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Abstract

This paper analyzes throughput and delay performance of two kinds of
free access tree algorithms with mini-slots. One is that binary feedback
information is available in mini-slots, and the other is that ternary
feedback information is available. In these algorithms Q number of mini-
slots are provided within a slot to offer feedback information on the
state of the channel. The maximum throughputs of binary and ternary
feedback algorithms are analytically obtained. It is also shown that the
highest maximum throughput 0.56714 is achieved when Q approaches infini-
ty and mini-slot overhead goes to zero. The lower bound of the average
transmission delays in these algorithms is anélytically derived. The
obtained lower bound is also a lower bound of the average delay of the

whole class of free access algorithms.

[Key Words] tree algorithms, collision resolution algorithm, performénce

evaluation, throughput, average transmission delay




1. Introduction

In a multiple-access environment, where a number of geographically
separated users communicate over a single shared communication channel,
contention-based protocols provide a relatively efficient way of commu-
nication [KURO 84]. Contention-based access protocols are character-
ized by collisions and retransmissions. These protocols simultaneously
offer transmission rights to a group of users in the hope that exactly
one of the users has a packet to send. If, howgver, two or more users
send packets on the channel at the same time, these messages interfere
with each other and none of them will be correctly received by the
destination user(s). In such cases, users retransmit packets accatd-
ing to a collision resolution algorithm until packets are successfully
received by the destination user(s).

Among a variety of collision resolution algorithms that have been
investigated, a class of tree algorithms [CAPE 79, TSYB 78] is one with
the outstanding property. Tree algorithms broadly divide into two
classes depending on how new packets are handled: free access [TSYB 80b,
FAYO 85, MATH 85] and blocked access [TSYB 78, CAPE 79, MATH 85] tree
algorithms.

Free Access (FA) tree algorithms do not distinguish between new and
collided packets. Users attempt to transmit a new packet immediately
after itg generation, Thus, users are not required to monitor the
channél continuously; They sense the channel only when they have packets
to transmit (i.e, limited sensing [HUMB 86]). Due to the simplicity and
ease of implementation, FA tree algorithms are of practical interest.
The upper bound of the maximum throughput in the context of free access

has recently been shown to be 0.567 [HUMB 86]. This is a tight bound if




collided packets are retransmitted in some fashion to avoid a collision
with other previously collided packets. However, no specific algorithm
has been found yet to achieve the maximum throughput close to this bound.

On the other hand, blocked access (BA) tree algorithms [GALL 78,
MASS 80, MOSE 85] force new packets to wait until all the outstanding
collisions have been resolved, and thus require users to monitor the
channel continuously. Mosely and Humblet [MOSE 85] have shown that the
maximum throughput of a BA tree algorithm is 0.48776, assuming that the
users distinguish between an empty, a successful and a collided slots.
If users can further detect the multiplicity of a collision, i.e., the
number of packets involved in a collision, the maximum throughput in-
creases to 0.53237 [GEOR 83, TSYB 80a]. |

To improve the performance of a BA tree algorithm, mini-slots were
introduced to provide better feedback on the channel status with network
users; so called BA tree algorithms with mini-slots (BA Q-ary TA/M). In
this class of algorithms, Q number of mini-slots are provided within a
(large) slot to allow users to acquire additional information on the
state of the channel (see Fig.l). Data sub-slot length is equal to
packet transmissioﬁ time. When a user sends a packet (using a data
sub-slot in a large slot), he also sends a signal in a mini-slot randomly
chosen. In case of a collision, the current enabled set of users (the
set of users who currently have transmission right) are divided into Q
number‘of.subtrees, each corresponding to a group of users who have
chosen the same mini-slot. BA Q-ary TA/Ms have been investigated under
the assumption that binary (i.e., something/nothing) [SZPA 85, HUAN 85]
or ternary (idle/ success/collision) [MERA 83] feedback information is

available 1in a mini-slot, and they have been shown to provide excellent




performance.

In this paper, we introduce mini-slots into a free access (FA) tree
algorithm in order to improve its performance(+). We consider two types
of feedback information in a mini-slot; binary (something/nothing) and
ternary (idle/success/collision) feedback information. Maximum through-
put and the average transmission delay are analyzed for FA TA/M.

The exact description of the algorithm is presented in section 2.
Section 3 analyzes maximum throughput of the algorithm. The upper bound
on tﬁe maximum throughput in the whole class of free access algorithms
(including tree type algorithms and others) is also obtained as the
asymptotic case where Q approaches infinity. In section 4, the lower
bound on the average transmission delay of FA TA/M is analytically ob-
tained. This lower bound is also a lower bound on the average.éransmis—
sion delay in the whole class of free access algorithms. In section 5,
numerical examples are provided as well as the optimal value of Q (the
number of mini-slots in a large slot) to achieve the highest throughput

for a fixed value of a mini-slot length.

(+) Combining mini-slots with reservation scheme is another (and com-
pletely different) approach to improve the throughput performance. How-
ever, in this paper, we are interested in an FA TA/M coupled with direct
channel access scheme (i.e., to send a packet directly in a data sub-slot
and to use mini-slots to resolve a collision) because of its simplicity
and of its practical importance. The readers may refer to [HUAN 85, VI A
pp.268] for further comparison of TA/M with reservation systems.
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2. Free Access Q-ary Tree Algorithms with Mini-Slots

In our analysis, we assume that the time is slotted, and a (large)
slot consists of Q number of mini-slots and a data sub-slot (Fig.l). The
size of a data sub-slot is equal to transmission time of a packet,

We consider a Free Access Q-ary Tree Algorithm with Mini-slots (FA
TA/M). In free access algorithms, newly generated packets, regardless
of if they arrive while collisions are being resolved, are transmitted
immediately after their generation. We study two cases regarding the
feedback information available in a mini-slot; ternary and binary feed-
back information,

FA TA/M with Ternary Feedback (FA TA/M-TF);
lUsers distinguish between an empty mini-slot (i.e, no user is sending
a signal), a successful mini-slot (i.e., only one user is sending a
signal) and a collidéd mini-slot (i.e., more than one user is sending
a signal); this is often referred to as 0, 1, e-ternary feedback
[BERG 84].

