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Optimal Sequences for Channel Estimation Using
Discrete Fourier Transform Techniques
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Abstract—This paper addresses the problem of selecting the
optimum training sequence for channel estimation in communi-
cation systems over time-dispersive channels. By processing in
the frequency domain, a new explicit form of search criterion is
found, the gain loss factor (GLF), which minimizes the variance
of the estimation error and is easy to compute. Theoretical
upper and lower bounds on the GLF are derived. An efficient
directed search strategy and optimal sequences up to length 42
are given. These sequences are optimal only for frequency domain
estimation, not for time domain estimation.

I. INTRODUCTION

FOR burst-transmission digital communication systems,
channel estimation (CE) is required for maximum like-

lihood sequence estimation receivers [1] and noniterative
equalizers [2]. A typical data burst consists of several blocks
of user data and a predetermined training sequence (TS) which
is used to estimate the channel impulse response (CIR). This
paper addresses the problem of selecting optimal CE sequences
for frequency domain processing.

CE can be done using a Wiener filter or the discrete Fourier
transform (DFT). In general, to estimatechannel taps with
a length CE sequence, the Wiener filter needs to store
the complex filter coefficients (which can be precomputed
given the autocorrelation function of the CE sequence) and to
compute complex multiplications. Similarly, the DFT method
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TABLE I
COMPLEXITY COMPARISON

involves sending a CE sequence whose DFT is stored at
the receiver. Each bin of the -point DFT of the received
sequence is divided by the corresponding bin of the stored
DFT to give an -point vector, the inverse DFT (IDFT) of
which gives the channel estimates. Table I compares the two
methods, showing memory requirements and complexity.

Sequences with impulse-like correlation functions are suit-
able for CE (and other applications [3]), and the problem of
finding such sequences has received a great deal of attention
in the past [4]. Specifically, [5]–[9] consider CE given a
known training sequence. Following the least-squares (LS)
philosophy, [5] presents algorithms for optimal unbiased CE
with aperiodic spread spectrum signals for white or nonwhite
noise. Optimum unbiased CE given white noise is considered
in [6] following a maximum-likelihood (ML) approach. For
fast start-up CE, optimal training sequences of two-level,
three-level, and four-level symbols (nonconstant amplitude)
are reported for lengths up to 16. ML and matched-filter
CE for uplink transmission in code division multiple access
systems is considered in [7], which also gives a simplified
channel estimator using the DFT where the total number of
unknown channel taps is equal to the length of the basic
sequence. Periodic CE sequences have been studied in [8],
where a construction for some poly-phase (but not binary)
perfect autocorrelation sequences is given.

In [9], LS filtering (Wiener filtering) for CE is considered
and optimal binary sequences up to length 22 are found by
exhaustive computer search. The search criterion is

(dB) (1)

where is the trace of a matrix and is the
correlation matrix of the training sequence. The resulting
sequences offer the best possible signal-to-estimation-error
ratio (SER) at the output of the channel estimator.

This paper takes an approach similar to that of [9], but,
importantly, all processing occurs in the frequency domain.
This leads to an explicit expression for the search criterion,
termed the gain loss factor (GLF), which is only a function of
the power spectrum of the training sequence. A CE sequence
is defined asoptimal if it minimizes the GLF for the fre-
quency domain approach. Equivalently, an optimal sequence
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maximizes the output SER. However, sequences given in this
paper arenot optimalfor time domain estimation. In fact, they
have marginally worse performance (Section V). This paper
provides

• a frequency domain approach (i.e., using the DFT);
• bounds on the GLF;
• an optimal sequence search procedure for periodic and

nonperiodic cases.

To find optimal binary sequences of lengthfor estimating
channel tap coefficients, an exhaustive search may be

done over possible sequences. If one follows [9], this
involves computing (inverse of an matrix) for all
sequences and selecting the best one; whereas in this paper,
computing the GLF requires an -point DFT. As seen later,
the GLF is invariant under several operations. Since these
operations partition the space into equivalence classes,
the computation of the GLF for just one representative from
each class is sufficient. This approach, in conjunction with an
incremental DFT computation (see Appendix), significantly re-
duces (Table V) computational search complexity and enables
a search up to .

