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Optimal Sequences for Channel Estimation Using
Discrete Fourier Transform Techniques
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Abstract—This paper addresses the problem of selecting the TABLE |
optimum training sequence for channel estimation in communi- COMPLEXITY COMPARISON
cation systems over time-dispersive channels. By processing in -

. A o > Wiener DFT
the frequency domain, a new explicit form of search criterion is
Memory NL N

found, the gain loss factor (GLF), which minimizes the variance
of the estimation error and is easy to compute. Theoretical
upper and lower bounds on the GLF are derived. An efficient

directed search strategy and optimal sequences up to length 42. . .
are given. These sequences are optimal only for frequency domain'nVOIVeS sending a CE sequence whose DFT is stored at

estimation, not for time domain estimation. the receiver. Each bin of th&/-point DFT of the received
sequence is divided by the corresponding bin of the stored
DFT to give an/N-point vector, the inverse DFT (IDFT) of
which gives the channel estimates. Table | compares the two
FOR burst-transmission digital communication systeMgethods, showing memory requirements and complexity.
channel estimation (CE) is required for maximum like- sequences with impulse-like correlation functions are suit-
lihood sequence estimation receivers [1] and noniteratiyg|e for CE (and other applications [3]), and the problem of
equalizers [2]. A typical data burst consists of several b|OC|ﬁ$|ding such sequences has received a great deal of attention
of user data and a predetermined training sequence (TS) whighihe past [4]. Specifically, [5]-[9] consider CE given a
is used to estimate the channel impulse response (CIR). Thigwn training sequence. Following the least-squares (LS)
paper addresses the_ problem o_f selecting optimal CE sequenigfsophy, [5] presents algorithms for optimal unbiased CE
for frequency domain processing. _ with aperiodic spread spectrum signals for white or nonwhite
CE can be done using a Wiener filter or the discrete Fourighise 'Optimum unbiased CE given white noise is considered
transform (DFT). In general, to esymaieghannel taps with [6] following a maximum-likelihood (ML) approach. For
a length N CE sequence, the Wiener filter needs to stofgst start-up CE, optimal training sequences of two-level,
the complex filter coefficients (which can be precomputefliee-level, and four-level symbols (nonconstant amplitude)
given the autocorrelation function of the CE sequence) and ig reported for lengths up to 16. ML and matched-filter
compute complex multiplications. Similarly, the DFT methogg for uplink transmission in code division multiple access
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maximizes the output SER. However, sequences given in théplica. The tap vector
paper arenot optimalfor time domain estimation. In fact, they he (h h I
have marginally worse performance (Section V). This paper = {ho,h1, - hp—1}

provides is estimated by processing the received signal samples. As-
 a frequency domain approach (i.e., using the DFT); sume a sequence
¢ bounds on the GLF;
» an optimal sequence search procedure for periodic and b= {bo, by, by-1}

nonperiodic cases. is initially transmitted for this purpose, ag € {1, -1} (i.e.,

To find optimal binary sequences of lengthfor estimating constant amplitude signals). The received signal samples are
L channel tap coefficients, an exhaustive search may $gen by
done over2" possible sequences. If one follows [9], this
involves computing# (inverse of anL x L matrix) for all I = Zhibk—i T, k=01, . M~1 (3)
sequences and selecting the best one; whereas in this paper, g
computing the GLF requires aN-point DFT. As seen later, whereM = N+L—1 and{y,} is a white noise sequent®ith
the GLF is invariant under several operations. Since theggriances?2, i.e., E(y1}) = 026(k—1). Since a DFT approach
operations partition the”™ space into equivalence classess used to estimathk, h andb are augmentédsuch that;, = 0
the computation of the GLF for just one representative fromer ; = L,.-- M —1andby =0fork=N,---,M —1. The
each class is sufficient. This approach, in conjunction with &7-point DFT of {b.} is defined by the well-known relation
incremental DFT computation (see Appendix), significantly re-
duces (Table V) computational search complexity and enables
a search up tQv = 42,

