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Abstract—In this paper, we present new adaptive importance
sampling techniques based on stochastic Newton recursions. Their
applicability to the performance evaluation of communication
systems is studied. Besides bit-error rate (BER) estimation, the
techniques are used for system parameter optimization. Two
system models that are analytically tractable are employed to
demonstrate the validity of the techniques. As an application
to situations that are analytically intractable and numerically
intensive, the influence of crosstalk in a wavelength-division mul-
tiplexing (WDM) crossconnect is assessed. In order to consider
a realistic system model, optimal setting of thresholds in the
detector is carried out while estimating error rate performances.
Resulting BER estimates indicate that the tolerable crosstalk
levels are significantly higher than predicted in the literature.
This finding has a strong impact on the design of WDM networks.
Power penalties induced by the addition of channels can also be
accurately predicted in short run-times.

Index Terms—Communication system performance, Monte
Carlo methods, optical crosstalk, optical fiber communication,
wavelength-division multiplexing.

I. INTRODUCTION

PERFORMANCE evaluation and parameter optimization
are major issues in the design of communication links

and networks. The application of analytical techniques to the
performance evaluation of complex communication systems is
usually very difficult and often requires excessive simplification
of the system model. On the other hand, building a hardware
prototype is expensive, time-consuming, and relatively inflex-
ible. Owing to these difficulties, computer simulation is an
alternative that has received much attention in recent years.
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The bit-error rate (BER) is a fundamental performance pa-
rameter in many digital communication systems. Unfortunately,
Monte Carlo simulation requires large run-times to yield accu-
rate BER estimates. Therefore, it is desirable to find efficient
variance-reduction techniques, such as those derived from im-
portance sampling (IS), that lead to simulation speed-up.

IS has found application in a variety of fields, such as optical
fiber communications [1], [2], reliability [3], queuing [4], detec-
tion [5]–[7], fading channels [8], [9], and other issues in digital
communications [10]–[14].

IS involves running a Monte Carlo simulation where proba-
bility density functions (pdf's) are employed that are different
from the actual ones, so that the probability that an error occurs
during simulation increases. An unbiased BER estimate is then
obtained by weighting the results with the likelihood ratios of
the actual to the IS densities.

The principle of IS is simple, but its effective application to
particular systems is a research issue. The researcher must de-
cide which type of pdf to use in IS and then has to find the pdf
parameters that yield a minimum estimator variance.

In general, the performance of the IS estimator closely de-
pends on the choice of the IS pdf's and their parameters. Two
main methodologies have been developed for the optimization
of IS parameters: adaptive techniques [5], [8], [10], [15] and
techniques based on the large deviations theory [16]. The ad-
vantages of the former are its generality and applicability to a
wide range of systems. The latter often requires difficult anal-
ysis that is possible only for relatively simple systems.

This paper describes new adaptive techniques for IS param-
eter optimization. The techniques require some additional ana-
lytical work, but robust and easy-to-implement algorithms re-
sult. Therefore, simulation run-time is traded for algorithm de-
sign effort. A recently developed IS method with an adaptive im-
plementation, referred to as the g-method, is described in [5]. It
exploits knowledge of the distribution of the underlying random
variables more fully and has an estimation performance superior
to that of conventional IS methods. A related technique, and one
of fundamental value in parameter optimization in communi-
cation systems, is the solution of the inverse IS problem [5]. It
involves the minimization, through simulation, of a suitable sto-
chastic objective function with respect to parameters of interest.
These IS methods are described in Section II. Applications of
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the techniques to performance analysis and threshold optimiza-
tion are contained in Sections III and IV. In Section III, a val-
idation of adaptive IS is carried out using noncoherent on–off
keying (OOK) and differential phase-shift keying (DPSK) re-
ceivers in additive white Gaussian noise (AWGN) as examples.
Threshold optimization is demonstrated in the OOK receiver.
The DPSK receiver involves a two-dimensional IS parameter
optimization problem.

A wavelength-division multiplexing (WDM) network is
studied in Section IV. New results are obtained that have an
impact on the design of these networks. Using our IS methods,
we demonstrate that the influence of crosstalk in a multiwave-
length crossconnect is significantly lower than predicted by the
methods available to date. Besides, we develop an algorithm
that permits accurate evaluation of the system performance
when the detection threshold is optimized. In this way, the
effect of different system parameters, like the number of WDM
channels, can be studied in a realistic manner.

