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In Search of the Optimal Searching Sequence for VQ Encoding 
Yuk-Hee Chan and Wan-chi Siu 

Abstract-The codeword searching sequence is sometimes very 
vital to the efficiency of a vector quantization (VQ) encoding 
algorithm. In this paper, we evaluate some necessary criteria for 
the derivation of an optimal searching sequence and derive the 
optimal searching sequence based on such criteria. 

I. INTRODUCTION 

WO COMMON strategies have been used to reduce T the complexity inherent in a vector quantization (VQ) 
encoding algorithms. One resorts to simpler but suboptimal 
variants and sacrifices quality such as the tree searched VQ 
[l]. The other remains with the original VQ and devises fast 
algorithms such as the partial distance search (PDS). This 
second category of algorithms is more flexible since they are 
codebook-independent [2]-[8], but the searching sequence of 
the codewords is very vital to the efficiency of the algorithms. 

Consider the case that one has to represent a given D- 
dimensional input vector 5 = ( z ~ , z z , . . . , z D )  with a par- 
ticular codeword selected from a codebook containing N 
codewords, namely, C = { cE I i = 1,2 ,  . . . , N).  The selec- 
tion is based on the minimum Euclidean distance criterion, 
where the Euclidean distance measure is defined as d = 
E,"=, ( I J ~ , ~  - z,)'. To effect an efficient encoding algorithm, 
one can define an appropriate vector-to-scalar mapping and 
sort the codewords in the codebook according to their mapping 
values. Then, for any input vector Z, one can first evaluate its 
mapping value and start the search for the minimum distortion 
codeword with the codeword having the closest mapping value 
and proceed to the next nearer codewords. Obviously, if the 
mapping used is efficient, it is most likely that one can arrive 
at the minimum after only a few steps, which can save a lot 
of computational effort since those codewords without being 
searched could be disqualified easily through various tests 
[2]-[8] and be rejected. 

In this paper, we evaluate some necessary conditions for the 
derivation of an optimal searching sequence for VQ encoding 
and derive the optimal searching sequence based on the 
minimum distortion criterion. 

11. ALGORITHM 

Ideally, an optimal mapping f should satisfy the following 
criterion 
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where Go is the input vector and v' is a particular codeword. 
However, this cannot be achieved if the mapping f is not 
bijective. We proposed a simple algorithm to dynamically 
define a searching sequence for encoding a particular input 
vector [9]. In this approach, more than one mapping is defined 
to determine the searching sequence. The concept can be 
generalized here. In fact, the basic idea is to confine i&, the 
closest codeword to vector Go, into a smaller set by using the 
fact that 

v'd E R k  g X k - 1  g . . .  C XI, if Gd E R k  (2)  

where f E ( i 7 )  is any suitable mapping and 

% = {c: lfl(G) - fl(G)l < Eljn 

1.': I f k ( , q  - fk(V'0)l < Ek j .  
{a: I f 2 ( ; )  - f2(G0)I < ~ } n . . . n  

(3) 

Here, 6 ,  are some predefined values. In that case, one can 
search less codeword to get v'd. The derivation in [9] is not 
optimal in terms of the convergence of the searching sequence 
since the complexity is most concerned during the derivation 
of the algorithm. 

Assume that the mappings we are looking for are in the form 
of f ( G )  = s,$, where s,'s are scalar coefficients. Then, 
in order to minimize the size of the set Rk, the following two 
criteria should be satisfied: (i) mappings are uncorrelated with 
each other and (ii) the deviation of mapping values between 
two different mappings is easily measurable. In formulation, 
we have 

D 

a) E(f%(,afJ(G)) = 0 if f i  # f j  

b) E[(f,(d) - f j (G) ) " ]  is maximized 

where E(.) is the expectation operator. If criterion (a) is 
satisfied, criterion (b) can be further simplified and satisfied 
by maximizing both E[(f,(i7))2] and E[(f,(v'))2]. 

Without losing the generality, we are going to define D 
mappings here. Then, we have m = Fv, or, in matrix form, 

where m, and f,, are the output and the j t h  mapping 
coefficient of mapping fi respectively. To satisfy the two 
criteria, the covariance matrix of the mapping results should 
be a diagonal matrix in the form of 
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As we have A, = E[mmT] = E[FvvTFT] = FE 
[vvT] FT, the mapping matrix F and the matrix E [mm’] 
should then respectively be the eigenvector matrix and the 
eigenvalue matrix of the matrix E [vv’] . It is not realistic to 
get E [vv’] in practical application, but we can approximate 
it with the codebook on hand. In particular, we have 

where am,, is the rrith element of the nth column of the 
matrix E[vvT] and 

Since the matrix E[vvT] is a real and symmetric matrix, 
the eigenvectors are real and orthonormal. The definition of 
the desirable mappings is then very simple. Suppose we want 
to use k mappings to define the set Rk. The k eigenvectors 
associated with the largest eigenvalues should be selected to 
be the corresponding mapping coefficient vectors. 