FA TA/M with Binary Feedback (FA TA/M-BF);
Users have limited capability to detect the signal level of a mini-
slot so that users can only distinguish between an empty mini-slot
(i.e., no signal detected) and a busy mini-slot (i.e., signal de-
tected); namely, something/nothing binary feedback [BERG 84].

In Q-ary TA/M with ternary feedback, a user sends a packet (in a
data sixb-siot of a large slot), he also sends a signal in a mini-slot
randomly chosen. In case of collision, the current enabled set of users
are first partitioned into Q number of sub-sets, each corresponding to a
group of .users who have chosen the same mini-slot. Non-active sub-sets

(i.e., sub-sets which correspond to an empty mini-slot) are deleted from




the further coilision resolution process. Each active sﬁb—set with only
one active user (i.e., a sub-set which corresponds to a successful mini-
slot) constitutes a new subtree. [Each active sub-set with more than one
active user (i.e., a sub-set which corresponds to a collided mini-glot)
is further divided into m subtrees, where each active user is randomly
assigned to one of the m new subtrees. (This algorithm will be referred
to as FA TA/M-TF(m) in the following.) Thus, this division process
results in s+mxc number of new subtrees, where s and ¢ are the numbers of
successful and collided mini-slots in a large slot, respectively. One
subtree is chosen from these s+mxc new subtrees for collision resolution
in the subsequent (large) slot. If further collision occurs, the ena-
bled set is continuously divided iﬁ the same manner until the collision
is resolved. Note that, since we assume a free access algorithm, newly
generated packets are immediately transmitted even when the system is in
a collision resolution process.

In a Q-ary TA/M with binary feedback, users do not distinguish
between a successful and a collided mini-slots, and hence, all the active
sub-sets, regardléss of how many active users ;here are in each of them,
are treated in the same way; each active sub-set is randomly divided into
m subtrees. (This algorithm will be referred to as FA TA/M-BF(m).)
Thus, this division process results in (s+c)xm number of new subtrees.

Figures 2 and 3 illustrate a collision resolution process in an FA
TA/M;TF(Q) and an FA TA/M-BF(1), respectively. In both figures, four
users (A, B, C, D) collided in slot 1. Users A and B have chosen the
first mini-slot to send signal, and C and D have chosen the third mini-
slot, resulting in no successful mini-slots and two collided mini-slots;

i.e., s=0 and c=2. In the TA/M-TF(2) (Fig.2), the users involved in the
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initial colliéion are partitioned into 4 (i.e., s+cxm=4) enabled sub-
trees. Note that non-active sub-set (corresponding to the 2nd mini-
slot) has been removed from the collision resolution process. Let us
assume these subtrees are; a subtree rooted at node 2 with no active
users, a subtree rooted at node 3 with users A and B, a subtree at node 6
with user C, and a subtree at node 9 with user D.  Since subtree 2 has
no active users, the slot (slot 2) assigned to this subtree remains
unused. Subtree 3 results in collision again, User C in subtree 6
collides with a new packet at user E. (Note we havé assumed free access
algorithm.) Subtrees 3 and 6 are again divided for further collision
resolution. Subtree 9 results in a successful transmission.

TA/M-BF(1), upon detecting the initial collision, partitiones the
users into two (i.e., (s+c)x1=2) subtrees, i.e., a subtree rooted at node
2 (with active users A and B) and a subtree rooted at node 6 (with active
users C and D) (see Fig.3). Both subtrees 2 and 6 lead to collision
again. The same collision resolution process is repeated until all the

outstanding collided packets are removed from the system.




3. Analysis of Throughput Characteristics

3.1 Maximum Throughput of Q-ary FA TA/Ms

We analyze Q-ary FA TA/M-BF(m) and Q-ary FA TA/M-TF(m) to obtain
their throughput characteristic (in this section) and the average trans-
mission delay (in section 4). In this analysis, we assume that unit
time 1is equal to a large slot and that new packet arrivals in different

(large) slots are independent and follow an identical Poisson process

with rate A (packets/large slot). We further assume that the propaga-
tion delay is zero. Let h denote the ratio of the length of a mini-slot
to a data sub-slot length. Since overhead due to mini-slots is hQ, the

maximum throughput (per data sub-slot) §(Q,m) becomes

§(Q’m) = gl%l_%)_’ | (1)

where S(Q,m) is the maximum throughput when there is no mini-slot
overhead (i.e., when h is equal to zero). In the following, we will

obtain S(Q,m).

We first consider the collision resolution time (CRT), the time

required to resolve a collision, given that k number of packets are
involved in the collision. Let Mk be a conditional average CRT for a

given collision multiplicity k., Namely,

= I i Prob[CRT=i|Collision Multiplicity=k].
i>1

My

If k is zero (i.e., idle slot) or one (i.e., successful slot), only
one slot is.used, and hence, Mk becomes one. If k is greater than or
equal to two, collision arises. In this case, collided packets are
divided into Q sub-sets. A CRT to resolve the initial collision is the
sum of the CRTs of these Q sub-sets. Let ny be the random variable

representing the number of packets in sub-set i. Then,




k!
Plny=Ny,..osng=Ny, .o ing=Nol= TNy

("
and 22=1 Ni=k. We denote the above density function as U(%,k).

In both binary feedback (FA TA/M-BF(m)) and ternary feedback (FA
TA/M-TF(m)) cases, an empty sub-set i (ni=0) among the Q sub-sets yields
no new subtree, and hence, CRT for an empty sub-set is O.

In the ternary feedback case (FA TA/M-TF(m)), sub-set i containing
only one packet (ni=1) results in one subtree. Let Xg be the number of
new arrivals in the slot immediately preceding to the beginning of the
collisién resolution process of the jth subtree (resulting from the sub-
set i). In the particular case where ni=1, there is only one subtree

generated, and hence, j assumes only 1. Note that we have assumed that

new arrivals are independent of slots, and hence, Xi is independent of i

and j. We have further assumed that Xg=X follows Poisson distribution,
namely,
AR
p(h) =17 -

" Since new packets, in addition to the packet assigned to the subtree, are

immediately transmitted in an FA algorithm, CRT for the original sub-set

i is the time required to resolve a collision of multiplicity 1+X1.