II. A DAPTIVE IS

A. Basics of IS

Consider estimating the quantity ,
where is a real-valued function. For notational conve-
nience, we assume that is a random variable with density.
The extension to random vectors is straightforward. An unbi-
ased IS estimator of is given by

(1)

where denotes a biasing family of densities param-
eterized by , the function is the likelihood ratio

used as a weighting function,
and is the IS simulation length. The notation
denotes that is drawn from a distribution with density. The
estimator variance is given by

(2)

where

(3)

and denotes expectation with respect to. If represents
the indicator of some event, say , then
and is an estimator of a tail probability.

The first step in the application of IS is to select a family of
densities that enhances the tail probability in an ade-
quate manner. There is an absolute optimum biasing density,
which is proportional to the original density in the region of
interest and is zero elsewhere. This density cannot be used in
practice because it requires previous knowledge of the quantity
to be estimated [11]. However, this gives us a general criterion
for the selection of an appropriate family of biasing densities:
the tail probability should be enhanced while, at the same time,
the biasing density should resemble the original density in the
region of interest as much as possible (except for a proportion-
ality constant). Together with this general criterion, also prac-

tical considerations are relevant, like the simplicity of the re-
sulting likelihood ratio .

Once is chosen, the IS problem centers around de-
termining the value of that minimizes the variance in (2) or
equivalently in (3). In an application, could represent a
set of parameters (as in Section III-B).

B. Adaptive IS

The algorithmic minimization of can be done in the fol-
lowing way. From (3), we have

(4)

where prime indicates derivative with respect to. Similarly

(5)

Estimators of these derivatives can be set up as

(6)
and

(7)
We can now use a root finding algorithm in the form of sto-
chastic Newton formula recursions to estimate an optimum.
Such an algorithm [6] is given by

(8)

where the rate factor controls convergence speed and noisi-
ness. As is typical of stochastic approximation procedures, con-
vergence of this algorithm is characterized by a small random
oscillation around the optimum value. For a large class of IS
problems, the function has a single minimum and the al-
gorithm can locate it.

Stochastic optimization of IS parameters has been suggested
before [8], [10], [15]. The algorithm therein uses the gradient de-
scent technique by estimating the first derivative of . There
is an essential difference between the procedures. The gradient
descent algorithm takes a step in the direction of negative gra-
dient, whereas in Newton recursion the steps are in the direc-
tion of the minimum of the function (see e.g., [17]). Further,
it is well known that the (deterministic) Newton algorithm en-
joys quadratic convergence provided the starting point is chosen
carefully. Obviously, for quadratic functions there is single-step
convergence. In the stochastic case, of course, this fast conver-
gence is slowed down by the nondeterministic nature of the es-
timates of the derivatives. A statistical analysis of the conver-
gence properties of the Newton algorithm is beyond the scope
of the present work.

An application of the Newton algorithm to a multidimen-
sional IS parameter optimization problem is described in Sec-
tion III-B.
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In many cases, the initial value ofcan be chosen so that the
biased density is similar to the original one. However, there are
problems where this may not work. To overcome this difficulty,
the initial values of the IS parameters can be chosen according
to the optimal values found when higher noise levels are present,
as discussed in [10] and [8].

Function minimization algorithms that do not require deriva-
tives, like Brent's method and the Golden Section Search
method, do not yield satisfactory results in the minimization of
the estimator variance.

C. The g-Method

In some applications, the system performance can be charac-
terized as a probability in the form , where

is a random variable with known density, andrepresents a
random variable or function of random variables. The variable

represents some system parameter, for example, a threshold
level in a digital receiver. It is assumed here thatand are
independent. Then, we can write

(9)

where is a continuous function of,
and the expected value is taken with respect to. In analogy
with (1), we have the IS estimator of as

(10)

The estimator exploits knowledge of the density of, with IS
being performed on . In contrast to this is the normal IS esti-
mator given by

(11)

where for and otherwise (this is
usually called the indicator function). Here, IS is performed on

and . It has been shown [5] that for any biasing scheme, the
estimator in (10) yields a smaller variance than that in (11).

