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Variable Dimension VQ Encoding and Codebook Design
Anamitra Makur and K. P. Subbalakshmi

Abstract—A variable dimension vector quantizer (VDVQ) has g samples
codewords of unequal dimensions. Here, a trellis-based sequential
optimal VDVQ encoding algorithm is proposed. Also, a VDVQ
codebook design algorithm based on splitting a node with equal

or reduced dimensions is proposed that does not require any 0
codebook parameter to be prespecified unlike known schemes.
The VDVQ system is shown to outperform a few known VQ g
systems for AR(1) sources.
. . . 2
Index Terms— Source coding, variable-rate coding, vector g
guantization.
. INTRODUCTION (kmaz — 9)

CONVENTIONAL vector quantizer (VQ) [1] uses aFig- 1. One stage of the encoding trellis.
fixed dimension for every codeword (hence, every input

vector). On the other hand, all codewords of a variablgiSE) andR is the total rate (bits). We present a sequential
dimension VQ (VDVQ) do not have the same dimension. fye|ayed-decision) optimal VDVQ encoding algorithm using
VDVQ system may only improve the performance due to it§e viterbi trellis, or dynamic programming.

generality. Further, a VDVQ system possesses the advantages  is the greatest common divisor @,

of a variable rate coder such as better instantaneous distortion

values. g=gcd{k : k € K} (1)

Most attempts to use variable dimensions in VQ [2]-[5] aen an input sequence cannot be coded entirely unless the

limited to systems that adapt to instantaneous input statistics to . .
. ) . : number of samples is a multiple gf Consequently, we only

choose the dimension, not addressing the VDVQ encoding an . . ) ; )

need to considey samples at a time. During an intermediate

codebook design issue as a whole. Optimal VDVQ encodin . . .
: i ) : e of encoding when a multiple gfsamples are received,
should involve parsing the input sequence and nearest neighho . ; . g
ese may be parsed in the following ways: the partitions

search. Although the dictionary-based lossy coder of [6], | nsist of an integral number of vectors (complete partitions,

encodes from a variable dimension codebook (dictionary),de ree of incompleteness; lastg samples are not yet part of
does not explicitly address this issue since the encoder aimsg omp » 1asty samp yetp

.@ny vector—lt is to be com_bmed with futurg samples to form
a certain distortion threshold. This coder does not reqUirelaavte;tosra(ln?pjzr:glreet?nzimg?entz (%Zgrres;?f '|.nlgc;rtnkpleter_ye)ss
codebook design either. VDVQ coders addressing the optim%?m !{es are incomplete (degrég,., — ’) A art?%iac})(n é]f
encoding and codebook design may be found in [8]-[1 P P IréGrax — 9). b

The vector dimension in [9] is fixed, while the supervecto iefrle)aé{qtﬁé ﬁg)r(r:itz'cage( ?(')\(/eijegii Tg Izszatrggr%n of /d)e gree
dimension is variable, which necessitates optimal parsi g 9 t stage (p . max/ 9,
during encoding. and also to a partition of degree O(if+ 1)g € K. Therefore,

all possible partitions are the paths of a regular trellis, one
stage ¢ samples) of which is shown in Fig. 1.
II. TRELLIS-BASED VDVQ ENCODING Encoding consists of retaining the minimum cost path of

Given a codebook containinly codewords of varying di- each degreefy(s),d = 0,g,--+, kmax — ¢, at SOMe stage
mensions belonging to the SEt= {kuin, - -, kmax ), Optimal pf the trellis. anh pattPy(s) carries the total cost’y(s) of
VDVQ encoding achieves a parsing of the input samplé@elf except the incomplete partc, if any. In thg next s_tage, all
together with a matching of input vectors to codewords, sulfFomplete paths are updated simply by copying earlier paths:

as to minimize a cost functiod + AR between the input Py(s+1) = Py_y(s), ford=g,29,  kmax — g (2)
samples and the output samplésdenotes the total distortion
and the cost is also copied. Since a number of paths converge
Paper approved by E. Ayanoglu, the Editor for Communication Theogyt degree 0, one full search of the codebook is performed at
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00(3 + 1) = Ckm—g(s) + D(x(knl)a Crn) + Arm, (5)

where ¢,, are the codewords with dimensiokg and index
lengthsr,,, z(k) are k most recent input sample€)(,) is
the (total) distortion measure, arddenotes concatenation. At 0.8r
any stage, if the first part of all retained paths is found to
be identical, then that part is decided (corresponding indexes I
transmitted). At the end of an input sequence, the degree O w
path is decided as the optimal path. While the encoding delay 2
for this algorithm is observed to be acceptable (e.g., maximum 0.4
13 samples fok,,,. = 5), a suboptimal fixed-delay encoding
algorithm is obtained if a decision is forced (by majority) on
the past sequence that is more than a given number of samples
away.