Namely, CRT in this case becomes M1 1.
+X§

On the other hand, in the binary feedback case (FA TA/M-BF(m)), a
sub-set i containing only one packet, say test packet, results in m
subtrees. Of these m subtrees, CRT of the one (say the first subtree)
to which the test packet has been assigned becomes M1+x1; for each of the

i
remaining subtrees (hth subtree), CRT becomes Mgh. Hence, CRT for the
' 1
: m
sub-set i (ni-l) becomes M1+Xi+ Zh=2MX2‘
In both FA TA/M-TF(m) and FA TA/M-BF(m), a sub-set i containing

more than one packet (niZZ) generates m subtrees. In this case, n,




number of packets are randomly spread over the m subtrees. If we let rg
be the number of packets assigned to the jth subtree (of these m sub-

trees), CRT of the jth subtree becomes Mrﬁxf' where Xi is defined above.

Hence, CRT fof the original sub-set i becomes Z?=l M'i“i’ Note that
I ? 1 —n and that the density function of ri is given by U(%,ni).
From the above arguments, Mk becomes
=1 (k=0, 1)
m
M =1+ Z 0+ T (M, gt 6 Z M h)
k (i|n.=0)  (i|n,=1) *M 4
i i
m
+ I M 3.9 (otherwise),
(1]n,>2) j=1 Tt
In ' the above equation, f represents the sum over i-s satisfying the
(i]4)
condition A. GB depends on the algorithm and is
1 (TA/M-BF(m))
GB =
0 (TA/M=TF(m)).
Thus, Mk satisfies the following equation:
_ Q
Mk=1+ z U(Q,k) z Voo (k>2) (2)
ny+...+0 =k i=1 4
Q
where z represents the sum over all possible combinations of

n1+...+nQ=k

nl,...,nQ such that n1+...+nQ=k, and vni is given by

[ 0 .
= (ni- )

1 = M .p(h) + &:(m-1) 2 M p(h) (n,=1)

v h>0 1+h B h>0 h i (3)
i
= m
- I U(— n, ) ) Z M 5., p(h) (n,>2).
r}+...+r?=ni p50 j=1 0 .

To obtain Eq.(3), we have used that Xi is independent of i and j and

follows Poisson distribution and that rg has the distribution U(%,ni).




Equation (2) is rewritten as (see Appendix A of [HUAN 85] for the

detail)

Mk=1+n£0( )(1 Q) (5)

(k22)

Furthermore, substituting Eq.(3) into the above equation, we have

M= Lik(1- ® 71 Z My p(3) + Sgk(n-1) T Mip(3)]

Q J>0 J>0
k
k- -1 1 1
+ 2 - DG 1 1 Ha- H DI, ),
n=2 0 i=0 1 J
(4)
M0=M1=1‘
After some manipulation (see Appendix-A), Eq.(4) becomes
k-i ,
1+ 1 z (5 )a l(1-a) M;,+P(3)
i>0 i=0 * J
-1 k ' 1.k-1 .
M = ~a7ta- DR k@-1 - HEYY £ MpG)  (02) (5)
k . Q B Q i>0 J
1 (k=0y1)
-1
where a=(Qm)
We now define the following functions:
2", (6)
M(z)= & Mk k'
k>0 .
* -
M (z)=e *M(z). . (7)
Taking the derivative of these functions, we have
k
M(l)(z)- I M k' (8)
k>0
* -
M D (2y=e72 (1 (2)-M(2)).
A -
Note that M (A)= ¢ Mk KT represents the average CRT under the as-
k>0
sumption of a Poisson arrival process. Since this quantity plays a key

*
role in the analysis, we will obtain M ( A ) by applying the method pro-
posed by Mathys et al. [MATH 85].

By multiplying both sides of Eq.(5) by zk/k! and then taking sum of
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both sides over k>0 (see Appendix-B), we have

¥ (2)-a~ I  Oaz)=14a M V) E(2) 1 (D () g (2) (9)
where
- 2072 _ o2/Q (TA/M-BF(m))
f(z)= Q .
-z l -Z/Q
-aze —{1+(Q -a)z)e (TA/M-TF(m)),

g(z):—ze—z.

We will solve Eq.(9) for M*(z). First, by differentiating Eq.(9) twice
with respect to z, we have

M (2 (2)-a™ (D) (vazy=a M ) £(D) (2) ™ (D (0 (P (2).
This equation has the following solution [MATH 85]:

M (D 2y~ () ¢ ate(?)( o&i](z))+M*(1)(k) z alg(? o&i](z)),
150 150 (10)

where
[1]5)- ylza’ i
oM (z)= Mg taz.
By integrating Eq.(10), we have (see Appendix-C for the derivation
of the following equation)
* 1. % 1 * 1
M (2)=a " (1) e (g2 Py oD (g(L):2), (1)

where

Z .
o Dprim= | 2 a Pz,
0 i>0

z
O(Y(.);2)= SO oD y(.)52)de.

By letting z=A in Eq.(11), we find that M ()(A) is expressed in terms of
M*() as foilows;
WD o=a " et e/ (-0 (g 50)
a0 W, (12)

where
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o Me(ym)
1-6(1)(g(.):x)

e(1—1/Q)u
(1-u)Q

(TA/M-BF(m))

Ol

T%;(a+(% -a)%qe(l“l/Q)U-a (TA/M=TF(m)),

= A
M= T-a*
Finally, by substituting Eq.(12) into Eq.(11) and further integrating
the resulting equation, we obtain the following solution to Eq.(9):
* 1. % * :
M*(z)=14a"IM (M)b " (2), (13)
where

b¥(2)= OC£(.);2)+w 8(g(.);2).