D. Optimization of System Parameters

The differentiability, with respect to , of the estimator in
(10) permits optimization of the system parameters to achieve
a desired performance. Suppose thatis the desired value of
performance probability , which is obtained at

. To estimate , we form the stochastic objective function

(12)

and minimize with respect to using the algorithm

(13)

This approach was proposed in [5] as the inverse IS problem.
It was used therein along with adaptive biasing procedures to
determine threshold multipliers for a practically important class
of constant false alarm rate detectors. On the other hand, if

represents an error probability in a communication system that
is to be minimized, then the algorithm

(14)

can be used. The derivatives of the error probability estimates
are obtained by analytically differentiating the right-hand term
of (10) with respect to .

In some cases, it may not be possible to expressas a dif-
ferentiable function of , for example when . In
these situations, the indicator function can be approximated, for
the purpose of obtaining derivative estimates, by

(15)

which is the well-known sigmoid function used in training ar-
tificial neural networks. Using an approximation here does not
affect the unbiasedness of the estimator, but possibly its vari-
ance. The approximation becomes better for large values of the
parameter . Using (15) in (14), derivatives can be calculated.
An application of this is demonstrated in Section III-A.

III. V ALIDATION OF THE ADAPTIVE IS METHOD

In this section, we demonstrate the effectiveness and accuracy
of adaptive IS by applying the techniques to two communication
systems whose performances can be evaluated analytically. In
the first system, we also optimize the detection threshold by
using the approximation in (15).

A. Noncoherent OOK Receiver

Consider the well-known noncoherent OOK receiver with
ideal filtering (see e.g., [18]). At the ideal sampling instants, the
signal at the threshold comparator input is

(16)

where represents the received signal, with amplitude (the
variable represents the transmitted bit, taking the values 0 and
1 with equal probability), and the noise termsand are in-
dependent zero-mean Gaussian random variables with variance

. The random variable has a Rayleigh density when
and a Rice density when . The BER is then

(17)

where is the modified Bessel function of the first kind andis
the detection threshold. This expression can be easily calculated
numerically.

The IS simulation is carried out by using Gaussian biasing
densities with modified parameters for the noise terms. This is
a classical choice, which has often given relatively good results
and has the advantage of the simplicity of the likelihood ratio
(see e.g., [13]). When , the mean is kept at zero and the
variance is increased by the same amount for each of the noise
components, so that all directions undergo the same modifica-
tion. When , the component is not modified, but the
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Fig. 1. OOK optimum threshold search.

mean of takes a negative value. In this way, probability mass
is moved in the direction of the region of interest. In each of
the two cases, the optimum amount of parameter modification is
found with the one-dimensional adaptive IS technique described
in Section II-B. The first experiments were carried out with the
usual value of for the detection threshold. The BER esti-
mates, not shown here for reasons of space, were obtained in
very short run-times [a satisfactory accuracy was achieved with
a sample length of and only 15 iterations for the
IS parameter optimization in (8)]. The obtained estimates agree
with analysis [18] for a wide range of BER values.

The threshold that yields the minimum BER was ob-
tained with the stochastic Newton recursion formula [see
(14)] as explained in Section II-D. The derivatives in (14)
were not obtained from the available closed-form formula
for the BER in (17), but through derivation of the right-hand
term of (10) and using (15) in the place of . Al-
though the parameter in (15) has to be adjusted experi-
mentally, we shall see that one single value is adequate for
a wide range of signal-to-noise ratio (SNR) levels. Fig. 1
illustrates the convergence of the optimum threshold search
for two SNR levels. The dashed lines represent the relative
threshold values obtained from the usual Gaussian approx-
imation (GA). The solid curves contain the outcomes of a
Newton search algorithm that uses numerical integration. The
dotted curves indicate the values obtained with the presented
method, where the same value ofwas used for both SNR
levels. The figure shows that, although slower than numerical
integration, our method yields correct values of the optimum
threshold.

In Fig. 2 are shown the optimum threshold values obtained
after 100 recursions of (14) for a wide range of SNR levels.
The dashed curve gives the values obtained from the GA, the
solid curve shows the outcomes of numerical integration, and
the dots are the values generated with the presented adaptive IS
technique. A single value ofwas used for the whole range of
SNR levels. The close agreement between the values obtained
using adaptive IS and using numerical integration demonstrates
the validity of the approximation in (15) as well as the effective-
ness of the adaptive IS method for optimum threshold search.