The training sequence can be periodic or nonperiodic and
these two cases are treated in the following two sectionghere;j = /—1. Similarly, the DFT's of{h;} and {y:} are
The channel output is a linear convolution, whereas DFIH,} and{Y,}, respectively. Thus,
estimation requires cyclic convolution. Thus, the periodic and
nonperiodic cases require DFT’s with cyclically extended Yo = HoBnt Ve, n=01,--, M —1 ®)
[10], [11] and zero-padded inputs, respectively. Of these twahere {V,} is the DFT of the noise sequencgy}. The
periodic sequences are more commonly used in practighlannel estimate is obtained as
systems. Also, it is easier to search for optimal sequences M1
among periodic sequences because they have a cyclic shjff — 1 Z <£>6j27rkn/1\4’ k=0,1,---,M—1. (6)
invariance property (13, Section IlI-A). This property ensures M fogr B,
that a large fraction of codes in the search space can
eliminated from the search. Loss factors tend to be smal
for the periodic case (e.g., Tables IV and VI).

This paper is organized as follows. Section Il introduces ] Mt v,
the GLF, derives upper and lower bounds for it, and usés =/ + 7+ > <B_
GLF invariance transformations and a bound on the GLF of n=0 "

a set of constant weight sequences to find optimal codes for (7)
the nonperiodic case. Section III gives optimal codes for thg he absence of noiséy, = hy, Vk. Also, i, is an unbiased
periodic case. Section IV provides two channel estimation €Xztimate ofhs, i.e., E(ﬁk) — hy Vk. A good CE sequence
amples. Section V compares the performance of time dom@ﬁ‘ould minimize the variances of the error teris— h. The
and frequency domain techniques. Conclusions are given,yjance of all noise terms affecting the useful estimates,
Section VI. {710,~~~,7LL71}, is given by

M-1
Bn = Z bk67j27rnk/]\47 n:()vlv"'?M_ 1 (4)
k=0

Sing (5), and the fact that taking the inverse DFT of the DFT
of a sequence recovers the original sequence, we have

)d'?’f’“"/M, k=0,1,---, M — 1.

L—-1 R R " ) L M-1 1
Il. NoNPERIODIC CASE Z E((hk — hk) (hk — hk) ) =037 nz::o @ (8)

Assume the channel is represented as a finite impulse’“=0
response filter withl’-spaced taps, wher# is the symbol The ratioA/L can be considered as the maximpmcessing
period. These taps remain constant at least for the durationgein (PG) attainable by LS filtering, which is reduced by the
the training sequence. The complex, low-pass channel impuBeF (inherent tob) defined as

response is given by M-l

M(b) = —_. 9

L ®) =2 Bp (9)

n=0
h(t) =Y st — kT) 2)
=0 1The notation{x},} denotes a vectax = {xg,x1,---, 2} where K
is clear from the context.
2This means the actual transmitted signal is of the fognby, - -, bx_1,

whered(t) is the Dirac delta functionl is the total number .o "4/ ... whered, € {1,—1} are the data bits. The number of
of taps, andhy, is the complex tap weighting theth delayed zero symbols is at leadt — 1.
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Ideally, if M(b) = 1, the maximum PG is realized duringit is easier to find optimal codes for the time domain approach
the channel estimation process. For giv€rand L, optimum since only L unknowns are estimated as comparedfofor
sequences are obtained whér(b) is minimized subject to frequency domain estimation (Section V).

the constraint We define the loss factor (in decibels) as
M-1
M(b)
2 _ — .
Z:O |B.|> = NM (10) je = 10logy {M/N} (17)

which is obtained by applying Parseval's theorem {tg.} which indicates the deviation from the LB. A perfect CE
and {B,}. Heuristically, a good CE sequence should hafduence has a loss factor of 0 dB. -

a reasonably flat spectrum. To quantify this notion, a spectral

flatness measure is introduced as follows. Define the specfalGLF Invariance Transformations

max—min ratio (SMMR) of{ B, } as Many GLF invariance transformations that occur for the
max{|Bp|:0< n < M} periodic case (Section Ill-A) are not realized for the nonperi-
X(b) = (11) odic case (since the zero-padded DFT is taken). However, two

i 0L ) ;
min{|By| : 0 < n < M} sequenced andc have the same GLF provided:

It is expected that an optimal CE sequence Rgd) =~ 1, I1 phase shift ofr: ¢, = —bs
while poor CE sequences hawé(b) > 1. Clearly, the GLF [2 time reversalic;, = by_1—z.

anq the SMMR are closely related parameters. This is furthgg proof is omitted for brevity. The cyclically shifted; (

evidenced by the bounds positions to right) sequence given by = butqmodn Will
M 1 9 not have the same GLF.

