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Abstract—A two-stage adaptive multiuser detector in an addi-
tive white Gaussian noise code-division multiple-access channel is
proposed and analyzed. Its first stage is an asynchronous one-shot
decorrelator which in terms of computational complexity only re-
quires inversion of symmetric matrices for all users.
In addition, the inversions can be done in parallel, and the com-
puted results for one user can be reused by all other users as well,
resulting in a latency of only one bit, same as its synchronous coun-
terpart. The decorrelated tentative decisions are utilized to esti-
mate and subtract multiple-access interference in the second stage.
Another novel feature of the detector is the adaptive manner in
which the multiple-access interference estimates are formed, which
renders prior estimation of the received signal amplitudes and the
use of training sequences unnecessary. Adaptation algorithms con-
sidered include steepest descent (as well as its stochastic version),
and a recursive least squares-type algorithm that offers a faster
transient response and better error performance. Sufficient con-
ditions for the receiver to achieve convergence are derived. The
detector is near–far resistant, and is shown to provide substan-
tial steady-state error performance improvement over the conven-
tional and decorrelating detector, particularly in the presence of
strong interfering signals.

Index Terms—Adaptive multiuser detector, CDMA, one-shot
decorrelator, RLS.

I. INTRODUCTION

Since the optimum receiver in a multiple-access, Gaussian
noise channel was proposed ten years ago [1], a consider-

able amount of research in academia and industry has been de-
voted to what is usually referred to as multiuser detection. Its
common viewpoint is a joint detection of all the users by ex-
ploiting the structure of the multiple-access interference, rather
than focusing solely on the desired user and ignoring the rest.
The complexity of the optimum receiver is exponential in the
number of users, which makes it prohibitive in terms of prac-
tical implementation. The research efforts that followed were
devoted to detectors that provided significant improvement over
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the conventional one, but with a simpler structure in comparison
to the optimum receiver allowing thus for their practical realiza-
tion. An important example of such a receiver is a decorrelating
detector that performs inversion of correlation matrix of users’
signature sequences [2] so that its output is multiuser interfer-
ence-free and its bit-error rate is therefore independent of the in-
terfering amplitudes. In addition to this near–far resistance prop-
erty, the decorrelating detector does not require an estimation of
the received signal amplitudes. A somewhat inferior, but greatly
simplified form of a decorrelator is the one with the processing
window restricted to the bit of interest only (one-shot decorre-
lator). The one-shot decorrelator was introduced in [3] through a
two-asynchronous-user example, while independently the same
type of receiver was described in [4]. In the base station, with
active users in the system, all of them need to be demodulated,
and in order to avoid the degradation of the decorrelated users’
signal-to-noise ratios (SNRs), the processing window spans al-
most twice the length of the bit interval. The inclusion of the
entire bit of every user means that a cross
correlation matrix has to be inverted.

A minimum mean-square error (MMSE) detector which has
both the conventional receiver and the decorrelator as its lim-
iting cases was first proposed in [5]. It obtains a linear estimate
of the transmitted bits from the matched-filter output by mini-
mizing either a mean-squared error or a weighted-squared error
performance criterion. As the SNRs go to infinity, the MMSE
detector converges to the decorrelator. But as the SNRs go to
zero, the MMSE detector approaches the conventional detector,
which is better than the decorrelator for sufficiently low SNRs.
The complexity of the MMSE detector is linear in the number of
users, but it also requires knowledge of the received amplitudes.
Adaptive linear MMSE detectors that do not require estimation
of the received amplitudes were proposed in [6]–[8]. They, how-
ever, require the use of training sequences for the adaptive filter
coefficients to settle to their proper values.

Another approach in multiuser detection is based on interfer-
ence cancellation. It can be done in a single stage or in multiple
stages. In the first case, the users are ordered according to their
received amplitude levels and the strongest one, the one that pro-
vides the most reliable data bit estimate, is detected first. It is
then removed (subtracted) from the other users. Because it is
also the most damaging interferer, the overall multiuser inter-
ference level will be significantly reduced. The process is then
repeated with the next strongest user until all of them are de-
tected [9]. The technique requires very accurate estimates of the
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received amplitudes. Unless the subtraction is done in the proper
order of decreasing amplitude levels, the achieved performance
may be worse when compared to that of the decorrelator, which
uses no amplitude estimates.