Fig. 2. OOK optimum threshold values.

B. DPSK Receiver

Due to the symmetry of a DPSK receiver, we can assume that
the error probability when a ONE is transmitted is the same as
for a transmitted ZERO. The BER [18] is

(18)

where

(19)

and

(20)

The input signal amplitude is and the variables , and
are independent zero-mean Gaussian random variables with

variance . The value of corresponds to the noise power
at the band-pass filter output.

Like in the previous section, the IS experiment uses Gaussian
biasing densities with modified parameters. To enhance the de-
tection error probability, a quantity is added to (mean
translation), the standard deviations ofand are multiplied
by a common factor , and the remaining parameters are not
modified. Hence, the IS technique involves a two-dimensional
optimization (to determine the optimum values ofand ).

Define the column vector

(21)

The stochastic Newton recursion formula is then

(22)

In (22), is the Hessian matrix of, that is

(23)

where the notation indicates

(24)
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with . The last factor in (22) is defined as

(25)

The derivatives are obtained analytically and the estimators of
their expected values are implemented in parallel with the BER
estimation. The results are shown in Fig. 3 (dots) together with
the exact BER values (solid line) [18]. The IS estimates of the
BER show a very good correspondence with the exact BER's,
and each required only 3-s run-time on a Pentium 150-MHz
processor, using 10simulation samples.1

IV. A PPLICATION TO A WDM NETWORK

In WDM systems, several information channels can be trans-
mitted along the same optical fiber by using different wave-
lengths. The main advantage of WDM networks is that they
can be easily reconfigured to adapt to varying traffic demands,
without changing the physical network.

A fundamental element in WDM systems is the wavelength
router in an all-optical interconnection, also called optical cross-
connect. For this purpose, an arrayed-waveguide grating (AWG)
seems to be a good candidate [19]. In this device, crosstalk be-
tween different channels can arise. In principle, there will be
in-band and out-band crosstalk components originating from
channels having the same wavelength or different wavelengths,
respectively. In practical situations, however, out-band crosstalk
can be neglected with respect to in-band crosstalk due to the de-
multiplexing process before the receiver.

We shall employ the described IS techniques to determine
the BER degradation due to in-band crosstalk. Results will be
compared with the commonly used GA [20] and a recently
developed Chernoff bound (CB) [21]. Furthermore, we shall
present novel results on optimization of detector threshold
setting, which turns out to have a relevant impact on system
performance. Besides, an accurate assessment of the power
penalty due to the introduction of additional WDM channels is
given.

A. System Model

Consider the AWG schematic in Fig. 4. There are four nodes
connected to the crossconnect. Each node includes a multiwave-
length transmitter (four light sources and a multiplexer) and a
multiwavelength receiver (a demultiplexer and four photo-de-
tectors). The router can send any wavelength from any input
port to any output port [20].

Worst-case analysis implies considering that the interfering
channels are in the ON-state. The out-band crosstalk is ne-
glected. The phase of the desired optical signal is assumed to
be zero without any loss of generality, and the phases of the
interfering signals are independent and uniformly distributed in

. The optical field of the desired input channel is

(26)

1The algorithm was implemented in C-language.

Fig. 3. BER of a DPSK receiver.

Fig. 4. Schematic of an AWG. Thick and thin lines indicate signal and
crosstalk components, respectively. Only one wavelength is shown.

where is the information bit, is the pulse ampli-
tude, and is the symbol period. Each of the interfering
channels has an optical field

(27)

The factor accounts for the amount of crosstalk. Within the
symbol period, the phase is assumed to be constant, i.e.,

. Worst-case analysis implies, under both signal
hypotheses, that . The photocurrent
generated by a photodiode with unity quantum efficiency will
be then [20]

(28)

where is the AWGN of the receiver, which is independent
of the signal and the crosstalk components.

The usual GA [20] assumes that the third and fourth terms in
the above sum can be neglected (small). When the decision
threshold is set at half the ON-signal output current (sym-
metric setting, i.e., ) and the crosstalk components
are relatively small, it can be assumed that the system BER is
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equal to half the probability that the ON-symbol is detected er-
roneously. The BER is then given by

(29)

Using the same assumptions, the CB [21] is

(30)

where is the variance of the receiver noise.