N SMP) < N [1+ (M = DAZ(b)]. (12) Example: Given the above, the followingb,, } provide the

N
) ) .5 same SER performance for CE: {#1, 1, 1}, {-1,1,-1,-1}
Proof: From the classicaCauchy—Schwarmequality; and {1, 1, -1, 1}.

one has
M(b)ZIBn|2 > M?2. (13) B. Constant Weight
" Convertthey, € {—1,1}intoag € {0,1}: ap = (1—bg)/2.
Combining this with (10) gives the lower bound (LB) in (12)!f the Hamming weight ok is w(a), let the setsX; be defined

Also, one has as
1 1 X = =l} 1=0,1,---,N. (18)
2 _ I a | wia N 5
ME)D B =M+ 5 Y (Am,n+ A) (14) tafuwle) =4
" mn The cardinality ofX; is {X;} and}_,{X,;} = 2". Below it is
where,, , = |B.|2/|Bx|?, and the right-hand sum containsshown that the code search needs to be conducted only for a
M? — M terms. Thus, by definition few selectedX;’s. As {X;} < 2% for large N, this leads to
significant reduction in computation time.
A+ < 2;\’2(]0) (15) Let the DFT of{a,} be denoted by A4, }. Asb;, = 1 —2ay,
Am.n it follows that
and combining this and (14) yields the upper bound (UB) in 1—wN
(12) B, = 1 _2An n:1727"'7M_1 (19)
— W
If X(b) = 1, the bounds converge and the CE sequence
satisfies where w = exp(—j2mn/M). If w(a) = W, then By =
M N — 2W. Moreover, the computation of A, } is sufficient
M(b) = ~ (16) to determine the GLF.

According to (10) and (12), an optimal CE sequence has a
which is the smallest possible value. This result is intuitiveljearly constant amplitude spectrum, i.e.,
pleasing and leads to the following definition: a perfect CE
sequence has unity SMMR. If a sequence has a spectral null |Br| ~ VN n=01,---,M—1. (20)
(i.e., B; = 0 for some0 < j < N), both the GLF and the ) )
SMMR are equal to infinity and the sequence is unsuitabfensequently, ifB, is far away fromV/N, such a sequence

for CE. However, the same sequence may be perfect for ¢sgunlikely to be optimal. This, in turn, suggests that the
in the time domain if its autocorrelation function has— 1 Optimality of a sequence somewhat depends on its Hamming
zeros (33). This highlights a difference between time doma#gight. To make this notion precise, define.by(b | W) the
estimation [9] and frequency domain estimation. The former f&LF of & sequence with Hamming We'QWf. (0_ <SW <N).

only estimatingL, whereas the latter providég estimates (7). Thus, from (10), for such a sequence satisfies

Of course,M — L of these are simply noise terms. Therefore, M_1
3That is, for real sequencefr;} and {y.}, (X wpy)? < (X a?) Z |Bn|2 =MN — (N — 2W)2- (21)
(X i) n=1
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TABLE I TABLE IV
OpTIMAL CE SEQUENCES FORN = 16 OpTIMAL CE SEQUENCES FORN = 24
CIR Length (L) Code ux(dB) SMMR CIR Length (L) Code u(dB) SMMR

2 5826  0.68 1.87 2 1CD5BE  0.45 1.65
3 4B88 0.54 1.64 3 699C0A  0.49 1.53
4 41AC 071 1.62 4 08E8DA  0.55 1.58
5 12E2  0.72 1.58 5 12E682 0.75 1.59
6 2F9D  0.98 1.76 6 58E809  0.65 1.54
7 2E6F  1.36 2.11 7 2CESFA  0.83 1.72

