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Numerically Efficient Fourier-Based Technique for Calculating
Error Probabilities with Intersymbol Interference

Michael Reuter

Abstract—We propose a numerically efficient technique for
calculating the probability of symbol error for arbitrary coherent
modulation schemes in the presence of intersymbol interference
(ISI) and additive noise. The probability of error is formulated
in terms of an inverse Fourier transform of the windowed
characteristic function of the random variable representing the
interfering symbols and the noise process. The integral is evalu-
ated numerically using the sampling theorem.

Index Terms—Intersymbol interference, probability of error.

I. INTRODUCTION

T HE EFFECTS of intersymbol interference (ISI) can de-
grade the probability of error ( ) performance of digital

receivers [1]. One technique for determining the performance
of the receiver is to evaluate conditioned on a particular
sequence of ISI symbols and then average over all possible
sequences. This exact technique can be prohibitively expensive
computationally, and so a considerable amount of work has
been done on numerically efficient methods for evaluating or
bounding . A summary of many of these techniques is given
in [2].

Although recent advances are numerically accurate and
easy to implement in computer-aided design (CAD) tools
[2]–[5], they have dealt with one-dimensional (1-D) or real
coherent signaling. While the algorithms presented in [6] and
[7] are applicable to two-dimensional (2-D) formats, they
have only been applied to -ary phase-shift keying ( -
PSK) and -ary quadrature amplitude modulation (-QAM),
respectively.

We present a general method which can be applied to
arbitrary 1- or 2-D coherent signaling formats. We demonstrate
that the probability of correctly decoding a particular symbol is
the inverse Fourier transform of the windowed characteristic
function of the random variable representing the interfering
symbols and the additive noise component evaluated at a point
corresponding to the decision region of the symbol. We use
the sampling theorem and appropriate spectral windowing and
truncation to evaluate the integral numerically.
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II. PROBLEM STATEMENT AND GENERAL SOLUTION

Consider the sampled outputof a coherent receiver. In the
presence of ISI and additive noise,is given by

(1)

The ’s represent the transmitted data sequence in which each
element is one of -possible equally probable symbols, the

’s are the ISI coefficients, is the current symbol to be
detected, and is the noise. We assume a finite number
of symbols before and after . The ’s are assumed to be
mutually independent and independent of the noise. In general,
all components of the equation are complex.

The probability of making a correct decision given that the
symbol is sent is

(2)

where is the decision region in the complex plane corre-
sponding to . The probability of error is given by

(3)

The validity of (2) is predicated on the assumption that the
variate can be directly applied to the decision device to
achieve the desired error performance. In practice, if the effects
of ISI and the coefficient are too severe, the decision region

is modified or equalization is used to mitigate these effects.
The exact technique for calculating evaluates the prob-

ability of a correct decision by conditioning on a particular
sequence of interfering symbols. The resulting variate has the
same distribution as the noise. Then is determined by
averaging over all possible interference sequences. However,
the computational cost can be prohibitively large because there
are possible interference sequences.

In the proposed method, we incorporate ISI more efficiently
by working on the characteristic function of the variate
conditioned only on . Writing in terms of its
in-phase and quadrature components as , we
denote the bivariate characteristic function ofas .
Conditioning on , we get

(4)
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where

(5)

is the characteristic function of the variate representing the
interfering symbols, and is the characteristic func-
tion of the noise process. The probability density function of

is given as

(6)

Then, because

(7)

and assuming that is absolutely integrable, we
use (6) in (7) and interchange the order of integration to
get , shown in (8) at the bottom of the page, where

is the Fourier transform of the decision region
. This equation is an inverse Fourier transform evaluated

at .
It is instructive to explicitly state the equivalence of the

probability domain, indexed by , and the spectral
domain, indexed by , with the following relations:

(9)

or equivalently

(10)

where and are the probability den-
sity functions of the random variables representing the ISI
terms and the noise, respectively, anddenotes convolution.

is a 2-D sequence of Dirac delta functions in which
each of the components corresponds to a particular
realization of ISI symbols. is equal to evaluated
at and .

Several established methods exist for computing Fourier
integrals [8]. The basis of the proposed technique is to evaluate
(8) numerically by spectrally sampling the windowed char-
acteristic function in (9). We use the sampling theorem and
the relations given by (9) and (10) to determine the adequate
resolution. By sampling with a periodic rectangular grid with
spectral resolution , we get Poisson’s

sum [9]

(11)

must be large enough so that when the left-hand side
(LHS) of this equation is evaluated for and

, the error due to aliasing has an acceptable
value.