The training sequence can be periodic or nonperiodic and
these two cases are treated in the following two sections.
The channel output is a linear convolution, whereas DFT
estimation requires cyclic convolution. Thus, the periodic and
nonperiodic cases require DFT’s with cyclically extended
[10], [11] and zero-padded inputs, respectively. Of these two,
periodic sequences are more commonly used in practical
systems. Also, it is easier to search for optimal sequences
among periodic sequences because they have a cyclic shift
invariance property (I3, Section III-A). This property ensures
that a large fraction of codes in the search space can be
eliminated from the search. Loss factors tend to be smaller
for the periodic case (e.g., Tables IV and VI).

This paper is organized as follows. Section II introduces
the GLF, derives upper and lower bounds for it, and uses
GLF invariance transformations and a bound on the GLF of
a set of constant weight sequences to find optimal codes for
the nonperiodic case. Section III gives optimal codes for the
periodic case. Section IV provides two channel estimation ex-
amples. Section V compares the performance of time domain
and frequency domain techniques. Conclusions are given in
Section VI.

II. NONPERIODIC CASE

Assume the channel is represented as a finite impulse
response filter with -spaced taps, where is the symbol
period. These taps remain constant at least for the duration of
the training sequence. The complex, low-pass channel impulse
response is given by

(2)

where is the Dirac delta function, is the total number
of taps, and is the complex tap weighting theth delayed

replica. The tap vector

is estimated by processing the received signal samples. As-
sume a sequence

is initially transmitted for this purpose, and (i.e.,
constant amplitude signals). The received signal samples are
given by

(3)

where and is a white noise sequence1 with
variance , i.e., . Since a DFT approach
is used to estimate and are augmented2 such that
for and for . The

-point DFT of is defined by the well-known relation

(4)

where . Similarly, the DFT’s of and are
and , respectively. Thus,

(5)

where is the DFT of the noise sequence, . The
channel estimate is obtained as

(6)

Using (5), and the fact that taking the inverse DFT of the DFT
of a sequence recovers the original sequence, we have

(7)

In the absence of noise, . Also, is an unbiased
estimate of , i.e., . A good CE sequence
should minimize the variances of the error terms . The
variance of all noise terms affecting the useful estimates,

, is given by

(8)

The ratio can be considered as the maximumprocessing
gain (PG) attainable by LS filtering, which is reduced by the
GLF (inherent to ) defined as

(9)

1The notationfxkg denotes a vectorx = fx0; x1; � � � ; xK�1g whereK
is clear from the context.

2This means the actual transmitted signal is of the formb0; b1; � � � ; bN�1;
0; � � � ; 0; d0; d1; � � �, wheredk 2 f1;�1g are the data bits. The number of
zero symbols is at leastL� 1.
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Ideally, if , the maximum PG is realized during
the channel estimation process. For givenand , optimum
sequences are obtained when is minimized subject to
the constraint

(10)

which is obtained by applying Parseval’s theorem to
and . Heuristically, a good CE sequence should have
a reasonably flat spectrum. To quantify this notion, a spectral
flatness measure is introduced as follows. Define the spectral
max–min ratio (SMMR) of as

(11)

It is expected that an optimal CE sequence has ,
while poor CE sequences have . Clearly, the GLF
and the SMMR are closely related parameters. This is further
evidenced by the bounds

(12)

Proof: From the classicalCauchy–Schwarzinequality,3

one has

(13)

Combining this with (10) gives the lower bound (LB) in (12).
Also, one has

(14)

where , and the right-hand sum contains
terms. Thus, by definition

(15)

and combining this and (14) yields the upper bound (UB) in
(12).

If , the bounds converge and the CE sequence
satisfies

(16)

which is the smallest possible value. This result is intuitively
pleasing and leads to the following definition: a perfect CE
sequence has unity SMMR. If a sequence has a spectral null
(i.e., for some ), both the GLF and the
SMMR are equal to infinity and the sequence is unsuitable
for CE. However, the same sequence may be perfect for CE
in the time domain if its autocorrelation function has
zeros (33). This highlights a difference between time domain
estimation [9] and frequency domain estimation. The former is
only estimating , whereas the latter provides estimates (7).
Of course, of these are simply noise terms. Therefore,

3That is, for real sequencesfxkg and fykg; ( xkyk)
2 � ( x

2

k
)

( y
2

k
).

it is easier to find optimal codes for the time domain approach
since only unknowns are estimated as compared tofor
frequency domain estimation (Section V).