8 73F45A  0.86 1.71

TABLE 1l

= 2 . .
OPTIMAL CE SEQUENCES FORN' = 20 These tables show optimal sequences for a given number

CIR Length (L) Code 4 (dB) SMMR of channel tapg L) and sequence lengthgV). In practice,
i 3‘;‘;]33‘2 g'i; }‘gg however, it is not easy to fiv and use the optimal sequence
4 SEAG 056 150 for eachL because the transmitter and receiver do not know
5 34E42 107 196 L in advance. However, one can design conservatively for
g 3(7:]5;(; 8-;; i-zg the worst case by usingd .. (which may be obtained by
g 0DSB 108 169 propagation measurements). Then, the optimal codd.for

L.« in the above tables can be used.

Now the best case happens|B,|, 1 < n < M, are all D. Conjecture
equal (which also follows from using Cauchy—Schwarz). This CanX(b) be used as the search criterion insteac\tfb),

means that given their apparent equivalence (12)? The answer would
(M — 1) 1 be unequivocally yes, if one could prove that for any two
M| W) > 3 v = 22 + (N 2w (22) sequencest’(by) < X(bg) iff M(by) < M(by). Currently,
no proof has been found. However, the following conjecture
This bound shows the smallest GLF for a set of constartolds for all cases observed. L&tdenote the set of all length
weight sequences. For an exhaustive search of optimal 4g-binary sequences. Letiin = min{X(b) | b € S} and
quences, onlyX; for I = {1,2,---,|N/2]} need be consid- Mmin = min{M(b) [ b € S}. Let A = {b | M(b) =
ered at most (this follows from 11). However, this range caff!min} and B = {b | X(b) = Xuu}. Then A and B are
be further reduced by using (22), as exemplified below.  Never disjoint; i.e. AN B # #, where{ is the empty set. In
Example: Consider N = 16 and L = 2. For W = other words, at least one sequence achieves Agth and
{1,2,---,7}, M(b | W) is lower bounded by the set (22)Mmin Simultaneously.
{3.37, 2.01, 1.50, 1.25, 1.11, 1.06, 1.21}. Then a computer
search inXg yields a sequence with GLF equal to 1.21.

Thus, further search is required only X; and X~ yielding _ _ ) )
minimum GLF’s of 1.37 and 1.30, respectively. To estimatel. channel taps, the TS is now a cyclic extension

of the basic sequence of lengty, N > L, given by

Ill. PERIODIC CASE

C. Computer Search

b(N—T)ymod Ns "+ bN-1,b0, b1, -, by_1
A rough outline of the search program is as follows.
1) In the first step, take the lengtt vector a = where7 > L — 1. A largeT" will facilitate receiver synchro-
(1,1,---,0) andg = . nization but increase TS overhead. Since the TS is periodic, its
2) In theith step, computéB,,} andM(b). If M(b) < g, convolution with the CIR is periodic and CE is possible using
then saveb andg = M(b). the DFT. The development of (1)—(5) still applies here, but
3) Updatea keepingw(a) = W and repeat 2). zero-padding is now replaced by cyclic extension. Further, the

The above procedure is repeated for a sufficient numd&gt 7’ received samples are discarded and the nezre used
of Hamming weights. In the following tables, all optimaffo" CE. Only N-point DFT's are needed. Again, the SMMR

sequences are given in hexadecimal notation. can be defined as
Optimal nonperiodic sequences are reported in Tables 11-IV. max{|B,|:0 < n < N}
Generally, the loss factor increases witlgiven V. There are X(b) = ’ >