Z x * * *
We used SOM (1)(z)dz=M (z)-M (0)=M (z)-1 to obtain Eq.(13).
We now proceed to obtain the maximum throughput of FA TA/Ms.
*
Setting z=\A in Eq.(13) and solving the resulting equation for M (})

) yields

M ()=1/(1-a"1b"0)). (14)
where
=z a-i[—e—x/Q+e-y/Q—ai%e-y/Q]
>0 . .
_+(w+~é) % a t{-xe X4ye V-a'A(y-1)e™Y} (TA/M-BF(m)),
" >0 ‘ ‘
b (M) .
. a—l[—[1+(% —a)x}e-x/Q+{1+(é _a)y)e¥/Q
150
-aix{a+<é-—§>goe‘y/Q] |
+(wea) ¥ a t{-xe X+ye T-a'a(y-1)eY),  (TA/M-TF(m))
i+l 120
X=U(1”a )’
y=u(1—ai)-

For numerical computations, we give the following by expanding the

exponential functions into power series and taking the sum over i in the
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above equation:

2/Q . /I 1 (-a)i
=T Q<j+1>\a‘ L)

j2l
o %5>e ——< 2 - (e ﬂ—z}h (TA/M-BF(m))
*
b (A) J (15)
_e~H/Q (u/Q) 1+(1/Q-a)u _ Ll_éll
J§1 J' l. Q(J+1) (1/Q a)](a l_a )U
+(wra)e™ T —--( - - 1)(a- (-a)iy  (TA/M-TF(m))
J>1 3+ 1-aJ

As explained previously, M*(k) is the unconditional average CRT
assuming that new packets arrive according to a Poisson process with rate
X Thus, the FA TA/Ms will be stable if the right hand side in Eq.(14)
is positive and finite. Namely, the system is stable if an input rate
satisfies the following:

“1p* o<, - (16)
Thus, A which satisfies a_lb*(k)=1 gives the upper bound of the stable
input rate. We denote this value of A by S(Q,m), i.e.,

“Lp*(s(Q,m))=1. -an

S(Q,m) is the supremum of throughput.

3.2 Upper Bound of the throughput of FA TA/Ms

We will now consider the limiting case where Q is infinity and h is
equal to zero. Let S* denote the throughput in this limiting case;
namely, S*=lim Q>0 S(Q,m). By setting A=S(Q,m) in Eq.(15), multi-
plying the resulting equation by a-1 and further letting Q approach

infinity, we have

j+l
o/(1-8%) T S - 5pi. (TM-EEm)
B
lim a l1b*(S(Q,m)) =
Q—= S*j+1
1/(1-8%) I =—— (1 - )J (TA/M-TF(m))
i1 , 1+J

Since, from Eq.(17), the above equation is equal to one, we obtain the

~13-




following simple expression for S*:

{ nS*eS” —(m-1)S*-1=0 (TA/M-BF(m)) (18a)
*
SkeSTol. (TA/M-TF(m)). (18b)
For TA/M-BF(m), we have, from Eq.(18a);
E
d S* _ S*(l—eS )
dm mes*+m5*es*—m+1

It can be easily shown that g i* is negative for S*>0 and m>l, and that
S% takes its maximum when m is equal to one, The maximum throughput is
given by S* satisfying
S*eS'=l. : (19)
From Eq.(16), stable condition for TA/M-BF(l) and TA/M-TF(m) becomes
1im a”lb*(A)<1.

. Q_;w
After some manipulation, the above condition becomes

A< e A (20)

As we have seen, the maximum throughput S* of free access algorithms
with mini-slots (i.e., TA/M-BF(m) and TA/M-TF(m)) in the limiting case is
given by S* which satisfies S*es*=1. (The actual value of S* is
0.567174(+);) In the following, we will show that this limiting case
provides the perfect scheduling of collided packets, and hence, that no
other free access algorithms achieve higher throughput and small delay.
We will concentrate on the ternary feedback case in the following.

Let Q go to infinity in Eq.(5) (6B=O). Note that GB is 0, since we
are assuming‘ternary feedback case here. Eq.(5) becomes (see Appendix-D

for the derivation)

.p(3), (k>2)
M= 20 1 (21)

{ 1+k M
1. (k=0,1)

(+) Maximum throughput of the class of free access algorithms has re-
cently been shown not to exceed 0.56714 [HUMB 86]. However, no specific
algorithm has been found yet to achieve this bound.

~14-




Eq.(21) may be interpreted in the following way. The initial collision

(of multiplicity k) wastes a slot. (This gives the first term "1" in
Eq.(21).) k collided packets are divided up into k subtrees, each
having exactly one packet, for collision resolution. Since we are

assuming a free access algorithm, each subtree suffers further collision

with j number of newly arriving packets. Therefore, each subtree
requires I M1+jp(j) to resolve a collision. (This gives the second
320
term "k I M1+.p(j)" in Eq.(21).)
>0 **J

In other words, in thé limiting case, the packets involved in the
initial collision will be isolated for collision resolution; no two
packets will be assigned to the same subtree. Collided packets are
optimally scheduled in the sense that-there will be no further collisiong
among packefs in the initial collision. It will take only k slots to
transmit k collided packets successfully, if there are no new arrivals.
Therefore, this limiting case provides the perfect scheduling of collided
packets. We further note that, in the limiting case, we let Q go to
infinity, keeping hQ (mini-slot overhead) zero (see section 3.1).
Hence, there is not .scheduling overhead. For this reason, S* given by
Eq.(19) is the highest maximum throughput in the whole class of free
access algorithms.