However, (11) is not defined for some decision regions. This
can be seen from (10). Defining the durationof a function

as [10]

(12)

we can see that although the convolution of the probability
density functions produces a function
of finite duration in the plane, the decision region

may be of infinite duration in the plane,
resulting in also being of infinite duration. Then the
spectral term in (9) cannot be adequately sampled. To solve
this problem, we simply limit the duration of the decision
region by multiplying with an ideal brick-wall
window, producing a modified decision region with
Fourier transform .

Finally, we truncate the spectral sum in (11). Then, the
calculated probability of correctly detecting theth symbol is

(13)

where and error.
The total numerical error in this approach can be written as

. The first component, , is the result
of using a windowed or modified decision region
and can be written as

(14)

evaluated at and . The second,
, is due to aliasing and is determined by applying

(8)
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to (10) and using (11), given by

(15)

The third, , is due to spectral truncation and can be bounded
as shown in (16) at the bottom of the page. The proper win-
dowing, spectral sampling resolution, and spectral truncation
must be determined so that .

III. PROBABILITY OF ERROR FORQPSK

To demonstrate the method, we present the results for
QPSK. Let the ’s in (1) represent symbols in which the in-
phase and quadrature components take valuesand with
equal probability ( ). The characteristic function of
the th interference component is given by

(17)

We assume the in-phase and quadrature components of the
noise are independent and identically distributed zero-mean
Gaussian processes so that

(18)

From (2), is given by

(19)

where is the first quadrant in the complex plane,
and we have assumed that . We use the
modified decision region

elsewhere
(20)

with Fourier transform

(21)

where .

Next, we define the term

(22)

and the user-specified parameter

(23)

where . Also, the
spectral truncation index is written as a function of the
variable as

(24)

where denotes the least integer greater than or equal to.
We can use (14)–(16) to show that if is bounded as

, is determined from (23), and and are
chosen such that

(25)

then the total numerical error can be bounded as

(26)

Then, writing the probability of error as , the
calculated probability of symbol error for QPSK is given by
(27), shown at the bottom of the page, where
and . So must be chosen such that .

We can use these results to determine the probability of error
for binary phase-shift keying (BPSK) by letting in
(1). Then there is no crosstalk and the in-phase and quadrature
components are statistically independent. The probability of bit
error for BPSK can then be written as .
Straightforward manipulations of (27) result in the calculated
probability of bit error, which is identical in form to Beaulieu’s
equation (41a) in [3].

IV. NUMERICAL EXAMPLES

We calculate the probability of error for QPSK with the
pulse

(28)

(16)

(27)
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TABLE I
QPSK ERROR PROBABILITIES FOR t=TS = 0:1,
SNR = 14:98235 dB, r = 0, AND L = 7:2

TABLE II
QPSK ERROR PROBABILITIES FOR t=TS = 0:1,

SNR = 14:98235 dB, r = 0:25, AND L = 7:2

where and . The factor induces
crosstalk between the in-phase and quadrature channels. The
additive noise is Gaussian with SNR defined as

to stay consistent with [2], [3], and
. The parameters , and are chosen so that

for all cases.
Table I contains the calculated probability of symbol error

for and for various . The relative error, which
is defined as [11], is also tabulated for

to , along with the estimated bound on the relative
error given by . The exact value is calculated by
averaging over all permutations of the interfering symbols. If
the relative error is approximately 10, then and agree
to about significant figures [11]. It can be seen that the bound

for this example is fairly loose because we are
afforded approximately two to five more significant figures in
practice than are indicated by the bound. In this example, the
probability of bit error for BPSK is . Then
selected terms in Table I agree with the corresponding terms in
Table III of [3]. Table II contains the results for . The
degradation in performance due to crosstalk is also evident in
Fig. 1 where is plotted versus with .

V. CONCLUSION

We have presented a simple, numerically efficient technique
for calculating the probability of error with ISI and additive
noise for arbitrary 2-D coherent modulation formats. The
method requires the Fourier transform of the decision regions
of the modulation scheme and the characteristic functions of
the symbol variate and additive noise process. This technique
is a 2-D generalization of Beaulieu’s real-signaling method

Fig. 1. QPSKPEversus crosstalk factorr.

[3]. Because this approach has been shown to make certain
analytical problems tractable, such as determining the effect
of co-channel interference with signal fading [12], and signal
jitter with ISI [13] on receiver performance, the method
presented in this paper can extend these results to arbitrary
modulation formats.
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