. in{|B,|:0<n< N}’
exceptions, however. In Table Ill, the loss factor decreases min{|Baf: 0 < n }
from 1.07 to 0.75 dB forL from five to six. This does As before, it is expected that the optimal CE sequence has
not mean, however, that estimating five taps is worse thgr(b) ~ 1, while poor CE sequences hawé(b) > 1. The
estimating six taps. Maximum PG varies from 6.81 to 6.1 odification of (12) to this case vyields the bounds

dB. Considering loss factors, PG’s of 4.94 and 4.44 dB can be

realized. Thus, SER performance will be better for the- 5 1

case. I [1+ (N = 1D)A%®)] = M(b) > 1. (23)
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TABLE V TABLE VIl
TiME FOR CoDE SEARCH (MINUTES) SuBOPTIMAL PeRIODIC CE SEQUENCES
Length (N) Exhaustive Optimised Length (V) Code 4 (dBy SMMR
23 13 0.13 43 4649450A7TE1 0.36 1.82
24 29 0.16 44 3432A12ECE1 0.39 1.80
25 66 0.17 45 02485C654BE1  0.32 1.61
26 127 0.20 46 064345853BE1  0.39 1.77
27 271 0.33 47 452163150FE1 0.37 1.87
TABLE VI TABLE VI
OpTIMAL PERIODIC CE SEQUENCES m-SEQUENCES VERSUSOPTIMAL
Length (N) Code K p(dB) SMMR L bV m-sequence Optimal
75 E2CC21 3 049 175 ength (V) —74B) SMMR ;. (dB) SMMR
26 16C8701 8¢ 0.51 1.98 7 243 2.83 1.86 2.5
27 392B841 4 0.40 1.64 15 2.73 4.0 0.51 141
28 D724301 8 0.53 1.72 31 2.87 5.66 0.31 1.46
29 E9A1881 4 0.50 1.72
30 131129F1 15 051 2.08
1 31 1.46 . .
2 ?5];;3261211 2? 839 173 for increasing/V, but one should expect smallgrvalues for
13 849BSSE| 17 028 165 N such thaty/ N is an integer (e.g.N = 36).
34 1D18F4241  22¢ 043 181 Partial searches have also been conducted¥aot N < 47
35 22917E461 16 031 1.65 (Table VII).
36 5908973Cl1 33 0.19 1.38
37 19C4848BA1 26 0.32 1.66
38 1D70852361  28¢ 037  1.86 C. m-Sequences
39 68892D7381 4 0.22 1.50 .
0 ADT3607281 24 024 162 m-sequences can be used for CE [9_]. Since _they are char-
41 198ADID3401 33  0.29 1.62 acterized by a two-valued autocorrelation function, Mr=
42 08C65A2F881 20¢ 0.32 1.75 o _ 1, the power spectrum is [3]
“Four classes in Xy and four classes in X7 achieve M ;,,. _
PThree classes in X5 and twelve classes in X3 achieve Mpin. |Bn|2 — 1, n=0 IT-lOd N (24)
Six classes in X713 and 22 classes in X4 achieve Mumin. N =+ ].7 otherwise.
4Fifteen classes in X5 and 13 classes in X4 achieve M piy.
“Ten classes in X7 and ten classes in X;g achieve M i,. ThUS the GLF for an,n_sequence iS
2N
A. GLF Invariance Transformations M(b) = N+l (25)

Two sequencebd andc have the same GLF provided: For N > 1, M(b) = 2. That is, anm-sequence has

I1 phase shift ofr: ¢ = —by; 3 dB worse SER performance than a perfect CE sequence
12 time reversalicy, = by—1-4; for frequency domain processing. Table VIII compares
I3 cyclic shift: ¢ = br+qmod n- sequences with the optimal sequences found by code search,

I1 to I3 derive from the properties of the DFT. The spectrumhich show a 0.6 to 2.5 dB improvement oversequences.
of a cyclically shifted ¢ positions to right) sequence is givenit should be noted that:-sequences are nearly perfect when
by C,, = B,e/?™/N, leading to the same GLF. used with the time domain approach [9].

Example: Given the above, the followingb, } provide the
SER performance for CE: {1--1, 1, 1}, {-1, 1, -1, =1}, D. Schroeder's Formula
{1,1,-1,1} {1, 1,1, -1}, and {-1, 1, 1, 1}.

