribution vectors of the B B-paths corresponding
to an elementary remerging path of Hamming distance Dorg of an original
(Vi) code. P, is an orthogonal perforation pattern used to obtain a (V,B)
punctured code.

Since Vo = Vv, eagh column of P, contains exactly one entry " Let Po
be the vector form of Por and let PO, Pol..., PoB~! be the B cyclic
shifts of this perforation pattern (but shifted in the opposite direction

from the distance contribution vectors). We can write

Pok = Po0 + Pot + oo+ PB1 = (11,0 1) (20)

where (#1..1) is the al ™" vector. The +total distances of the B8 punctu-

red paths are

16



' (21)

or, equivalently,

0O = o000
pt = Po*DO
(22)
pB-1 - poB—LDO
then, for the sum of the B punctured distances,

pO +p! + .+ DBt : EOO'QO + EO‘I.QO o 4 EOB—LQO

= (Bo% + Po! + o+ PB)DO

= (11..1):D0

We can therefore conclude that the largest punctured distances satisfy the

bound
D
D ¢ __gr.a ‘ (24)
Now if the original path is such that Dorg = Dgoy that is, the original

path is at free distance Dg, then we obtain the upper bound

Dep ¢ —2fo— (25)

where Dgp is the free distance of the resulting punctured code.
To generalize this result, let us recall the hypothesis that lead to

the formulation of this upper bound. First, the original code has to be a

17



(Vi) code for a (V,B) punctured code. This condition is easily relaxed by
virtue of Theorem 3 which states that any (V,B) punctured code may be
obtained from a (V,4) original code. The second hypothesis is that the
perforation pattern is orthogonal. This condition may also be relaxed if we
recall that any punctured code may be obtained using an orthogonal perfora-
tion pattern, provided the original code is changed (see theorem 4). Since
changing the original code could change the value of Dfgy in order to
extend the validity of (25), we replace Dgo by a tight upper bound on the
free distance of an original code of the same memory and coding rate. We

thus obtain the following
Theorem 5:

The free distance of a (V,B) punctured convolutional code is upper bounded

by

<Dgg>
Dep ¢ —£0= (26)

where <Dgo> is an upper bound on the free distance of any convolutional
code of the same rate and memory as the original code. |

As a final remark, this upper bound agrees with bounds obtained
without the hypothesis of a punctured code structure [11}. Therefore, we
may conclude that punctured codes are not necessarily worse than normal

high rate codes, at least not in the sense of having a lower free distance.

18



V. Ffinding good long memory high rate punctured codes

In a separate paper 4[10], we have considered the search for good high
rate punctured codes with long memory for use with sequential decoding. The
basic approach consists of selecting the best known rate 1/2 code of a
given memory as original code and deriving several punctured codes for
dH’fer‘ent_ coding rates from this same original code. This approach is very
attractive, especially for variable rate coding-decoding, and it has indeed
yielded a number of good punctured codes suitable for these applications
(63, [7), [10). However, these codes are not in general optimal: they do
not meet or come close to the upper bound on the free distance, and
furthermore they are not as good as the best known high rate codes. This
observation is further supported by the theoretical results obtained here
concerning the incidence of the rate of the original code and of the type
of perforation pattern to be used on the resulting punctured code. Intuiti-
vely, a (V,1) original code- should be wused in conjunction with an orthogo-
nal perforation pattern as to provide as much freedom as possible in the
specification of a given (V,B) punctured cbde,

A natural question arises: can optimal (or nearly optimal) high rate
codes be obtained by perforation? This question has lead us to investigate
the conditions under which a given high rate code can be obtained by
perforating a low rate code. In order to establish these conditions, we
first recall the difference between an arbitrary high rate code and a
punctured high rate code.