Prior to encoding, codewords are sorted with their mapping 
results for each mapping. During encoding, the corresponding 
mapping results of the input vector I are evaluated to define 
the set R k  with t1 = t2 = ...  = &k = E .  

The proposed searching sequence { S ( i )  : z = 0,1, .  . . , N - 
l} for a given input vector is then dynamically obtained by 
gradually increasing the tolerance E ,  which can be described 
with a typical C language format as follows: 

i = 0; 
E = ~ln, t la l ;  

while {number of elements in g o l d  # N }  
%old = 

{ 
E+ = at; 
Get !I&; 
For (.’ E Rk \ %old) S(i++) = v’; 
go ld  = % k ;  

} 
For each increment of the tolerance E ,  there may be more 

than one element in the set Rk \ %old. In that case, the relative 
order of these elements can be randomly assigned. 

111. SIMULATIONS 
The performance of the proposed technique has been tested 

via simulation experiments on a set of 256 level gray-scale 
digital images of size 256 x 256 pixels. Four standard images 
“House”, “Girl”, “Couple” and “Germany” have been used 
as a training set to obtain codebooks with vector size D = 
16 (blocks of 4 x 4 pixels). The performance is evaluated 
in terms of the number of codewords required to achieve a 
particular P P S N R  while encoding a number of test images, 
where P P S N R  is defined as 

256 x 256 
distortion of the encoded image 

(7) 

P P S N R  = lolog 

I I I I 

0 10 20 30 
Average number of searched codewords 
per input vector 

Fig. 1. Companson of the convergence performance of various searching 
sequences. S, stands for the sequence generated with n mappings using the 
proposed approach. ( P P S N R  = 18.4158 dB when EFS is applied). 

Some other searching sequences defined in [3] ,  [4] are also 
evaluated for comparison. During the evaluation, we gradually 
increase the searching range for each input vector according 
to the searching sequence defined. These experiments are per- 
formed to evaluate the convergence performance of different 
searching sequences. 

Fig. 1 shows the case when a codebook of size 256 is 
used. The result is obtained by encoding the test image 
“Tunnel” not belonging to the training set. Here, sequence S, 
denotes the searching sequence generated with n mappings 
using the proposed approach. From this figure, one can see 
that the performance of the proposed searching sequence 
converges much faster on the optimal performance compared 
with those of other searching sequences [3] ,  [4]. Typically, the 
performance of sequence S, is better than that of Sm, where 
n > m. Note that, when the searching sequence S,, where n > 
2, is applied, only about 2 out of 256 codewords are necessary 
to be searched to achieve an encoding perfomance comparable 
to that of the Exhaustive Full Search scheme (EFS). Sequence 
S is actually a modified version of the sequence proposed 
in [9] and is shown here for reference purpose. (Note the 
difference between their sequence-generation algorithms.) In 
terms of the convergence performance, sequence 5’3 is much 
better than sequence S. However, though sequence S is 
also generated with 3 mappings, its generation overheads is 
much less than that of sequence S3 or even that of sequence 
5’2. Hence, for real time processing, sometimes it is more 
desirable to exploit this sequence instead. Table I shows the 
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TABLE I 
COMPUTATIONAL OVERHEADS REQUIRED FOR LOCATING THE STARTING 

ELEMENTS OF DIFFERENT SEARCHING SEQUENCES FOR A GIVEN INPUT VECTOR 

computational overheads required for locating the starting 
elements of different searching sequences for a given input 
vector. Similar results can be obtained in using different 
codebooks of various sizes to encode various test images. 

IV. CONCLUSION 

In this paper, an algorithm is proposed to adaptively de- 
termine the codeword searching sequence for any given input 
vector. Some necessary criteria for the derivation of an optimal 
searching sequence are investigated and the optimal searching 
sequence based on these criteria is also given and evaluated. 
These searching sequences would by no means be optimal in 
minimizing their generation overheads but could obtain the 

desirable codeword of the input vector very effectively. In 
such a case, they can be used together with any other category 
2 algorithms [2]-[8] to improve the encoding efficiency in 
vector quantization. 
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