I1 to 13 coupled with the weight analysis (Section 1I-B In [12], a formula yielding binary sequences of arbitrary

and incremental DFT (see Appendix) substantially reduc glgth with low autocorrelation coefficients for nonzero shifts
computation time for the code search. Table V compares fred'ven. Thus, a binary sequence of lengthis generated

optimized code search with a simple exhaustive search. according to

k2
m:1—2k—l (26)
B. Code Search 2N | hoa2

Table VI shows optimal sequences f86 < N < 42. where|z] denotes the largest integer not exceedinghis is
Provided the cyclic extension is longer than the tail of the CIRbtained by discretized Newman phases [13].
the entire CIR can be estimated (i.e., the GLF is not a functionTable IX compares optimal sequences and those of (26).
of L). 11 to 13 partition the2”Y sequence space into equivalencExcept for N = 12, (26) generates good but nonoptimal
classes. In most cases, several equivalence classes aclsegeiences. FaQV = 31, the optimal sequence saves about 1.5
the minimum GLF. However, only one optimal sequenceB in SER. It is strongly suspected in [14] that the Newman
for a given N is reported hereK indicates the number of phases are optimal for th&y = 12 case. The table entry for
equivalence classes with,,,;,,. Generally,.. should decrease N = 12 appears to confirm this.
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NEWMAN SEQUENCES VERSUSOPTIMAL

TABLE IX

235

» Schroeder Optimal S~
Length (V) =7y SMMR 4 (@B) SMMR ~~

7 243 283 186 25 ol |
12 051 141 051 141
17 206 2.92 085 222 R
22 157 3.60 085  2.13 .
27 167 279 040 165 ~
31 180 3.03 031 146 107 N :

m-sequence

Optimal

ideal Estimation

-5 1 1 L 1 i
5 [ 7 8

10 1 12 13 14 15
Y (dB)

Fig. 2. The BER of a linear equalizer with 27 taps. An sequence and
optimal sequence of 31 bits are used for CE.

be implemented easily, even free of multiplications in some

cases [9].
0 msequence Tl For a data sequendg, the equalizer output can be written
—a5f  ---  Optimal “~._ 1 as[1, Eq. (10-2-56)]
50 10 15 20 25 30 I, = qoln + Z Iiqn_r +n (29)
Yiu (dB) =

Fig. 1. The output distortion for channel estimation usingsequences and
optimal sequences. BPSK modulation is used.

where{g,} denotes the convolution of the impulse response
of the equalizer and the channel, ang the filtered additive
noise. Thus, for a given channely,} can be computed
for given taps, which are themselves computed using the
Here, two examples are provided to compare periodic opthannel estimates and [1, Eq. (10-2-57)]. The 31-bit optimal
mal sequences found by computer search witsequences. code is given in Table VI. The BERP, is obtained by
First, the average distortion-to-noise ratio given by computing the probabilityRe(I,) < 0 given I, = 1. Since
1 9 the output contains a non-Gaussian term, the BER cannot be
Tis = 5 ZE (27) computed in terms of Gaussian tail probabilities. An infinite
k series developed by Beaulieu [15, Eq. (30)] has been used
is computed as a function of input signal-to-noise ratio defind@f’ this purpose. Fig. 2 shows the performance degradation
by of a 27-tap linear equalizer. For comparison, the BER of
the equalizer given perfect knowledge of the CIR is also
Yin = i? Z |hal?. shown. For them-sequence and optimal sequence, the SER
ot = performance of the equalizer & = 10~* degrades by 4.5
o . and 1 dB, respectively, compared to the ideal. At low BER's,
Second, performance degradation is computed when a liNgal g alizer performance strongly depends on the distortion
equalizer is implemented with channel estimates. introduced by CE. The optimal sequence estimator keeps this