An encoder for an arbitrary (V,B) code _is a B-input/V-output machine:
at each encoding cycle, B information bits enter the machine and V code

symbols are delivered to the output. Any one of the V output symbols may

19



thus depend on any of the B input bits, as well as on the state of the
machine,

With a punctured code, the information bits actually enter the encoder
one at a time and the output symbols are produced by small groups of Vo.
Since an encoder must be a causal machine, certain dependencies are thus
forbidden between the input and the output streams. No output symbol at
time tx may depend on an input bit at time tk+ar 8 > O, that is, no output
symbol can depend on an input bit that has not yet entered the encoder.

This constraint may be _translated in terms of the impulse response of
the high rate code as follows. Let g;; be the components of the impulse

response of the encoder. Then
giJ=Ofori>J;i=1, wy By § = 0, ym; (27)

insures that the corresponding high rate code respects the causality
constraint, and thus, it may be obtained by perforation of a low rate code.

it is therefore an easy task to verify that a given high rate code
respects this condition, by the simple observation of its impulse -response.
Once this verification is performed, an original code that will yield this
particular high rate code may be constructed. In order to get all the
possible freedom in the choice of the generators, the original code that
must be used to obtain a (V,B) code wil be a (V,4) code, punctured by an
orthogonal perforation pattern,

The choice of the specific perforation pattern to use is dictated by
the. impulse response of the target high rate code. If, for example, B = V-

1, as is frequently the case for a great number of high rate codes, then
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the perforation matrix has V - 4 rows and V columns, so one of the rows
wi[l contain 2 entries "1", The specification of which rows has 2 entries
"1" specifies the perforation to use. For sequential decoding purposes,
perforation patterns that have 2 entries "1" on the first row are desira-
ble, since they will tend to yield codes with a rapidly increasing column
distance functioﬁ [t12). Such a perforation pattern may be selected if the
impulse response satisfies the stronger condition:

8ij = O for i 2 j; i vaey By =0, 1, 0o,my (28)

i
[AM

Otherwise, a perforation pattern with only entry "1" on the first row must

be selected.

Construction of the original code

The construction of the original (V,1) code that will yield a specific
(V,B) code through perforation is easy to perfofm. Let Ly through Lpg denote
the B rows of the impulse response of the target code. Let Kg be the length

of this code:
Kg = 1 +max fmy} ; i =1,2, ... B (29)

where m; is the memory of the i-th shift register of the (V,B) encoder. The
B rows of the impulse response are vectors of KgV components. The construc-

tion algorithm involives the following steps:

1. Select the perforation pattern P according to equation (28).
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2. Form vector P, by repeating the vector form of the perforation pattern
P Kg times. For example let

P=100011 and kg =2
then P, =1 000111000 1 1
3. “Expand" the rows LJ» J= 1, 2, ... B, into rows Lje according to P..

The "expansion" is done through the following algorithmic procedure;

For each component i of P, do:

Begin
a) I f component i of P, = "O", component i of Lje = "o",
b) I'f component i of P, = "1", component i of Lje = next unused

component of L. Mark this component of L; as used.
End

5. For all rows j, row LJe is shifted (j-1)V positions to the left. The
first row is not shifted, the second row is shifted V positions to the
left, etc. Components are lost to the left and "O" are inserted to the

right.

6. Sum the B resulting rows together (component-wise).

7. The resulting vector is the impulse response of the desired original
(V,1) code.

Good long punctured codes

The above procedure has been used to derive the original codes which
yield through perforation the best known rate 2/3 and 3/4 codes of memory 3

¢ M ¢ 23 and 3 ¢ M ¢ 9 respectively,

Non-systematic codes:

We have found that all the best Known high rate non-systematic codes

for rate 2/3 and 3/4 ([13]), [14)) satisfy condition (27). We have thus



constructed the low rate original codes corresponding to all of these high
rate codes. They are listed in Table 1. As expected, the (3,2) codes are
obtained by puncturing (3,1) codes and the (4,3) codes are obtained from
(4,1) codes. Lack of knowledge of other good long memory high rate codes
for other coding rate and memories has prevented us from expanding this
list further. »

It is interesting to observe that, for most of the cases, the memory
of the required original code is larger than that of the resulting punctu-
red code. This is illustrated in figure 7 where thei relationship between
original and punctured memories for the punctured (3,2) codes of Table 1 is
plotted. The memory difference is quite small, usually one or two, and it
is independent of the overall memory of the code. Therefore, its importance
decreases as the memory of the code increases. For large memory codes, this
memory increment is of no consequence whatsoever since these codes are to
be decoded by sequential! decoding methods.