The trellis-based VDVQ encoding proposed here is more or
efficient than the variable-to-variable VQ (VVVQ) encoding
of [8] (which is also used in [9]) in two ways. Since the
examples of [8] hagy = 1, the role ofg is not exploited,
and one full search is required for every sample. Sin€d- 2. Rate-distortion performance of VDVQ for AR(1) sourpe= 0.9.
the proposed algorithm requires one full search for every
samples, it provides an advantage when- 1. Second, the a variation of GLA, that splits one node at a time and iterates
VVVQ encoding is done by backtracking after the entire inpwin 1,2, 3,4, -- - codewords in stages, to perform even better.
sequence is obtained, essentially meaning infinite delay. Thiee proposed algorithm does just that. Each stage, however,
proposed trellis structure allows sequential encoding sincecénverges fast since only one codeword (from a converged

vbvaQ
vvva
ECVQ
PTSVQ

0.2f

bit/'sample

decision is possible for the remote past. codebook) is split. For example, fa¥ = 64, the proposed
VDVQ codebook design (63 stages) took slightly more than
[ll. SPLIT-BASED VDVQ CODEBOOK DESIGN seven times what is taken by GLA using split algorithm (six

L . - tages).
Tree growing involving splitting a node that produces El . o .
minimum distortion to rate slope [11] is extended here t The proposed codebook design approach significantly dif-

design a VDVQ codebook. Inputs to the algorithm are t &S from other known VDVQ codeboo_k designs. MOSt ex
maximum dimensio?__and the minimum dimensiok) Isting schemes segment the codebook into equal dimensional

The tree begins Withmgxsin le codeword of dimen nin: parts,.and Qesign gach Segm?m. independently. VVVQ, while
g g sk, Jollowmg this principle for the initial codebook, runs GLA on

During thejth iteration, a leaf of the tree will be split. Beside

conventional splitting, we consider splitting a codeword otpe gntlre ?OqebOOk eventually. Al O.f these schgmgs either
dimension  into two codewords of reduced dimensiohs '€auirea priori knowledge about the signal for designing the

andk — I whenlk —1> k% The children are segmentssegmemed codebooks, or require deciding some criteria (for
’ o %assification) or parameters (such as the allowed dimensions

of the parent codeword, so that the change in distortion . S

always nonpositive. A codeword may be splitir-2—2k0 . aqd t'he pumber of codevx(ords f”??"“ q!mensmn n W\aQ.)
priori using ad hoc techniques. It is intuitively more appealing

KO KO ). For each candidate split for each leaf, GLA witHo let the training sequence choose any such parameter. The

the total distortion and rate of the tree before fkieiteration. = “max = "min

ways, producing dimensior(&, k), (0, k— k2. ), -+, (k—
VBVO antoding is run until convergence. Lét and . be Proposed algorithm achieves this since the final values of
> tion and rate of the tre ) 2001 Fmax < kO and kpin > k0., as well as the number of
Let D, and R, be the resulting distortion and rate after godewords for each dimension, are decided by the training

candidate split is effected. Then this split produces a Slopesequence.
AD = M (6) IV. RESULTS AND CONCLUSIONS
AR R,—R;

The performance of the proposed VDVQ system has been
The split producing a minimum slope is accepted. The algoempared with the pruned tree-structured VQ (PTSVQ),
rithm is terminated once some termination condition (maentropy-constrained VQ (ECVQ), and VVVQ for identical
imum rate, or minimum distortion, or maximum number ofraining sequences. The cost function for the VDVQ is taken
codewords) is reached. as D (i.e., A = 0). For fair comparison with other schemes,
Like tree growing, this algorithm is greedy since, at eaabach of which uses variable-length code, the VDVQ codeword
stage, we try to pick the best alternative. However, it isidexes are entropy coded when its performance is measured
expected to perform better than GLA. While conventiongbut not during codebook design).
GLA iterates on N codewords, a TSVQ-like variation of Figs. 2 and 3 compare the rate-distortion performance of
GLA known as the split algorithm iterates @f,2!,22 ... these systems for an AR(1) source with= 0.9 and0.7 (o2 =
codewords in stages. The split algorithm is known to perfori). VDVQ outperforms all other systems in Fig. 2. Its perfor-
better than GLA in avoiding local minima. One would expeainance is only matched by VVVQ in Fig. 3, but VDVQ has
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TABLE |
1 VARIOUS PARAMETERS FOR FIGS. 2 AND 3
4 vDvaQ AR | system . dimension .codebook size . computation
o 8 4 - — 4 VVVQ | 14 min avg max [ min H.Vg max min avg max
x % ECVQ 0.9 | VDVQ | 1.10 2.09 4.00 | 1 22 43 |0.00 20.20 43.00
. - — — - PTSVQ VVVQ | 117 213 270 32 32 32 32 32 32
el ECVQ | 2 2 2 | 256 256 256 | 128 128 128
w PTSVQ | 2 2 2 1 1645 328 [0.00 3.18 4.00
g 0.7 | VDVQ [1.06 221 500 1 135 26 [0.00 13.18 26.00
04l VVVQ | 117 220 270 | 32 32 32 32 32 32
ECVQ | 2 2 2 | 128 128 128 | 64 64 64
PTSVQ | 2 2 2 1 875 174 10.00 2.74 349
0.2}
0 L
. performance may be further improved by takibg+ AR as
0 1 _ 2 3 the cost function.
bit/sample
Fig. 3. Rate-distortion performance of VDVQ for AR(1) sourpes 0.7. ACKNOWLEDGMENT
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