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Numerically Efficient Fourier-Based Technique for Calculating
Error Probabilities with Intersymbol Interference

Michael Reuter

Abstract—We propose a numerically efficient technique for II. PROBLEM STATEMENT AND GENERAL SOLUTION

calculating the probability of symbol error for arbitrary coherent . .
modulation schemes in the presence of intersymbol interference Consider the sampled outpybf a coherent receiver. In the

(IS1) and additive noise. The probability of error is formulated — presence of ISI and additive noisg,s given by
in terms of an inverse Fourier transform of the windowed

characteristic function of the random variable representing the N
interfering symbols and the noise process. The integral is evalu- Y= Z bray + boag + n. (1)
ated numerically using the sampling theorem. e N

. . k#£0
Index Terms—intersymbol interference, probability of error. *

Theb;'s represent the transmitted data sequence in which each
element is one of\/-possible equally probable symbols, the

ax's are the ISI coefficients)y is the current symbol to be

T HE EFFECTS of intersymbol interference (ISI) can deggtected, and; is the noise. We assume a finite number
grade the probability of errot) performance of digital ¢ sympols before and aftdr,. The by's are assumed to be
receivers [1]. One technique for determining the performangg v ,a1ly independent and independent of the noise. In general,
of the receiver is to evaluat®r conditioned on a particular all components of the equation are complex.

sequence of ISI symbols and then average over all possiblerpg pronaility of making a correct decision given that the
sequences. This exact technique can be prohibitively expenSJWe symbol s; is sent is

computationally, and so a considerable amount of work has !

I. INTRODUCTION

been done on numerically efficient methods for evaluating or Pcj = Pr(y € Dj|bo = s;) (2)
boundingPg. A summary of many of these techniques is given
in [2]. where D; is the decision region in the complex plane corre-

Although recent advances are numerically accurate asponding tos;. The probability of error is given by
easy to implement in computer-aided design (CAD) tools
[2]-[5], they have dealt with one-dimensional (1-D) or real 1 &
coherent signaling. While the algorithms presented in [6] and Pe=1- M ZPCJ" (3)
[7] are applicable to two-dimensional (2-D) formats, they =t
have only been applied td/-ary phase-shift keyingM- The validity of (2) is predicated on the assumption that the
PSK) andi/-ary quadrature amplitude modulatiab/¢QAM),  variate y can be directly applied to the decision device to
respectively. achieve the desired error performance. In practice, if the effects

We present a general method which can be applied ¢p|S| and the coefficient, are too severe, the decision region
arbitrary 1- or 2-D coherent signaling formats. We demonstrafg; js modified or equalization is used to mitigate these effects.
that the probability of correctly decoding a particular symbol is The exact technique for calculatig:; evaluates the prob-
the inverse Fourier transform of the windowed Characteris%i“ty of a correct decision by Conditionir@ on a particu'ar
function of the random variable representing the interferingequence of interfering symbols. The resulting variate has the
symbols and the additive noise component evaluated at a pgjaine distribution as the noise. Thék;,; is determined by
corresponding to the decision region of the symbol. We uggeraging over all possible interference sequences. However,
the sampling theorem and appropriate spectral windowing afié computational cost can be prohibitively large because there
truncation to evaluate the integral numerically. are M2V possible interference sequences.

In the proposed method, we incorporate ISI more efficiently

, . bé/ working on the characteristic function of the variage
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where sum [9]
N o> o>
hisi(wr,wq) = | [ hisin(wr, wq) (5) Z Z Pyt = muT'tq = moT)
mQ=—00 mp=—o0
k=—N
#0 1 = 27, 27
is the characteristic function of the variate representing the lg=—00 li=—00
interfering symbols, anéix(wr, wq) is the characteristic func- o 2 o 91
tion of the noise process. The probability density function of -h151<711, TZQ) hw <71h TZQ)
y IS given as 'Gi(llt1+thQ)2w/T' (11)
fr(ynuq) = T must be large enough so that when the left-hand side
1 Rl e T (LHS) of this equation is evaluated fef = Re{s;a0} and
(wryrtwquq) J
(27)2 /_Oo /_Oo hor (wn wa)e dwrdwq. tq = Im{s;ae}, the error due to aliasing has an acceptable
(6) value.
However, (11) is not defined for some decision regions. This
Then, because can be seen from (10). Defining the duratidnof a function

f(tI,tQ) as [10]

di= [ [ 1aPloPirtto)dude (12)