Multistage detection was originally proposed in [10], where
the detector’s first stage is a bank of matched filters (conven-
tional detector), and in [11], where it is a decorrelator. The
cancellation occurs in the second stage, where the multiuser
interference is estimated from the first-stage (tentative) deci-
sions, and then subtracted from the received signal. When the
first-stage decisions are error-free, the detector achieves the per-
formance of the single-user channel. On the other hand, any er-
roneous tentative decision would double the interference from
the corresponding user. Such a detector utilizes fixed weights
that requires prior estimation of the received signals’ ampli-
tudes.

In searching for an adaptive structure that neither requires
training sequences nor prior estimation of the received signals’
amplitudes, an adaptive asynchronous version of a multistage
receiver in [11] is proposed and analyzed in this paper. This
nonlinear receiver uses the decorrelator as its first stage. It is
near–far resistant and belongs to the category of blind multiuser
detectors.1 To see this property, there is no need to derive an
expression for the near–far resistance of the receiver, which is
defined as the worst-case asymptotic multiuser efficiency. We
just need to show the asymptotic multiuser efficiency can never
be zero. In the absence of noise, the estimates of interferences
made by the decorrelating stage will be perfect and the interfer-
ences can be tuned out completely in the next stage, therefore
the bit-error rate (BER) will vanish. As a result, the asymptotic
multiuser efficiency will always be nonzero. The near–far re-
sistance of the receiver is therefore nonzero and the receiver is
near–far resistant.

The proposed receiver obtains tentative decisions from the
outputs of a one-shot decorrelator. In this paper, the decorrelator
is realized as a parallel structure which in terms of complexity
requires inversion of only symmetric matrices for
all users, and has latency of one bit only. Such decorrelator’s
architecture makes it suitable for parallel processing implemen-
tation in base stations.

For controlling the weights, the proposed adaptive part of the
detector uses a steepest descent algorithm that minimizes the
power at the output. The steady-state error performance is eval-
uated and comparisons are made with the conventional and the
decorrelating detectors. It is followed by an investigation on the
convergence and stability of the receiver. The conditions for the
detector to achieve convergence are derived, and their proper-
ties analyzed. Since the steepest descent algorithm requires the
knowledge of the channel statistics, a stochastic version of the
algorithm is considered, with the average of the error function
computed over a number of iterations. Averaging reduces the
variance of the error function estimate, but entails storage re-
quirement. Additionally, the choice of the step size of the algo-
rithm enables a tradeoff between the speed of convergence and
the average residual error.

1A linear blind multiuser detector for a single-user detection (decentralized
detector) that is near–far resistant and requires no more knowledge than the
conventional single-user detector was reported in [12].

As an alternative approach, the adaptation of the weights
using the recursive least squares (RLS)-type algorithm based
on the one described in [13] is also presented. The increased
computational complexity of the algorithm provides a superior
speed of convergence for a given amount of residual error.

The paper is organized as follows. The general description of
the receiver is introduced in Section II. The parallel structure of
the decorrelator is presented in Section III. The adaptation pro-
cedure is described in Section IV. Analytical evaluation of the
steady-state error probability is given in Section V. The conver-
gence of the adaptation procedure is proved in Section VI, and
sufficient conditions for convergence are derived. The impact of
parameters on convergence speed is discussed. The superiority
of the RLS algorithm is also proved there. Section VII provides
several numerical examples and a discussion.

II. PRELIMINARIES

In a multiuser environment, users share the same channel
with the unit energy signature rectangular waveform

of the duration assigned to each of them. The infor-
mation bits for the symbol interval have the
same duration . The waveform at the input of the receiver
that has a bank of matched filters as its front end is expressed as

where is a zero-mean, white Gaussian noise with the
two-sided power spectral density , and and are the
received energy and relative delay for user, respectively. While
it is assumed that precise relative delay estimates are available
for all users, their amplitudes are considered to be unknown to
the receiver. In reality, they are slowly time varying; however,
here they are assumed to remain unchanged over the transmis-
sion horizon for each user.