From Eq.(21), M, (conditional average CRT) of FA TA/M-TF(m) in the

limiting case becomes (see Appendix E for the derivation);

M=l +k/(e™ - 2) (k>2), (22)
MO=M1=1.
Let Sk be the conditional throughput (per slot) over a collision

resolution interval (CRI) which has been initiated by a collision of
multiplicity k. Note that the average length of this CRI is equal to the

average CRT Mk’ The average number of successfully transmitted packets

~15-




during this time interval is k+i(M -1), i.e., sum of k packets involved

in the initial collision and A(Mk—l) number of new packets arriving

during the CRI. Thus, Sk is give by

A (er e

S
k+(e_k—k)

= (et MM -D)/M= e

A

S, is an 1increasing function of k and approaches e " when k goes to

k
infinity. In other words, no more than e-x number of packets will be
successfully transmitted. This provides an intuitive explanation of the

-A
stable condition M e = (see Eq.(20)). This system will be stable if an

input rate ) is less than the system capacity e-A.
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4. Average Transmission Delay in the Limiting Case

Let's define the transmission delay of a packet as the time interval
beginning at the packet generation and ending with the completion of its
successful transmission. In this section, we obtain the lower bound of
the average transmission delay E[D] of the free access TA/Ms with mini-
slot.

As we saw in the previous section, FA TA/M-BF(1l) and FA TA/M-TF(m)
achieve the lower delay bound when Q (the number of mini-slots in a large
slot) goes to zero. Further, TA/M-BF(1l) is equivalent to TA/M—TF(}).
Hence, in the following, we focus on the delay of the FA TA/M-TF(m) in
the limiting case.

The transmission delay of a packet divides into two elemeﬁts; le, the
time from packet generation to the beginning of its initial transmission,
and D2' the time from the initial transmission to the end of its success-
ful transmission. The mean E[Dl] of the first element D1 is 1/2, and
thus we have

B(D] = 1/2 + E[D,]. (23)
In the following, we will obtain the average of D2, E[Dz].

Let a and dk denote the expected number of new packet arrivals
in a CRI and the sum of the transmission delays of these a, packets,

respectively, given that the CRI started with a collision of multiplicity

k. Let us define the following functions:
k
A(z)= T a, =
Kol k k!

* -
A (z)=e ZA(z)
Zk
D(z)= ¢ d, —
ol k k!

D (2)=e"%D(z).
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Since the-time pnints when a CRI starts form a renewal process in

the free access TA/M, E[Dz] is given by the following equation (see

[FAYO 85]):
E[D,] = rxs- (24)

Since that a, is the (conditional) average of the number of packets
transmitted in a CRI, given that the CRI has started with a collision of
multiplicity k, and that those k packets involved in the initial colli-
sion followed Poisson arrivals, the denominator of Eq.(24),

k
!

>

* -
A (M)=e A , is the unconditional average of the number of packets

=~

k§1 K
transmitted in a CRI. Therefore, we have A*(A)= AM*(A), where M*(A) is
the average CRT. M*(A) is given by (see Eq.(E.7) in Appendix-E)

MH(0)=(1- 0/ (1aet ),
and hence, we have

AY00 = a1-20)/(1-2et ). (25)

The numerator D*(A) of Eq.(24) is the unconditional average of the
accumulated transmission delay experienced by all the packets transmitted
in a CRI. In order to evaluate D*(A), we first derive the recurrence
equation for dk’ the sum of the accumulated transmission delays of the
packets in the CRI which started with a collision of multiplicity k.

In the limiting case, colliding k packets will be divided into k
subtrees, each with only one active user (see Eq.(21)). The accumulated
transmission delay in a subtree contains three elements: the delay due to
an initial collision, the time interval from the initial collision to the
beginning of a collision resolution process of the subtree, and the
accumulated transmission delay of (1+j) packets, where j denotes the

number of new packets joining the subtree. Since the initial collision

wastes a slot, the first element is 1 slot. The second element 1is the

-18-




sum of all preceding CRTs; for the ith subtree, this element becomes the

sum of the preceding (i-1) CRTs. The third element is given by d1+j'
Therefore, dk satisfies
k
dk v {1+ £ (i-1)M
i=1  j>0
Thus, we have

p(}  (k22).

1+j

1+JP(J)+JZ d

k
k+ T I (i-1)M,, .p(J)+k £ d,,.p(j) (k>2)
i=13>0 1+3 0 I
d, = 1 (k=1) (26)
0 (k=0).

Define the following functions:

K
(L), y _ dD(z) _ z_
DY(z) ==, = kfod1+k Kl

%

D) - @)

z

By multiplying both sides of Eq.(26) by e —Z k/k' and summing over

k>0, we have
k
* -z z -z (1) (1)
D (z)= L k— + z [——M (M+ D (X)]
RS I k>2(k D!
-A
=2+z(1—e—z)D(l)(x)e—k+z M(l)(x)ﬂf—. ‘ (27)
Since D*(l)(A)=e_xD(1)(k)~D*(A), Eq.(27) becomes
=A
D*(2)=z+2(1-e"%) (D" V()40 (1) 422D ()2, (28)

Taking the derivative of Eq.(28), we obtain the following equation

DD (2)=14(14(z-1)e 2@ P )40 1)) rze M (1) (29)
By letting z=)\ in Eq.(29), we have

"D (=fer+(ren -1)D" (M DO0) 1y (30)
Substituting Eq.(30) into Eq.(28) and letting z=A in the resulting equa-
tion, we obtain

D" M=lacern+(2-(1ene™) A (op—=. (31)
1-)e
From Eqs.(8) and (22) (or see Eqs.(E.5) and (E.7) in Appendix-E), we have
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M(l)( X):ezA/(l— Aek ).

Substitution of M(l)( A) into Eq.(31) yields

2 2\
* _
D" (=0 (D (2-(1)e ™) 22— (32)
(1-2e*)2 1-re
Consequently, from Eqs.(23), (24), (25) and (32), we have
) AL
E[D]={2-(1+ ))e " )—2& + ‘f_': + 3 (33)

(1xeh)(1-1)2
Note that E[D] becomes 1.5 as A—>0 and becomes infinity as A —>0.56714,

which is the supremum of throughput.

-20-




5. Numerical Results

In Tables 1, 2 and Fig.4, mini-slot length is assumed to be zero.
The maximum throughput S(Q,m) is given by S(Q,m)=S(Q,m)/(1+hQ)=S(Q,m)
(see Eq.(1) in section 3.1).