We define the loss factor (in decibels) as

(17)

which indicates the deviation from the LB. A perfect CE
sequence has a loss factor of 0 dB.

A. GLF Invariance Transformations

Many GLF invariance transformations that occur for the
periodic case (Section III-A) are not realized for the nonperi-
odic case (since the zero-padded DFT is taken). However, two
sequences and have the same GLF provided:

I1 phase shift of
I2 time reversal: .

The proof is omitted for brevity. The cyclically shifted (
positions to right) sequence given by will
not have the same GLF.

Example: Given the above, the following provide the
same SER performance for CE: {1,1, 1, 1}, { 1, 1, 1, 1}
and {1, 1, 1, 1}.

B. Constant Weight

Convert the into : .
If the Hamming weight of is , let the sets be defined
as

(18)

The cardinality of is and . Below it is
shown that the code search needs to be conducted only for a
few selected ’s. As for large , this leads to
significant reduction in computation time.

Let the DFT of be denoted by . As ,
it follows that

(19)

where . If , then
. Moreover, the computation of is sufficient

to determine the GLF.
According to (10) and (12), an optimal CE sequence has a

nearly constant amplitude spectrum, i.e.,

(20)

Consequently, if is far away from , such a sequence
is unlikely to be optimal. This, in turn, suggests that the
optimality of a sequence somewhat depends on its Hamming
weight. To make this notion precise, define by the
GLF of a sequence with Hamming weight .
Thus, from (10), for such a sequence satisfies

(21)
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TABLE II
OPTIMAL CE SEQUENCES FORN = 16

TABLE III
OPTIMAL CE SEQUENCES FORN = 20

Now the best case happens if , are all
equal (which also follows from using Cauchy–Schwarz). This
means that

(22)

This bound shows the smallest GLF for a set of constant-
weight sequences. For an exhaustive search of optimal se-
quences, only for need be consid-
ered at most (this follows from I1). However, this range can
be further reduced by using (22), as exemplified below.

Example: Consider and . For
is lower bounded by the set (22)

{3.37, 2.01, 1.50, 1.25, 1.11, 1.06, 1.21}. Then a computer
search in yields a sequence with GLF equal to 1.21.
Thus, further search is required only in and yielding
minimum GLF’s of 1.37 and 1.30, respectively.

C. Computer Search

A rough outline of the search program is as follows.

1) In the first step, take the length vector
and .

2) In the th step, compute and . If ,
then save and .

3) Update keeping and repeat 2).

The above procedure is repeated for a sufficient number
of Hamming weights. In the following tables, all optimal
sequences are given in hexadecimal notation.

Optimal nonperiodic sequences are reported in Tables II–IV.
Generally, the loss factor increases withgiven . There are
exceptions, however. In Table III, the loss factor decreases
from 1.07 to 0.75 dB for from five to six. This does
not mean, however, that estimating five taps is worse than
estimating six taps. Maximum PG varies from 6.81 to 6.19
dB. Considering loss factors, PG’s of 4.94 and 4.44 dB can be
realized. Thus, SER performance will be better for the
case.

TABLE IV
OPTIMAL CE SEQUENCES FORN = 24

These tables show optimal sequences for a given number
of channel taps and sequence lengths . In practice,
however, it is not easy to fix and use the optimal sequence
for each because the transmitter and receiver do not know

in advance. However, one can design conservatively for
the worst case by using (which may be obtained by
propagation measurements). Then, the optimal code for

in the above tables can be used.

D. Conjecture

Can be used as the search criterion instead of ,
given their apparent equivalence (12)? The answer would
be unequivocally yes, if one could prove that for any two
sequences iff . Currently,
no proof has been found. However, the following conjecture
holds for all cases observed. Letdenote the set of all length

binary sequences. Let and
. Let

and . Then and are
never disjoint; i.e., , where is the empty set. In
other words, at least one sequence achieves both and

simultaneously.