Fig. 1 shows 10log;o(7ais) for a channel estimator in yigiotion down to a minimum and the resulting equalizer
a typical data-quality telephone channel. The CIR used b%rforms close to the ideal

that given by the discrete channel tap weight.} found

in [1, Fig. 10-2-5(a)] and the channel span is 11 symbols.
Fig. 1 shows the distortion for twe:.-sequences and optimal
sequences of lengths 15 and 31 bits under varying input SNR,
~n- The optimal sequences gain about 3 dB noise marginPerformance differences between the frequency domain
over them-sequences in the frequency domain. As noted lifD) and time domain (TD) [9] techniques are discussed
a reviewer, if thism-sequence is used in the time domain, theere. Both rely on least squares filtering, and hence should
loss factor is 0.064 dB. In this case, the optimal sequenggye the same level of performance for comparable cases.
used in the frequency domain, is about 0.25 dB worse th&upposel channel taps are to be estimated usi¥ghannel

the m-sequence used in the time domain. It should also beeasurements. The following comments directly apply to the
mentioned that a channel estimator basedresequences can periodic case, where a cyclic extension of lendth- 1 is

IV. CHANNEL ESTIMATION EXAMPLES

hk - iY,k

(28)

V. A COMPARISON OF TIME DOMAIN
AND FREQUENCY DOMAIN TECHNIQUES
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utilized. Then the maximum achievable SER for either case L S S S
is given by 018

L

With the FD approach, the output SER is less than this o2
maximum by the loss factor g

)= 101log,, <Z ﬁ) (dB). (31)

Naturally, if + = 0 dB, such a sequence would be perfect.
Various sequences given in this paper come close this idealooz
to different degrees. For example, in Table VI, fr = 36,
p = 0.19 dB.

For the TD approach using a lengffi CE sequence, the % s 0 15 ) ,21?1 . 2 % % 20
normalized output SER is [9] e eme

SER = 10logy, <E> (dB). (30)

014 - - = trequency domain
time domain

01F

0.08

loss factor (dB

0.06

0.041

ol

Fig. 3. The loss factor of thév = 36 length sequence for FD and TD
SER = 10logo(1/tx(P71)) (dB) (32) estimation.

where P is an L x L autocorrelation matrix. Now if the au- o )
tocorrelation sequencg(k) of the TS is an impulse function, for TD estimation, but incur a 3-dB performance penalty when

its SER, given by (32), achieves (30). In fact, it is sufficierﬂsed for FD estimation. There is no contradiction here, but a

to haveg(k) = 0 for k = 1,---, L — 1, for a sequence to be sequence that satisfies (33) does not necessarily satisfy (34).
perfect for estimatingl. channel taps. Note thai(k) is the What happens when a sequence optimized for the FD is used
cyclic autocorrelation. in TD estimation? Consider the sequence given in Table VI for

Therefore, a lengtth' symbol sequence used for estimating? = 36- For the FD approach, this sequence incurs a 0.19-dB

L channel taps iperfectfor the time domain if gain loss when estimating channel taps, where < L < 36.
Note that this loss is fixed, not depending fn The cyclic

Ppk)y=0 fork=1,2,---,L—1. (33) autocorrelation function of this sequence can be computed as
The sequence iperfectfor the frequency domain if 36, if k=0,
o= )4 ik =10,27, 36
IB,|=VN forn=0,1,---,N—1 (34) PR =94 it k1721 (36)

which yields;: = 0 dB. In either case, the best achievable 0, forall otherk.

SER is given by (30). So both approaches should result Timus, this code iperfectfor TD estimation of taps where
maximum SER and as such are equivalent. It appears that TEX L < 10, even though it was found using the FD approach.
estimation gets closer to (or achieves) (30) than FD estimatitis implementation is trivial in the time domain and could
in all cases. Nevertheless, the sequences given in this papera very useful sequence for many applications. For TD
are quite close to (30) as can be seen from the tables. Iestimation, the loss factor [i.e., the difference between (30)
example, forN = 40, the periodic code achieves 0.24 dBand (32)] of this sequence is plotted in Fig. 3. The loss factor
(Table VI) within the upper bound (30). for the FD is an upper bound for the loss factor for the TD.
One point to note is that for a givev and L, optimal Based on this and other numerical experiments, when a given
codes may be easier to find in the TD than in the FD, becaussgiuence is used for either TD or FD estimation, one has
the former involves minimizing. — 1 autocorrelation values N
(33) whereas the latter involves converging all spectrum SERrp < SERrp < —. (37)
amplitudes to a constant (34). Note that if L
Unfortunately, we have not been able provide a formal proof
¢(k)=0 fork=1,---,N—-1 (35)  for this. Assuming this is true, one can claim that our optimal
ﬁBdes for FD can also be used for TD estimation, with a
0[i_)erformance gap less thandB given in our tables. In other
words, in decibels,