Without loss of generality, the attention will be on detection
of user 1, and it will be assumed that

. The sampled output of the matched filter of
bit of user 1 is then

The partial cross correlations and , for ,
are

Also, is a zero-mean Gaussian random variable with vari-
ance . Using the vector notations where
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and

the matched filter output is expressed as

(1)

The multistage detector introduced in [10], forms an estimate
of the multiuser interference as the weighted vector of tenta-
tive decisions on symbols that interfere with directly, and
then subtracts this estimate from the matched filter output. The
generic expressions for the final decision statistics and the
corresponding final decision for bit of user 1 are

(2)

where , ,
is the vector of tentative decisions affecting bitof user 1, and

, , are the corre-
sponding weights. In [10] and [11], the tentative decisions are
obtained either from the decorrelator in the first stage or from
the output of the bank of matched filters, while the weights are
formed using the estimated received signals’ amplitudes.

In this paper, the tentative decisions will be provided by the
one-shot decorrelator. The vector of the one-shot decorrelator
outputs and the corresponding tentative decisions
affecting bit of user 1 are expressed as

(3)

where , , ,
and the noise at the output of the decorrelator

, , is a zero-mean Gaussian
vector having the covariance matrix , whose diagonal ele-
ments are evaluated in the following section.

The one-shot decorrelator was originally presented in [3]. The
proposed parallel structure realization of such a decorrelator,
which is particularly suitable for the multistage detection, is de-
scribed next.

III. PARALLEL DECORRELATORSTRUCTURE

To facilitate the description of the proposed parallel struc-
ture of the decorrelator, the signature waveform of each user in
the th bit interval of user 1, , is shown in Fig. 1
as being partitioned into blocks according to users’ relative
delays. Each block of time , can
then be viewed as a -user synchronous channel with unit-en-
ergy rectangular signature waveforms

, where

otherwise

otherwise.

Fig. 1. Partition of theith bit interval of user 1 intoK blocks.

Fig. 2. Proposed decorrelator structure.

The partial energy of within a particular block is given
as

which, given the assumption that is rectangular2 is equal
to .

The received signal in the block can then be
expressed as

The essential structure of the decorrelator is shown in Fig. 2
in which the vector of sampled outputs of the bank of matched
filters for the th block is

2The assumption implies thate is independent ofk, although the analysis
can be extended to a more general case in which the partial energy within each
block depends onk.
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where is the symmetric cross correlation matrix of
signature waveforms in which the th element
is defined as

and the diagonal elements are equal to one. Additionally,
, , ,

and , is a Gaussian noise vector
with a covariance matrix . (In
all notations the superscript denotes th block, while the
subscript usually refers to a particular user and the time index
will be dropped whenever possible).

Assuming that is invertible and , the decorre-
lated vector output for theth block is given as

in which the th element

(4)

and

is a Gaussian noise vector with a covariance matrix
.

The next step in obtaining the decorrelator output for user
is to consider the vector

(5)

in which each element represents one ofnonoverlapping
blocks corresponding to the bit of user ,3 and where

and

Since , the covariance matrix of
is

where is the th diagonal element of the matrix .

3The argument(i + 1) in some of the elements ofzzz (all belonging to user
k) refers to the(i+1)th interval along the time axis, not to theith information
bit; the “inconsistency” is due to the alignment of theith interval(t 2 [(i �
1)T; iT ]) with the ith bit of user 1.

The decorrelator output for user, , can then be constructed
as the weighted sum of the elements of the vector

(6)

where , and .
The optimal selection of the weights minimizes the bit-

error probability of the tentative decision4

at the decorrelator output. The evaluation of the optimal weights
can be done in a straightforward, although somewhat tedious
manner by minimizing the error probability at the decorrelator
output

in error

where

which in this case is the same as maximizing the SNR. By rec-
ognizing, however, that the elements of represent inde-
pendent observations of , the expression for the optimal

can be written directly, as shown in Appendix A, using the
well-known solution for the MRC5 [14]. One can also observe
that premultiplying the optimum values of the weightsfrom
(A1) by any nonzero constant will not change the error proba-
bility. Here, the constant is chosen as

so that when the final results are substituted into (6), theth
element of the decorrelator output vector, shown in Fig. 2,
where , becomes

(7)

The variance of the noise component is and
in error . The vector in (3),

required for the second stage of the proposed receiver, is then
easily created. For processing one bit of allusers, the pro-
posed realization of the decorrelator requires the inversion of
matrices with the dimensions . The procedure, however,
can be done in parallel resulting in a complexity of per
each inversion. Additionally, unlike [4], the latency is only one
bit interval.