III. PERIODIC CASE

To estimate channel taps, the TS is now a cyclic extension
of the basic sequence of length, , given by

where . A large will facilitate receiver synchro-
nization but increase TS overhead. Since the TS is periodic, its
convolution with the CIR is periodic and CE is possible using
the DFT. The development of (1)–(5) still applies here, but
zero-padding is now replaced by cyclic extension. Further, the
first received samples are discarded and the nextare used
for CE. Only -point DFT’s are needed. Again, the SMMR
can be defined as

As before, it is expected that the optimal CE sequence has
, while poor CE sequences have . The

modification of (12) to this case yields the bounds

(23)
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TABLE V
TIME FOR CODE SEARCH (MINUTES)

TABLE VI
OPTIMAL PERIODIC CE SEQUENCES

A. GLF Invariance Transformations

Two sequences and have the same GLF provided:

I1 phase shift of : ;
I2 time reversal: ;
I3 cyclic shift: .

I1 to I3 derive from the properties of the DFT. The spectrum
of a cyclically shifted ( positions to right) sequence is given
by , leading to the same GLF.

Example: Given the above, the following provide the
SER performance for CE: {1, 1, 1, 1}, { 1, 1, 1, 1},
{1, 1, 1, 1}, {1, 1, 1, 1}, and { 1, 1, 1, 1}.

I1 to I3 coupled with the weight analysis (Section II-B)
and incremental DFT (see Appendix) substantially reduces
computation time for the code search. Table V compares the
optimized code search with a simple exhaustive search.

B. Code Search

Table VI shows optimal sequences for .
Provided the cyclic extension is longer than the tail of the CIR,
the entire CIR can be estimated (i.e., the GLF is not a function
of ). I1 to I3 partition the sequence space into equivalence
classes. In most cases, several equivalence classes achieve
the minimum GLF. However, only one optimal sequence
for a given is reported here. indicates the number of
equivalence classes with . Generally, should decrease

TABLE VII
SUBOPTIMAL PERIODIC CE SEQUENCES

TABLE VIII
m-SEQUENCES VERSUSOPTIMAL

for increasing , but one should expect smallervalues for
such that is an integer (e.g., ).

Partial searches have also been conducted for
(Table VII).

C. -Sequences

-sequences can be used for CE [9]. Since they are char-
acterized by a two-valued autocorrelation function, for

, the power spectrum is [3]

otherwise.
(24)

Thus, the GLF for an -sequence is

(25)

For . That is, an -sequence has
3 dB worse SER performance than a perfect CE sequence
for frequency domain processing. Table VIII compares-
sequences with the optimal sequences found by code search,
which show a 0.6 to 2.5 dB improvement over-sequences.
It should be noted that -sequences are nearly perfect when
used with the time domain approach [9].

D. Schroeder’s Formula

In [12], a formula yielding binary sequences of arbitrary
length with low autocorrelation coefficients for nonzero shifts
is given. Thus, a binary sequence of lengthis generated
according to

(26)

where denotes the largest integer not exceeding. This is
obtained by discretized Newman phases [13].

Table IX compares optimal sequences and those of (26).
Except for , (26) generates good but nonoptimal
sequences. For , the optimal sequence saves about 1.5
dB in SER. It is strongly suspected in [14] that the Newman
phases are optimal for the case. The table entry for

appears to confirm this.
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TABLE IX
NEWMAN SEQUENCES VERSUSOPTIMAL

Fig. 1. The output distortion for channel estimation usingm sequences and
optimal sequences. BPSK modulation is used.

IV. CHANNEL ESTIMATION EXAMPLES

Here, two examples are provided to compare periodic opti-
mal sequences found by computer search with-sequences.
First, the average distortion-to-noise ratio given by

(27)

is computed as a function of input signal-to-noise ratio defined
by

(28)

Second, performance degradation is computed when a linear
equalizer is implemented with channel estimates.