and assuming thaby (wr,wq) is absolutely integrable, we we can see that although the convolution of the probability
use (6) in (7) and interchange the order of integration ensity functionsfisi(t1, tq) * fx(tr, tq) produces a function
get I, shown in (8) at the bottom of the page, whergf finite duration in the(tr,tq) plane, the decision region
K;(wr,wq) is the Fourier transform of the decision regionp;(t;,¢q) may be of infinite duration in thétr, tq) plane,
D;. This equation is an inverse Fourier transform evaluategsulting inP;(t1, q) also being of infinite duration. Then the
at (Re{sjao},Im{s;ao}). spectral term in (9) cannot be adequately sampled. To solve
It is instructive to explicitly state the equivalence of thehis problem, we simply limit the duration of the decision
probability domain indexed by (i1,tq), and thespectral region by multiplying D;(t1,tq) with an ideal brick-wall
domain indexed by(wr, wq), with the following relations:  window, producing a modified decision regidh (¢, tq ) with
Fourier transformf(j (wr,wq).
Py(tr, tq) =F K (wr, wo)hist(wr, wo)hn(wr,wq)}  (9) Finally, we truncate the spectral sum in (11). Then, the
calculated probability of correctly detecting thth symbol is

PCjI//D_fY(yhyQ)dyIdyQ (7)

or equivalently

Py(t1,tq) = D;(t1,tq) * fisi(tr, tq) * fn(t, tq) (10) r r N
! ° ! ° ° ° % Z Z Kj (wlI, le) H hISIk(WZIa le)
where fisi(tr,tq) and fx(ti,tq) are the probability den- lg=—PlLi=-P k?;ON
sity functions of the random variables representing the ISI i(wlaRe(s a0} +elqlm{s;an})
terms and the noise, respectively, andenotes convolution. - hx(wln, wlg)eiTetss s Teiaimis e (13)

Jisi(tr, tq)isa EAD sequence of Dirac delta functions in V_VhiCtherew — 27/T and Po; = ﬁCj + error.

eac_h OT the M componer!ts corresponds to a particular The total numerical error in this approach can be written as

realization of ISI symbolsPc; is equal toF; (t1, tq) evaluated | = ¢1 — ¢2 + cs. The first components;, is the result

attr = Re{sjao} andtq = Im{s;ao}. _ of using a windowed or modified decision regid (¢, tq)
Several established methods exist for computing Foungﬁd can be written as

integrals [8]. The basis of the proposed technigue is to evaluate R

(8) numerically by spectrally sampling the windowed char- ¢; = (Dj(tl,tQ) - Dj(tI,tQ)) * fisi(t, tq) * fa(tn tq)

acteristic function in (9). We use the sampling theorem and (14)

the relations given by (9) and (10) to determine the adequate

resolution. By sampling with a periodic rectangular grid witlevaluated at; = agr — aoq andiq = aor + aog. The second,

spectral resolutiomw; = Awq = 27 /T, we get Poisson’s e, is due to aliasing and is determined by applyﬁgtl,tQ)

1 =~ =~ i(wiRe{s;a wolm{s;a
Pej = (2r)2 /_oo /_oo K (w1, wq)hisi(wr, wo)hn (wr, wg el (Retesaodtwalntsianl) gy, dug (8)
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to (10) and using (11), given by Next, we define the term
~ N
€2 = Pi(tr — miT,tqg — moT). 15
2 >.>.,  Pitti—militq—mol). (15) v= 3 (aul +largl) (22)
(m1,mq) & (0,0) k=—N

The third,es, is due to spectral truncation and can be boundé@id the user-specified parameter

as shown in (16) at the bottom of the page. The proper win- _

dowing, spectral sampling resolution, and spectral truncation ¢=((-T/2+7)/0) (23)

must be determined so thatror| < Fc;,. where &(z) = (v2r)"Y2 |7 exp (—y2/2)dy. Also, the
spectral truncation indexX’ is written as a function of the
variable . as

L
[ll. PROBABILITY OF ERROR FORQPSK P [_T (24)

To demonstrate the method, we present the results for 2o

QPSK. Let theb,'s in (1) represent symbols in which the in-where[z] denotes the least integer greater than or equal to
phase and quadrature components take vakiesnd—1 with We can use (14)—(16) to show that d4f is bounded as
equal probability &, = £1=1). The characteristic function of ¢ < ®(-1), T is determined from (23), and® and L are
the kth interference componelit: # 0) is given by chosen such that

hISIk(wI, wQ) :COS(wICLkI—i-(UQCLkQ) COS(wICLkQ - (UQCLM). 4<3 + %) (I)(ZL) S € (25)
17

] then the total numerical error can be bounded as
We assume the in-phase and quadrature components of the

noise are independent and identically distributed zero-mean lerror| < 30e. (26)

Gaussian processes so that - .
Then, writing the probability of error aBg = 1 — Pc1, the

hx(wrwq) = exp (—(wf +wg)o”/2). (18) calculated probability of symbol error for QPSK is given by
o (27), shown at the bottom of the page, whéke= Pg —error
From (2), Pcy is given by andw = 27/T. Soe must be chosen such that< Py.

_ _ _ We can use these results to determine the probability of error

Per = Pr(y € Datn, 2o)lbor = 1,bog = 1) (19 for binary phase-shift keying (BPSK) by lettifigi{a;} = 0in
where D (t1,tq) is the first quadrant in the complex plane(1). Then there is no crosstalk and the in-phase and quadrature
and we have assumed thatag € D;(t1,tg). We use the components are statistically independent. The probability of bit
modified decision region error for BPSK can then be written d% = 1 — /1 — Fg.