Table 1 shows the maximum throughput S(Q,m) for FA TA/M-BF(m)s.
When m is one or two, the maximum throughput is an increasing function
of Q; on the contrary, for m}3, S(Q,m) is a decreasing function of Q.
Among various values of m, m=1, namely TA/M-BF(l), achieves the highest
maximum throughput for Q>3. In this table (and in Table 2), the values

of limiting case maximum throughput S*=1imQ ;wS(Q,m) are also shown.

Table 2 shows S(Q,m) for FA TA/M-TF(m)s. For all m, S(Q,m) is an
increasing function of Q. TA/M-TF(2) achieves the highest throughput
for Q>3.

Figure 4 compares the throughput performance of FA TA/M-BF(1) and
TA/M-TF(2), namely the best algorithms in binary feedback and ternary
feedback cases. Figure 4 also shows the value of limiting case maximum
throughput $*-0.56714. It is seen that S(Q,m) of TA/M-BF(l) and TA/M-
TF(2) approaches fairy quickly to the upper bound s* as Q increases.

Tables 3 and 4 assume non-zero mini-slot length (h) and show the
effect of mini-slot overhead on the throughput performance. For h#0,
the maximum throughput $(Q,m) is given by‘§(Q,m)=S(Q,m)/(1+hQ). Table
3 shows S(Q,m) as a function of Q. h is assumed to be 0.001 in this
table. - Both S(Q,m) and 1+hQ are increasing functions of Q (see Fig.4
for the monotonic increase of S(Q,m)). Therefore, there is an optimum
value of(Q(Qopt) which maximizes S(Q,m) for a given value of h. For

instance, ¢ is 23 in TA/M-BF(1) and 19 in TA/M-TF(2), when h is

Qp
0.001.

Table 4 shows'Qopt and the corresponding values of S(Q,m) for

-21-




various values<of h. It is seen that reasonably small h achieves the
throughput very close to the upper bound 0.56714, For instance, TA/M-
TF(2) achieves the throughput of 0.56482 when h is 0.001. Noting that
a 2000 bit data packet and a 2 bit mini-slot give h=0.001, TA/Ms achieve
throughput close to the upper bound in practical systems.

Figures 5 and 6 show simulation results for the average transmission
delays in TA/M-BF(1l) and TA/M-TF(2), respectively. In both figures,
mini-slot length h is assumed to be zero. Theoretical lower bound of
transmission delays (given by Eq.(33)) is also shown in these figures.
The average delay approaches the lower bound as Q increases in both
figures.

Figure 7 assumes that h is equal to 0.001 and showé, through simu-
lations, the average transmission delays of the optimum TA/M-BF(1l) and
TA/M-TF(2); 1i.e., TA/M-BF(1) with Q=23 and TA/M-TF(2) with Q=19 (see
Table 2 for optimum values of Q). This figure shows that, if h is
reasonably small (i.e., h=0.001), both TA/M-BF(1l) and TA/M-TF(2) provide
the average transmission delay close to the lower bound.

As seen in Figs. 4, 5, 6 and 7, there is not significant difference
in both throughput and delay characteristics between TA/M-BF(1) and TA/M-
TF(2). Since that TA/M-BF(l) only requires something/nothing binary
.feedback in mini-slot and that TA/M-BF(1l) is less complex than TA/M-

TF(2), we may conclude that TA/M-BF(1l) is the more practical from an

implementation view point.

=22~




6. Conclusions

In this paper, we have studied two kinds of free access tree
algorithms with mini-slots. One (i.e., TA/M-BF) assumed that the binary
feedback was available in a mini-slot, and the other (i.e., TA/M-TF)
assumed that the ternary feedback was available. For both TA/M-BF and
TA/M-TF, our analysis provides the following three performance measures:

(1) the maximum throughput,

(2) the upper bound of throughput, and

t3) the lower bound of the average transmission delay.

We also presented simulation results of the average transmission delay.

As explained in section 3, the lower bound of the avef;ge
transmission delay obtained in this paper for TA/M-BF énd TA/M-T? is also
the lower bound of the average delay in the whole class of free access
algorithms. There is not significant difference in performance between
TA/M-BF and TA/M-TF, and both algorithms give a practical way to achieve
throughput and delay performance very close to the best of the whole

class of the free access algorithms.
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Appendix-A Derivation of Eq.(5)

Eq.(4) can be rewritten as

1.k-1 k-1
M = 1+k(1- 3) p(J)+6 k(1- ) (m-1) £ M.p(J)

i=0

k . .
QT (- é)k”“<1>“ 2 p(im g - ><1—-—)“‘1c§>lmi+j).
Nn=

=1ma-&kle Mﬁmku—%k%wnszU)

j>0 320
. k
. k 1.k-n,1.n n-i,1.1i
+Qmj§6p(3){nfo(n)(1 & <Q> z G B(1- 3 @, )
{mu-ﬂ+m1mu—%kH2Mpu)
j>0 J
—k(l—-l)k -1

p(J).
_Q 1+J
Let us define the following:

1 k-n l.n 1.n-i,1.1
F—nEO( )(1 (Q) Z ( )(1- o ( ) M1+j-
Since that (ﬁ)(g)=(ﬁ:1)(i), F becomes

or ot EHda- Hra- Hrio it
=5 e Q m m Q@ Mi+

k k-i
1.k~-i-h 1,1,h i ,
1§0< My 2 ¢Ha- HINA- Dt (hen-t)

k
AP R A

Finally, substituting Eq.(A.2) into Eq.(A.1l), we obtain Eq.(5):

k -1
M= 1+ 1 £ )( )1

i
M. .p(j
j>0 i=0 * 1+JP(J)

k-
(1- —735)

1.k-1

-(Qm(1- Q) “4(1- 8p) (m-1)k(1- ™ 7} L Mjp(j)- (k>2)

320

26—

(A.1) "

(A.2)




Appendix-B Derivation of Eq.(9)
By multiplying both sides of Eq.(5) by zk/k! and taking sum of both

sides over k>0, we have

k k k . .k
z Mk %T =7 %— T T I (Iic)al-'l(l-a)k-1 ﬁ— p(J)
k>0 © %7 k0T kp2 i=0 30
-1, Lk 1,.k-1,2
- 5 (a7h (1= 418 (@-Dk(1- TN T Mp(D). (B.1)
k>2 j20
The second term of the right hand side in Eq.(B.l) becomes
k k
k-i z
rLr( K)al (1-a) 7 M. ()
k>2 =0 j>0 * kl 14
k k
k, i-1 k-1 \
=3 I 3 (Da (- I M p(d)
k>0 i=0 >0 CoH

- I {a” (l-a)M AM }zp(J) - Tal p(J)
>0 320

Let F denote the first term in the right hand side of the above equation.