Fig. 1 shows for a channel estimator in
a typical data-quality telephone channel. The CIR used is
that given by the discrete channel tap weights found
in [1, Fig. 10-2-5(a)] and the channel span is 11 symbols.
Fig. 1 shows the distortion for two -sequences and optimal
sequences of lengths 15 and 31 bits under varying input SNR,

. The optimal sequences gain about 3 dB noise margin
over the -sequences in the frequency domain. As noted by
a reviewer, if this -sequence is used in the time domain, the
loss factor is 0.064 dB. In this case, the optimal sequence,
used in the frequency domain, is about 0.25 dB worse than
the -sequence used in the time domain. It should also be
mentioned that a channel estimator based on-sequences can

Fig. 2. The BER of a linear equalizer with 27 taps. Anm sequence and
optimal sequence of 31 bits are used for CE.

be implemented easily, even free of multiplications in some
cases [9].

For a data sequence , the equalizer output can be written
as [1, Eq. (10-2-56)]

(29)

where denotes the convolution of the impulse response
of the equalizer and the channel, and the filtered additive
noise. Thus, for a given channel, can be computed
for given taps, which are themselves computed using the
channel estimates and [1, Eq. (10-2-57)]. The 31-bit optimal
code is given in Table VI. The BER is obtained by
computing the probability given . Since
the output contains a non-Gaussian term, the BER cannot be
computed in terms of Gaussian tail probabilities. An infinite
series developed by Beaulieu [15, Eq. (30)] has been used
for this purpose. Fig. 2 shows the performance degradation
of a 27-tap linear equalizer. For comparison, the BER of
the equalizer given perfect knowledge of the CIR is also
shown. For the -sequence and optimal sequence, the SER
performance of the equalizer at degrades by 4.5
and 1 dB, respectively, compared to the ideal. At low BER’s,
the equalizer performance strongly depends on the distortion
introduced by CE. The optimal sequence estimator keeps this
distortion down to a minimum and the resulting equalizer
performs close to the ideal.

V. A COMPARISON OF TIME DOMAIN

AND FREQUENCY DOMAIN TECHNIQUES

Performance differences between the frequency domain
(FD) and time domain (TD) [9] techniques are discussed
here. Both rely on least squares filtering, and hence should
give the same level of performance for comparable cases.
Suppose channel taps are to be estimated usingchannel
measurements. The following comments directly apply to the
periodic case, where a cyclic extension of length is
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utilized. Then the maximum achievable SER for either case
is given by

dB (30)

With the FD approach, the output SER is less than this
maximum by the loss factor

dB (31)

Naturally, if dB, such a sequence would be perfect.
Various sequences given in this paper come close this ideal
to different degrees. For example, in Table VI, for

dB.
For the TD approach using a length CE sequence, the

normalized output SER is [9]

dB (32)

where is an autocorrelation matrix. Now if the au-
tocorrelation sequence of the TS is an impulse function,
its SER, given by (32), achieves (30). In fact, it is sufficient
to have for , for a sequence to be
perfect for estimating channel taps. Note that is the
cyclic autocorrelation.

Therefore, a length symbol sequence used for estimating
channel taps isperfect for the time domain if

for (33)

The sequence isperfectfor the frequency domain if

for (34)

which yields dB. In either case, the best achievable
SER is given by (30). So both approaches should result in
maximum SER and as such are equivalent. It appears that TD
estimation gets closer to (or achieves) (30) than FD estimation
in all cases. Nevertheless, the sequences given in this paper
are quite close to (30) as can be seen from the tables. For
example, for , the periodic code achieves 0.24 dB
(Table VI) within the upper bound (30).

One point to note is that for a given and , optimal
codes may be easier to find in the TD than in the FD, because
the former involves minimizing autocorrelation values
(33) whereas the latter involves converging all spectrum
amplitudes to a constant (34). Note that if

for (35)

then such a sequence satisfies (34), being perfect for FD
estimation of channel taps. Thus, (34) implies (33), but not
vice versa.