Although the punctured codes found here are not suitable for variable
rate decoding, they do provide a practical method of using the best known
codes of rate 2/3 and 3/4 with sequential decoding. The decoding of these
codes by the normal (non punctured) approach is difficult because of the
targe number (BB) of nodes stemming from a single node in the tree struc-
ture of a high rate (V,B) code. However, with the punctured codes approach,
the decoding proceeds on the low rate structure, so the number of nodes
stenming from a single node is always 2, regardless of the actual coding
rate. This regularity of the decoding operation is a very desirable feature

in decoder implementations.

23



The existence of punctured codes that duplicate the best known high
ra@e codes is a good indication of the validity of the punctured approéch
to the generation of high rate codes., |t certainly invalidates the claim
that punctured codes are necessarily sub-optimal. Figures 8 and 9 plot the
free distances of some of the rate 2/3 and 3/4 codes found in comparison
with the upper bound of (26), as a function of the memory length. It

clearly shows that these codes do achieve a good free distance.
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original- R = 1/3 punctured R = 2/3
M G1 G2 G3 M G114 G2+ G31
0 G12 Ga2 632
4 26 22 35] 3 6 2 4
1 4 7
5 54 47 67| 4 6 3 7
1 5 5
6 172 137 152 5 14 06 16
07 17 10
7 314 2714 3171 6 12 05 13
05 16 13
8 424 455 T4TYH 7 26 14 32
00 23 33
9 1634 1233 1431]| 8 32 05 25
13 33 22
10 3162 2553 3612) 9 54 16 66
25 T4 60
11 6732 4617 71531110 53 23 514
36 53 67
12 17444 11051 17457114 162 054 156
064 101 163

Perforation pattern P = “é 0 ?"

Table 1.

Original codes
Paaske [13] (in octal).

1
that vyield the

(3,2) codes of Johannesson and
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) original R = /3 punctured R = 2/3
M G1 Ge G3 M G114 G21 631
0 G612 Gaz2 G3e
16 377052 221320 314321112 740 2601 520

367 414 515

16 274100 233221 331745013 710 260 670
) 140 545 533

16 163376 101657 153006(114 337 023 342
127 237 221

16 370414 203175 321523115 722 054 642
302 457 435

18 1277142 1144574 15263705161 1750) 0514] 1734
0165] 1235] 1054

18 1066424 1373146 1471265017] 1266] 0652} 1270
0140 17521 1307

19 2667576 2153625 3502436({18)) 1567| 0367| 1066
03371 12301 1603

20 4600614 4773274 62751531191 2422| 1674| 2356
0412 274? 2711

20[ 124003441 13365473 156465050201 3414 1685 3673
0005] 3367 2440

22)| 24613606 22226172| 35045621|[21] 6562 2316| 4160
0431 4454) 7225
24{11173566221126100341|151373474[1221113764|02430] 14654
03251]16011111766

2411106172264 [130463065]141102467||23|(12346/05250( 10412
01314|14247111067

Perforation pattern P = "3 ? ?