R 1 0 < titq < T)2 Straightforward manipulations of (27) result in the calculated

Di(tr,tq) = { ’ ="hQ = (20) probability of bit error, which is identical in form to Beaulieu’s

0 elsewhere . .
’ equation (41a) in [3].

with Fourier transform

- 2 ) IV. NUMERICAL EXAMPLES
Ki(wr,wq) = T—sinc<£)sine<£>6_z(‘”+“@w4 . ,
4 4m 4m We calculate the probability of error for QPSK with the
(21) pulse
wheresinc(z) = sinnz /7. a(t) = (1 +ir)sinc(t/Ts) (28)
1 ~
lesl < 7 > | K (wln, wlq)|[hrst(wln, wlq) | in(wli, wiq)|. (16)
N——

(l1,lq) € [-P:P,—P:P]

r r N

~ 1 ) I\ . l
E=1-— Z Z Z SlnC<§I>SlnC<?Q> H hISIk(wh,le)hN(wh,le)
lq=—P l1=-r k=—N
k30
I1,lqodd

- cos (wli(aor — aog — 1'/4) + wlg(aor + aog — T'/4)) 27)
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TABLE | 10
QPSK ERROR PROBABILITIES FOR t/Ts = 0.1,
SNR = 14.98235 dB,r = 0, AND L = 7.2

N T Py Relative Error Relative Error Bound
1 4.8111003 2.6654431x107° 6.2562066%107" 3.7617237x107°
2 5.0083197 8.8222171x107% 4.9091744x10 * 1.1335020% 10 °* 8
3 5.1396165 1.4551146x10™° 8.5758927x107° 6.8723108% 1078 e
4 5.2380412 1.9005067x107° 2.3658970x107° 5.2617547x107° w
o]
10 5.5708367 3.1407996x107° g
100 6.4594314 4.2844639x 107" >
1000 7.3636225 4.4205987x10° $
s}
>
|4
=
TABLE 1l E
QPSK ERROR PROBABILITIES FOR t/Ts = 0.1, a
SNR = 14.98235 dB, r = 0.25, AND L = 7.2 T
N T Py Relative Error Relative Error Bound
1 5.4022729 3.87650B7x10™7 6.9651912x1071° 2.5796408x 107
2 5.6487971 7.4307113x107* 4.4673608x107!! 1.3457662x 1077
3 5.8129181 9.5683016x10™* 4.6412543x10" '? 1.0451176x10 77
4 5.9350489 1.0923858x107° 1.9310245x 1072 9.1542749x 1078

.3991347x107%
.6308787x107%
.6563448x 10~

[

.3519433
.4626867
.5929256

-

100
1000

~
-

@
-

whereay, = a(t — kTs) andt/Ts = 0.1. Ther factor induces
crosstalk between the in-phase and quadrature channels.
additive noise is Gaussian with SNR defined &SR =
|Re{a(0)}|?/o? to stay consistent with [2], [3], anfiNR =
14.98235. The parameters, 7', and L are chosen so that
lerror| < 1071 for all cases.

Table | contains the calculated probability of symbol error
f’E for » = 0 and for variousN. The relative error, which
is defined as|(Pgz — Pg)/Pg| [11], is also tabulated for [
N =1to 4, along with the estimated bound on the relative[z]
error given byl0~1°/Pg. The exact value™; is calculated by
averaging over all permutations of the inteArfering symbols. If[3]
the relative error is approximately 10, thenPgr and Pr agree
to aboutn significant figures [11]. It can be seen that the boun%
lerror| < 10710 for this example is fairly loose because we are
afforded approximately two to five more significant figures in
practice than are indicated by the bound. In this example, t
probability of bit error for BPSK isPs = 1—+/1 — Pg. Then
selected terms in Table | agree with the corresponding terms A
Table Il of [3]. Table Il contains the results fer= 0.25. The
degradation in performance due to crosstalk is also evident il
Fig. 1 wherePs is plotted versus with N = 100. (8]

9
V. CONCLUSION (%]

We have presented a simple, numerically efficient techniqﬁlg]
for calculating the probability of error with ISI and additive[11]
noise for arbitrary 2-D coherent modulation formats. Th 2
method requires the Fourier transform of the decision regions
of the modulation scheme and the characteristic functions of
the symbol variate and additive noise process. This techniq%g
is a 2-D generalization of Beaulieu’'s real-signaling method
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Fig. 1. QPSKﬁEversus crosstalk factor.

[3]. Because this approach has been shown to make certain

alytical problems tractable, such as determining the effect
iggo—channel interference with signal fading [12], and signal
jitter with ISI [13] on receiver performance, the method
presented in this paper can extend these results to arbitrary
modulation formats.
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