In Fig. 2, one also can observe that by using a linear combi-
nation of the matched filters’ outputs, a sampled vector output
of the conventional CDMA detector is
obtained. For the th user, we have , where

4As mentioned toward the end of Section II, the tentative decisions are ob-
tained from the decorrelator’s outputs.

5This was pointed out by an anonymous reviewer.
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The conventional output is needed to form the final decision
statistics given by (2).

IV. A DAPTATION PROCEDURE

The proposed detector evaluates the weights in (2) in
an adaptive manner making received signal amplitudes estima-
tions unnecessary. An algorithm which minimizes the output
power is employed for controlling the weights. A
simple physical justification can be found by observing the
output signal-to-multiuser-interference-plus-noise ratio (SINR)
as a relevant performance measure, which is expressed as

(8)

It is obvious that the output SINR will be maximized when
the weights are selected in such a way that the output energy

is minimized. The weights that achieve this are ob-
tained by an iterative search

(9)

where is a positive number. The algorithm, by minimizing the
output power, forces the correlation between the desired output
signal and vector of tentative decisions of interfering signals
to zero. In a practical implementation, one would replace the
statistical expectation in (9) by time averaging, or preferably
by its instantaneous estimate . Therefore, in the latter
case, the weight update equation becomes

(10)

As an alternative, an RLS-type adaptive algorithm is consid-
ered, in which at time the weight vector is chosen that
minimizes or in a prac-

tical implementation , where
is called the forgetting factor and , i.e.,

(11)

The solution of the above equation is

(12)

where

and

(13)

and and follow the recursive equations

and

The inverse in (12) can be obtained using the matrix inversion
lemma

where

and

The weight update equation is [14, pp. 658]

(14)

where

V. STEADY-STATE ERRORPERFORMANCE

To make an error performance comparison of the proposed
multistage adaptive detector with that of the conventional re-
ceiver and the decorrelating detector, the steady-state behavior
of the former is considered.

The steady-state values of the weights after completion of the
iterative search in (9) are evaluated as follows:

(15)

It is easy to show that , for ,
, so the first of the two expectations in (15) is

(16)

Matrix is diagonal; therefore, the system of
linear equations (15), together with (16), gives the

steady-state values of the weights affecting the first output as

(17)

The expressions for the expectations in (17) are shown in Ap-
pendix B.

By taking the expectation of (11), one can show that the
steady-state values of the weights for the RLS-type of algorithm
are the same as the one in (17).
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The output error probability is evaluated as follows:

in error

Since , and

the above error probability can be written as

Finally

(18)

where is the integral of the -variate
Gaussian density function

VI. CONVERGENCE ANDSTABILITY

As with any adaptive algorithm, we consider the two major
issues: convergence and stability. To analyze the convergence
and stability of the algorithms considered, we take a closer look
at the power as a cost function. We examine the parameters af-
fecting the convergence to the minimum cost, as well as the
range of these parameters that would guarantee stability.

For the steepest descent algorithm, the cost function to be
minimized is expressed as

(19)

Denoting the optimum6 weight vector by , the corresponding
(lowest) value of the cost function, is

(20)

To assess the speed of convergence, we consider the speed
with which approaches , or the excess cost
approaches zero.

(21)

One can express the excess cost in terms of the difference of the
weights. Let . The above equation becomes

(22)

To examine the parameters affecting the convergence of the al-
gorithm, we will derive a recursive relation for the excess cost.
We can rewrite (9) as

it follows that

(23)
Therefore, the excess cost may be obtained recursively as

(24)

Denote by and the minimum and the maximum eigenvalue,
respectively, of a symmetric positive definite matrix. Then

(25)

Applying (25) repeatedly to (24)

(26)

The excess cost

if
(27)

Then, it follows that

if (28)

6Optimum in this context refers to the weight that will attain the minimum
cost function.
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Fig. 3. Error probability of user 1 forK = 2, � = 0:2, � = 0:6, e =
0:4. (i) a =a = 0:6. (ii) a =a = 0:6.