Then, we have

-1 k k-1 oo
Fra I I I —TTE_ITT(az) {(1-a)z) Mi+‘ T e
k>0 i=0 i>0" I
el &y (Hyaphd ety 1 -
=2 i (k-1)! i+ (T+)!

k>0 i=0 3>0

n , . h :
=a—1~2 . (2)(az)lxn—l g {(d-a)z) y 1 -2

! !
n>0 i=0 hyo non

. n
-1 5 ez—()\+az) Mn (\+az) )

=3 n'
n>0 )

k

Thus, from the definition of M (z)= ¢ Mk ETe z’ F becomes
k>0
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- *
F=a 1ezM (Maz).

Therefore, we can rewrite Eq.(B.l) as
- *
M(z)=ez+a 1ezM (Maz)
- - *
-a 1{ez(1 1/Q)-Z(l- %)-I}M (A)

ca (1) (1= HZEIHO - b )

- * -y =1.%
-a 1(1—a)zM (A)—zM(l)(A)e Aa 1M \).
Multiplying the above equation by e—z, we have, from the definition of
* - Lk
M (1)(K)=M(1)(A)e A—M (A),

La MO0 [- %e-z-e-Z/Q]+M*(1)(x)(—ze_z).
. L (TA/M-BF(m))
M (z)-a M (Maz)= 1% -z 1.z ~2/Q
1+4a” M (M) [-aze -((1-'5)6 +l}e ]

MOy (ze™?).  (TA/M-TF(m))
Thus, defining the functions £(z) and g(z) as follows:
- %e-z_e‘Z/Q (TA/M-BF(m))
£(z)= { -z 1.z -z/Q
-aze —{(1—‘6)6 +l}e , (TA/M-TF(m))

g(z)=-ze_z,

we obtain Eq.(9):

M*(z)—a_lM*(A+az)=1+a—1M*(l)f(z)+M*(1)(k)g(z).
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Appendix-C Derivation of Eq.(11)
For a function £ a_i (2)(0&1](2)), we define the following func-
i>0
tions:

Y4 R .
@(1)(W(-):Z)= S g a—lw(z)(oﬁl}(z))dz,
0 i>0
Z
o(u(.);2)= S o (u(.):2)dz.
0

The following results were obtained in [MATH 85] (see [MATH 85] for
the details). First, the functions defined above are given by
0Dy (i)= 2 ¥t lzn- ook,
1—
o( w(-):z>=;§0a‘i{ b ot l@n- v oltlon-atz y Pty
: i

Note that the function g&l](z) satisfies the following three equations:

lim ogi](z)= T%E'
i—pw

Next, defining

.
H= 13

we have

oDy (aiw= 2 1 s ok oy~ v o0

i
1 1
- o Pon- o).
Thus, the integral of Eq.(10) is expressed in terms of Cﬁl)(w(.);z)
as follows (i.e., Eq.(1l1)):

M D zy=a~ (0 oD ey D o g(L)s2).
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Appendix-D Derivation of Eq.(21)
Equation (5) for TA/M-TF(m) is
k . .
M= 1+ 5 % (?)al—l(l—a)k-lMi+jp(j)
30 i=0
1.k- .
—(am(1- H*k(n-1)(1- HN 1 Mp(H). (k2) (D.1)
Q Q 50 3
First, we rewrite Eq.(D.l) to -

k ok i-1,. \k-i
Mk= 1+ I (i)a (1-a) Mi+jp(j)
>0 i=2
- k. .
+ I (" (1-a) M p(3)
i20
k, O k-1 N
+z (1)3 (1—6) M1+jP(J)
320 ,
1.k 1.k- . ‘
~(Qm(1- H*+e(m-1) (1= P T Mpp(a). (0.2)
. : J
320
Let QAgo to infinity in Eq.(D.2). Then, the second term approaches zero

and the fourth term approaches k I M1+jp(j). Let R denote the sum of the

320
third and fifth terms; R is given by
_ Siom(Le —Ly%0m(1- Ly¥ a1y (1- bkl
R‘jEOMjP(J)[Qm(l Qm) Qm(l Q) k(m 1)(1 Q) ]'
The term in the brackets [ ] becomes
k k k-1
k i ky, Lyi, .~ k-1,, 1.1
I 2 (- ) - L (- kel B (TG
- queane(- oyeam 5 (- Lot
Qm j=2 1 Qm
—(Quadui(- Bya0m 7 (9= BY)
SR
S k-1 .
-(k(m-1)+k(m-1) % <k;1><-‘%>1
i=1
k . k , k-1 ,
_ ky, 1 yi-1 ky, 1yi-1,. k-1y, 1.1
- TOC R T LOE T D E EDEY
Thus, limQ__>“B=O. Therefore, we obtain
lim M, =1+ k Z M, .p(3).
Q—>w 0 1+
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Appendix-E Derivﬁtion of Eq.(22)

Using Eq.(8), Eq.(21) becomes

Ml D )e™  (02) (E.1)
=1,

My=t)

By multiplying Eq.(E.l) by zk/k! and taking the sum of both sides over
k>0, we have

M(z)=e%+2(e-1) (1 D )17 (1)) (E.2)
Multiplying Eq.(E.2) by e Z yields

M (2)=1+2(1-e 2 (0 D oo o). | (E.3)
Substituting z=) into Eq.(E.3), we have

W D o™ o [—— 1] - —2—. (E.4)