Table 1. (cont.) Original codes that vield the

(3,2)

Johannesson and Paaske [13] (in octal),

codes

of
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original R =1/3 punctured R = 2/3
M Gt Ge G3 M G114 G621 G314
0 G12 Ge2 G32
3 16 11 1541 2 3 1 3
_ i 2 2
4 22 2e 371 3 4 2 6
1 4 7
6 72 43 721 4 7 1 4
2 5 7
7 132 112 1778 S 14 06 16
03 i0 i7
8 362 266 373l 6 15 06 15
06 15 17
9 552 457 T36) 7 30 16 26
_ 07 23 36
10 2146 2512 3355 9 52 06 74
05 70 53
11 7432 5163[ 70261110 63 15 46
32 65 61

1

Table 2. Or{g{?al codes that vyield the (3,2) codes of Paaske [14] (in
octal).

Perforation pattern P = "é ? O”



original R = 1/4 punctured R = 3/4
M G G G G M G .G G 6
0 1 2 3 4 G11] G2t} G311 641
Gi2] G22] 632) 642
13 23 33 43
6 100 170 125 164 3 4 4 4 4
0 6 2 4
0 2 5 5]
7 224 270 206 357 5 6 2 2 6
1 6 0 7
0 2 5 5
8 750 512 446 731 6 6 i 0 7
3 4 i 6
2 3 7 4
10| 22741 2170 3262] 3414 8 16 06 | 04 10
03 12 00 13
04 02 17 10
11 6230) 4426 47111 7724 9 10 03 07 14
01 15 04 16
07 00 14 15
1000
Perforation pattern P=1000O01
0011

Table 3. Orig{nal]c?des that yvield the (4,3) codes of Paaske [14] (in
ocC a .



Systematic codes:

It is quite é!ear‘ from the very definition of systematic codes that
they a&ll meet condition (27). Thus, all systematic codes, whe’ther known or
to be discovered, may be obtained by puncturing a low rate original
(systematic) code. Furthermore, for any (V,B) target code, the original
code need only be a (2,1 systematic code since' the information is conveyed
by B code symbols, and any parity symbol may be obtained from the B remai-
ning code symbols of the B-branches.

The construction technique for deriving the original codes from the
target codes is a simple adaptation of the one presented for non-systematic
codes. We have thus obtained original codes for all the systematic codes of
Hagenauer [15). These codes are listed in Table 4.

The possibility of generating these codes .by perforation allows once
again their easy and practical decoding by sequential decoding. For
instance, it would be quite impractical to decode a rate 7/8 code by the
straightforward sequential decoding approach. In contrast, by the punctured
approach, this code may be decoded as simply as a rate 1/2 code.

Just like the non-systematic codes, the systematic punctured codes
found here do not readily lend themselves to variable rate decoding.
However, families of good punctured systematic codes with different coding

rate could be obtained from single original systematic codes.
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R pT G
o

2/3 11 33275606556377737
0t

3/4 111 756730246717030774725
00 1

4/5 1411 7475464466521133456725475223
000 {

5/6 1111 1 17175113117122772233670106777
0000 1

7/8 | 11114141 | 1773634453774014541375437553121
000000 1

Al G4 = 100..0 and Gp is given in octal (right justification).

Table 4, Systematic punctured codes obtained from original (2,1) codes.

vil. Conclusion

In this paper, a number of properties of high rate punctured convolu-
tional codes have been presented. These properties provide a better
understanding of this special class of high rate codes and give useful
indications for guiding the search for good punctured codes. A Relationship
between the paths of the original code and those of the resulting punctured
code have been established. An upper bound on the free distance of punctu-
red codes has been derived, indicating that punctured codes are indeed good

codes.
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3
Furthermore, conditions that insure that a given high rate code may be
obtained by perforating a low rate code have been formulated. A construc-
tion procedure has been established for deriving the low rate original code
corresponding to a target high rate code. Using this procedure, a number of
good long punctured codes that are suitable for sequential decoding have
been found, These codes duplicate the best Known usual high rate codes of

same memory length.
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Figure 1. Trellis of a rate 1/2 convolutional code,.

Figure 2. Trellis of the rate 2/3 punctured convolutional code.
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