B. BER Estimation Using IS

In contrast with the two approximate methods in (29) and
(30), the IS experiments include all the terms in (28). More-
over, error probabilities were obtained for both the ON
and the OFF signal hypotheses. Estimating the error
probability for the OFF case represents a challenge because this
probability possesses a very low floor when .

Due to the relative complexity of the densities of the cosine
functions in (28), the system was simulated with modified bi-
asing densities for the phases , of
the interfering components. All modified phase densities were
identical Gaussian pdf's, with means at, and with common
variance to be determined with the stochastic Newton formula
(8). In this way, the probability densities of the phases are con-
centrated in the region where the second term in (28) yields the
largest negative values and the third term yields the largest pos-
itive values. This strategy enhances the detection error proba-
bility: under hypothesis , the second term is much more
significant than the third term, so that smaller values ofwill
become more probable; when , the second term in (28) is
zero, therefore the third term will tend to increase and thereby

. When the system error probability is very small, the optimal
variance of the Gaussian densities can be expected to be much
smaller than , and therefore, the Gaussian tails outside the in-
terval will only affect the estimator accuracy when the
error probability is very high.

The g-method is applied to the AWGN component, hence,
reducing the IS parameter optimization problem to one dimen-
sion: the variance of the modified phase densities. The function
defined in Section II-C becomes

(31)

where for the ONE hypothesis and for the ZERO
hypothesis. The weighting function and its two first derivatives
can be easily found analytically.

In Section IV-D we shall show the difference between the
BER estimates provided by the approximate methods in (29)

and (30) and the accurate results obtained with our IS tech-
niques.

C. Realistic BER Estimation Through Threshold Optimization

The symmetric setting of the detection thresholdin this
WDM network is clearly far from the optimum, due to the fact
that the probability distributions are very different for both input
hypotheses. The system performance can be expected to im-
prove significantly if the threshold setting is optimized for the
expected crosstalk level. Actually, a realistic experimental set-
ting will require adjusting the threshold. Therefore, a good per-
formance analysis tool has to consider the WDM system with
an optimized threshold setting.

Invoking the parameter optimization method described in
Section II-D, we estimate the first two derivatives of the BER
with

(32)

and

(33)

where is the modified density of the phase of , and the
derivatives are with respect to.

The optimum threshold setting obtained from the above algo-
rithm can be used to determine the corresponding BER curve.
This is given in Section IV-D.

D. Results for the WDM Network

Let us first consider a four-channel WDM router. The receiver
noise variance is (i.e., dB), and
the threshold setting is symmetric. In Fig. 5, we show the BER
as a function of the crosstalk-to-signal ratio ;
the “ ” signs represent the values obtained with the GA (29),
the dots are the outcomes of the CB (30), and the solid line is
the result of applying our IS techniques. All the IS estimates
shown were generated using the same rate factorin (8) and
yielded an accuracy better than % for 95% confidence level.
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Fig. 5. BER calculated with the GA, the CB, and adaptive IS. The threshold
setting is symmetric andSNR = 21:1 dB.

A run-time of 10 s per value was sufficient to achieve this ac-
curacy.2 This high accuracy is maintained through low BER
values, indicating that the IS strategy is close to optimum.

As expected, the GA results in Fig. 5 coincide with the IS
results for very low crosstalk levels. The lack of tightness of
the CB can be observed: this upper bound is more than one
order of magnitude above the true BER at practical crosstalk
levels (around dB). The practical implication of
the results in Fig. 5 is that our techniques allow the network
designer to employ optical crossconnects with almost twice as
large crosstalk levels than those predicted by the approximation
methods.

As stated above, a more realistic system model implies con-
sidering an optimized threshold setting. The influence of the
threshold setting on the system performance is illustrated in
Fig. 6, where the optimum threshold value was obtained by
means of the IS-based technique described in Section IV-C.
Shown in this figure are BER curves for symmetric threshold
as well as for optimum thresholds obtained at three values [of
the crosstalk-to-signal ratio (XSR)]: , , and dB.
The number of channels and the AWGN level are the same as
in Fig. 5.