That is, a sequence optimized for the TD is not necessarily
optimal for the FD. For instance, consider the
sequence constructed in [9, Fig. 6] for estimating five taps. For
TD estimation, this sequence achieves the ideal performance
(30) of an SER of 5 dB (16/5). If the same sequence is used
for FD estimation, the output SER is found to be [from (30)
and (31)] 1.35 dB. Similarly, -sequences are nearly perfect

Fig. 3. The loss factor of theN = 36 length sequence for FD and TD
estimation.

for TD estimation, but incur a 3-dB performance penalty when
used for FD estimation. There is no contradiction here, but a
sequence that satisfies (33) does not necessarily satisfy (34).

What happens when a sequence optimized for the FD is used
in TD estimation? Consider the sequence given in Table VI for

. For the FD approach, this sequence incurs a 0.19-dB
gain loss when estimating channel taps, where .
Note that this loss is fixed, not depending on. The cyclic
autocorrelation function of this sequence can be computed as

if
if
if
for all other

(36)

Thus, this code isperfectfor TD estimation of taps where
, even though it was found using the FD approach.

Its implementation is trivial in the time domain and could
be a very useful sequence for many applications. For TD
estimation, the loss factor [i.e., the difference between (30)
and (32)] of this sequence is plotted in Fig. 3. The loss factor
for the FD is an upper bound for the loss factor for the TD.
Based on this and other numerical experiments, when a given
sequence is used for either TD or FD estimation, one has

(37)

Unfortunately, we have not been able provide a formal proof
for this. Assuming this is true, one can claim that our optimal
codes for FD can also be used for TD estimation, with a
performance gap less thandB given in our tables. In other
words, in decibels,

(38)

It appears that the FD estimation is inherently inferior to the
TD estimation. However, the performance gap is less than

dB. Therefore, the performance of the sequences given
in this paper is quite close to the ideal performance (30).
Also, the FD approach may be suited to applications where
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FFT processing is used anyway, such as orthogonal frequency
division multiplexing systems.

VI. CONCLUSION

Channel estimation using a known training sequence is
required in various communication systems. It has been shown
that, for CE with the DFT, optimal sequences must have the
smallest GLF. By exploiting invariance properties of the GLF
and the bounds on the GLF for constant-weight sequences,
optimal sequences up to length 42 have been found. While
the sequences are optimal for frequency domain CE, they are
marginally worse than optimal codes for time domain CE [9].
Interestingly, for any sequence it appears that the SER for the
FD case forms a lower bound on the SER for the TD case.

APPENDIX

GENERATION OF CONSTANT-WEIGHT SEQUENCES

Let . Let the Hamming
weight of be and be the number of zeros.
Below it is shown how distinct can be generated while
keeping and excluding the cyclic shifts of

. This will yield nearly an -fold reduction in computations
(the periodic case) compared to simply generating allwith

.
Let the set of indexes denote

the locations of ones, i.e., for . Without
loss of generality, consider only sequences with (this
follows from I1 in Section III-A). Define
for and . Clearly,
for given and , any can be uniquely described by the
set .

Example: A sequence {1, 0, 0, 1, 1, 1, 0, 1, 0, 0} is
described by and .

Thus, all constant-weight sequences of weight can be
generated by all combinations of for
satisfying

(A.1)

However, to avoid the generation of cyclically shifted versions
of each sequence, the solutions of (A.1) are accepted only if
they satisfy

(A.2)

and

(A.3)

Using the invariance operations (cyclic shift and time re-
versal, Section III-A), the search space can be partitioned
into equivalence classes and just one sequence from a class
needs to be considered. Consider any sequence described by

satisfying (A.1). Now if
, then it will be accepted for computation of the

GLF. Otherwise, there exists a such that
, for some . Thus, a circular shift

of this sequence will satisfy (A.2).

Example: A sequence {1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0} will
not satisfy (A.2), but its shifted version {1, 0, 0, 0, 1, 0, 1,
0, 0, 1, 0, 1} will.

Similarly, (A.3) will eliminate some of the time-reversal
(I3) equivalent sequences.

In the software, the sequences are generated using nested
loops governed by , with controlling the
outer-most loop. The th DFT bin can be expressed as

At the beginning of the loop controlled by
, the partial sum

can be computed and reused for all possible combinations
of . This allows for a time-efficient incremental
DFT computation.
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