then such a sequence satisfies (34), being perfect for
estimation ofL channel taps. Thus, (34) implies (33), but n
vice versa.
That is, a sequence optimized for the ™ is not necessarily SERtp — SERrp < st (38)

optimal for the FD. For instance, consider thé = 16

sequence constructed in [9, Fig. 6] for estimating five taps. Fbrappears that the FD estimation is inherently inferior to the
TD estimation, this sequence achieves the ideal performarid® estimation. However, the performance gap is less than
(30) of an SER of 5 dB (16/5). If the same sequence is usgddB. Therefore, the performance of the sequences given
for FD estimation, the output SER is found to be [from (30 this paper is quite close to the ideal performance (30).
and (31)] 1.35 dB. Similarlym-sequences are nearly perfecflso, the FD approach may be suited to applications where
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FFT processing is used anyway, such as orthogonal frequencixample: A sequence {1,0,1,1,0,0,0, 1, 0, 1, 0, 0} will

division multiplexing systems.

not satisfy (A.2), but its shifted version {1, 0, 0, 0, 1, O, 1,

0, 0, 1, 0, 1} will.

VI.

Channel estimation using a known training sequence ‘s
required in various communication systems. It has been shoygn

CONCLUSION

that, for CE with the DFT, optimal sequences must have the
smallest GLF. By exploiting invariance properties of the GLI9
and the bounds on the GLF for constant-weight sequences
optimal sequences up to length 42 have been found. While

the sequences are optimal for frequency domain CE, they Aethe be
marginally worse than optimal codes for time domain CE [9},V 1

Interestingly, for any sequence it appears that the SER for the
FD case forms a lower bound on the SER for the TD case.

APPENDIX
GENERATION OF CONSTANT-WEIGHT SEQUENCES

Leta = {ag, a1, -

Similarly, (A.3) will eliminate some of the time-reversal
(13) equivalent sequences.
In the software, the sequences are generated using nested
ops governed by, no,---,nw, With ny controlling the
Uter-most loop. Theith DFT bin can be expressed as

B, = fi(n1) + fa(ni,m2) +- - + fiw(n1,n2, -, nw).

ginning of the loop controlled by;; (1 < ¢ <
), the partial sum

D filna, e m)
k=1

can be computed and reused for all possible combinations
-,an—1}, a € {0,1}. Letthe Hamming of n,;, 1, -

-,nw. This allows for a time-efficient incremental

weight ofa be W and K = N — W be the number of zeros. DFT computation.

Below it is shown how distincta can be generated while
keepingw(a) = W and excluding theV — 1 cyclic shifts of
a. This will yield nearly an/NV-fold reduction in computations
(the periodic case) compared to simply generatingaalith
w(a) = W.
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Let the set of indexe8 < j; < jo,---,jw < N —1 denote rections/comments, which led to several improvements of the

the locations of ones, i.eqs;, =1for k =1,---,W. Without
loss of generality, consider only sequences with= 0 (this
follows from I1 in Section llI-A). Defineny, = jr+1 — jr — 1
fork=1,---. W —-1andnwyw = N — 1 — juy — j;. Clearly, [1]
for given N and W, any a can be uniquely described by the
set {ny}. (2]

Example: A sequence {1, 0, 0, 1, 1, 1, 0, 1, O, O} is 3]
described byn; =2, n, =0, n3 =0, ny = 1, andn; = 2.

Thus, all constant-weight sequences of weigfitcan be
generated by all combinations @f< n, < Kfor1 <k < W
satisfying

(4]
(5]

(6]
K.

W
> = (A1)

k=1 7]
However, to avoid the generation of cyclically shifted versions
of each sequence, the solutions of (A.1) are accepted only [§]
they satisfy

and [10]

n2 > nw. (A3) 11

Using the invariance operations (cyclic shift and time re-
versal, Section IlI-A), the search space can be partitioné’(f]

manuscript.
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