The influence of the threshold setting is quite significant.
We observe that with optimum threshold the tolerable crosstalk
level increases further by 3 dB, for a wide range of XSR values.
This is about a 5-dB improvement with respect to the value pre-
dicted by the CB. In conclusion, the symmetric threshold as-
sumption used in analyses available to date is quite pessimistic,
and our techniques demonstrate that the threshold optimization
has a major impact on system performance.

The optimum threshold search requires a relatively large
run-time since it implies estimating a BER several times. For-
tunately, the threshold that has been found to be the optimum
for a particular amount of crosstalk and receiver noise is close
to the optimum for a wide range of receiver noise levels. This
is shown in Fig. 7, which contains BER curves corresponding
to different SNR values, all obtained with the same threshold

2This run-time was also obtained on a Pentium 150-MHz processor with
C-language implementation.

Fig. 6. Effect of threshold optimization. The curve without label corresponds
to the symmetric threshold. The other curves were obtained with thresholds
optimized at the indicated XSR values.SNR = 21:1 dB.

Fig. 7. Dependence of optimum threshold on SNR.

setting (the optimum setting for dB and the
receiver noise variance used in Fig. 5).

An important parameter in WDM networks is the number of
channels. Our techniques can be used to predict the impact of
this parameter on the system performance. In Fig. 8, we ob-
serve the power penalty due to the introduction of an additional
channel. The curves were obtained with dB and
the threshold being optimized at dB for each of the
curves. In this example, the introduction of a fifth channel re-
quires an additional SNR of about 1 dB to maintain the BER at

.
The curves in Fig. 8 were obtained in about 9 min,3 which is

quite a reasonable run-time considering that all the beat-noise
components in (28) were included and a realistic threshold set-
ting was used.

V. DISCUSSION ANDCONCLUSIONS

We have demonstrated the validity and practical applicability
of new adaptive IS techniques for performance evaluation of

3On a Pentium 150-MHz processor with C-language implementation.
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Fig. 8. Impact of the number of WDM channels on the system BER.XSR =

�25 dB.

communication systems. The algorithm for optimization of IS
parameters, which is based on stochastic Newton recursions,
was applied to the performance analysis of the noncoherent
OOK and DPSK receivers in AWGN. The second system
involved a two-dimensional IS parameter optimization. In
both cases, the obtained BER estimates agreed with those
obtained by numerical integration (OOK) or exact analysis
(DPSK). Furthermore, accurate estimates were obtained in a
few seconds.

A stochastic Newton search was applied on top of the IS ex-
periment to determine the optimum detection threshold of the
OOK receiver. In this case, the indicator function was approx-
imated by a sigmoid function with parameter. The algorithm
converges for a wide range of values ofand, as expected, yields
an unbiased estimator.

An important problem considered was the performance
degradation in a WDM network due to crosstalk in optical
crossconnects. Worst-case analysis (i.e., all interfering channels
are ON) was carried out, and in contrast with the analyses in the
literature, we included all the terms in (28). An appropriate IS
biasing strategy was designed for both input signal hypotheses.
Moreover, stochastic Newton recursions were combined with
the g-method, reducing the IS parameter optimization problem
to a single dimension and improving the estimator accuracy
in the neighborhood of the BER floors. The short simulation
run-times (a few seconds) required to yield accurate BER
estimates demonstrated the effectiveness of the adaptive IS
techniques employed.

We considered a WDM crossconnect with four channels in
order to compare our estimates with the commonly used GA
(e.g., [20]) and the recently developed CB [21]. In Fig. 5, we
observe that at practical XSR levels, the GA is rather pessimistic
and the CB is still one order of magnitude above the true BER.

In a WDM experiment, the setting of the detection threshold
will not be symmetric. A more realistic performance evaluation
tool was achieved here that optimizes the threshold by means of
stochastic Newton search. The obtained results (Fig. 6) imply
that for a four-channel WDM crossconnect, the tolerable XSR
levels are about 5 dB higher than predicted in the literature. This
has significant implications on the design of WDM networks.

Finally, our adaptive IS techniques were used to accurately
predict the power penalty induced by the introduction of addi-
tional WDM channels in relatively short run-times, as shown in
Fig. 8.

The impact of additional disturbances on the performance of
the WDM crossconnect may be investigated in the future using
the adaptive IS techniques presented in this paper.
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