1 1
A(1-eM) A(1-e™d)

Furthermore, taking the derivative of Eq.(E.3) and substituting z=A into
the resulting equation, we obtain
* . *
M D )al—— -1 (). (E.5)
(1-N)e
Substituting Eq.(E.5) into Eq.(E.2), we have
z
- *
M(z)=e®+ ZE=Ll (). (E.6)
(1-2e
*
From Eqs.(E.4) and (E.5), M (XA) becomes
-\
* -
(= d=he (E.7)
e A
Substithtidg Eq.(E.7) into Eq.(E.6), we get

z
M(z)=e%+ 210
e M A
By expanding the exponential function into power series, we have
k k
M 2B e —l

! -
ok! A 12
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- k
Noting that M(z)= L Mk %T and equating the coefficients of zk/k! of both
k>0 ’
sides of the above equation, we finally obtain
M =14 —S (k>2),
e =X
MO=M1=1.
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Table 1

S(Q,m) in FA Q-ary TA/M-BF(m)

Q s(Q,1) 8(Q,2) 8(Q,3) S(Q,4)
2 0.37682 0.42912 0.40600 0.37999
3 0.45555 0.44241 0.40517 0.37402
4 0.48848 0,44787 0.40455 0.37118
5 0.50646 0.45084 0.40414 0.36953
6 0.51778 0.45269 0.40385 0.36845
7 0.52554 0.45396 0.40364 0.36769
8 0.53120 0.45489 0.40348 0.36713
9 0.53551 0.45559 0.40335 0.36669
10 0.53890 0.45614 0.40325 0.36635
11 0.54163 0.45659 0.40317 0.36607
12 0.54388 0.45695 0.40309 0.36583
13 0.54576 0.45726 0.40303 0.36563
14 0.54737 0.45752 0.40298 0.36547
15 0.54875 0.45775 0.40294 0.36532
16 0.54995 0.45794 0.40290 0.36519
17 0.55100 0.45811 0.40286 0.36508
18 0.55193 0.45826 0.40283 0.36498
19 0.55276 0.45840 0.40280 0.36489
20 0.55351 0.45852 0.40278 0.36481
o 0.56714 0.46073 0.40229 0.36332




Table 2

S(Q,m) in FA Q-ary TA/M-TF(m)

Q S(Q,1) 8(Q,2) S(Q,3) 5(Q,4)
2 0.37682 0.47105 0.47258 0.46055
3 0.45555 0.50377 0.49996 0.48798
4 0.48848 0.51978 0.51488 0.5039%
5 0.50646 0.52931 0.52432 0.51446
6 0.51778 0.53564 0.53085 0.52195
7 0.52554 0.54015 0.53564 0.52755
8 0.53120 0.54353 0.53932 0.53191
9 0.53551 0.54616 0,54222 0.53540 .
10 0.53890 0.54826 0.54457 0.53826
11 0.54163 0.54998 0.54652 0.54065
12 0.54388 0.55141 0.54815 0.54267
13 0.54576 0.55262 0.54955 0.54440
14 0.54737 0.55366 0.55075 0.54590
15 0.54875 0.55456 0.55180 0.54722
16 0.54995 0.55535 0.55273 0.54838
17 0.55100 0.55604 0.55354 0.54941
18 0.55193 0.55666 0.55427 0.55034
19 0.55276 0.55721 0.55493 0.55117
20 0.55351 0.55771 0.55552 0.55193

0.56714
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Figure 4 S(Q,m) and its upper bound

in FA TA/M-BF(1) and TA/M-TF(2)
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Table 3

5(Q,m) in FA TA/M-BF(1l) and TA/M-TF(2) (h=0.001)

TA/M-BF(1) TA/M-TF(2)

Q

2 0.37607 0.47011
3 0.45419 0.50226
4 0.48653 0.51771
5 0.50394 0.52668
6 0.51469 0.53245
7 0.52189 0.53640
8 0.52698 0.53922
9 0.53073 0.54129
10 0.53356 0.54283
11 0.53574 0.54400
12 0.53743 0.54487
13 0.53876 0.54553
14 0.53981 0.54602
15 0.54064 0.54637
16 0.54129 0.54660
17 0.54179 0.54675
18 0.54217 0.54682
19

20

0.54245 0.54682

0.54266 0.54678
21 0.54278 0.54668
22 0.54284 0.54654
23 0.54285 0.54637
24 0.54281 0.54617
25 0.54274 0.54594
26 0.54263 0.54569

27 0.54248 0.54542
28 0.54232 0.54514
29 0.54212 0.54483
30 0.54190 0.54452




Table 4

R
{

Optimum values of Q and 5(Q,,,m)
in FA TA/M-BF(1) and TA/M-TB(2)
TA/M-BF(1) TA/M-TF(2)

h Qopt S(Qopt91) Qopt S(Qopt’z)
0.001 23 0.54285 19  0.54682
0.002 16 0.53290 13 0.53862
0.003 14 0.52531 11  0.53241
0.004 12 0.51897 9 0.52718
0.005 11 0.51339 9 0.52264
0.006 10 0.50840 8 0.51864
0.007 9 0.50377 7 0.51492
0.008 9 0.49954 7 0.51151
0.009 8 0.49552 6 0.50820
0.010 8 0.49185 6 0.50532
0.011 8 0.48824 6 0.50248
0.012 7 0.48482 6 0.49966
0.013 7 0.48170 5 0.49700
0.014 7 0.47863 5 0.49468
0.015 7 0.47560 5 0.49238
0.016 7 0.47261 5 0.49010
0.017 6 0.46985 5 0.48784
0.018 6 0.46731 5 0.48561
0.019 6 0.46479 5 0.48339
0.020 6 0.46230 4 0.48128
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Figure 5 Average transmission delay of

FA TA/M-BF(1) (h=0)
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Figure 6 Average transmission delay of

FA TA/M-TF(2) (h=0)
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Figure 7 Average transmission delay of

FA TA/M-BF(1) and TA/M-TF(2) (h=0.001)
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