The last inequality is satisfied if either and ,
which is impossible, or and .7 From (22),

are the sufficient conditions for conver-
gence of the weights to their steady-state values. The smaller
the eigenvalue spread, the largercan be, resulting in higher
convergence speed.

The analysis of the RLS algorithm is done by comparing the
expression for its error function, given by (14), to that of the
stochastic gradient algorithm, given by (10). The difference be-
tween the above expressions is in the occurrence of the term

in the former, such that in the steady state

So following similar steps leading to (23), we get

for the RLS algorithm, and hence the excess cost

(29)

At steady state . Therefore, as it is well known for
the RLS algorithm [16], the eigenvalue spread will be smaller
resulting in its faster convergence.

VII. N UMERICAL EXAMPLES AND DISCUSSION

The steady-state error performance [with the optimal weights
given by (17)] is illustrated in Figs. 3–5, while the transient error
performance is shown in Figs. 6–8. In all the examples, the SNR
for user is defined as . The relative energy
in the two-user examples is defined as .

Fig. 3 shows the probability of error for user 1 versus .
The case labeled (i) in the same figure corresponds to a rela-

7An alternative derivation can be obtained in a similar fashion as done in [15].
If � is chosen to take any value within the range(0; 1), the condition on� for
the system to achieve convergence and stability is

� � (2=(1+ (K � 2)d ))

whered = max jd j, whered is the(i; j)th element of matrix
Ef~bbb ~bbb g.

Fig. 4. Error probability of user 1 forK = 2.

Fig. 5. Error probability of user 1 forSNR = 8 dB. (i) K = 2, � =
0:2, � = 0:6, e = 0:4. (ii) K = 3, Gold sequences (The three-user case
outperforms the two-user case simply because of the parameters we are using.
This is not true in general.).

tively weak level of interference. It describes a rather unfavor-
able scenario for this multistage detector due to tentative deci-
sions which are unreliable. This results in the performance of the
detector at the higher values of to be somewhat inferior to
the decorrelator, whose performance is insensitive to the level of
interference. The multistage detector, however, outperforms the
conventional detector. When the interference is stronger [case
(ii)], due to the reliable tentative decisions, the multistage de-
tector by far outperforms the other two, wherein the error prob-
ability (not shown in the figure) of the conventional receiver ex-
ceeds 0.1.

Fig. 4 shows the probability of error for user 1 when its
energy and the energy of the interferer are the same, and Gold
sequences of length 7 are used as the signature sequences.
The worst case and the average error performance over the
values of the relative delay are shown. In this scenario, the
multistage detector outperforms both the conventional and
the decorrelating detector, and its average performance—due
to the good cross correlation properties of the two signature
sequences used—is very close to the single user-bound.

Fig. 5 shows the probability of error versus the relative en-
ergy of interferer(s) for the fixed to 8 dB. For both the
two-user scenario [case (i)] and the three-user scenario with
Gold sequences of length 7 and , [case
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Fig. 6. Transient-error probability for� = 0:05.

(ii)], the multistage detector clearly outperforms the decorre-
lator, and approaches the single-user bound for the relative in-
terference level above 5 dB (Here, the error probability of user
1 for the two-user scenario is lower than that of user 1 for the
three-user case simply because of the parameters we are using.
This is not the case in general).

In Figs. 6–8, the transient error probability curves were ob-
tained by ensemble averaging over at least 50 000 independent
trials of the simulation. The initial value of the weight vector
was set to zero in each trial. Also dB, ,

, , and . The updating rule in (9)
used in the simulation was implemented as a sliding window of
length , i.e.,

Fig. 6 demonstrates the effect of the window length on the
error, with the step size fixed at . When
the steady-state error value is reached after about 50 iterations,
while the stochastic gradient version ( ) exhibits notice-
able residual error. (For a smaller step size, e.g., , no
residual error was observed regardless of the value of, but as
expected the convergence was very slow—requiring about 150
iterations).

In Fig. 7, the effect of the value of the step size is examined,
with which entails no residual error. The large step
size when compared to does not offer any
improvement in the convergence speed, because during the tran-
sient interval only a fraction of the length of the smoothing filter
(window) is included.

Finally, in Fig. 8, it can be observed that the stochastic
gradient algorithm, whose step size is set to 0.01, pro-
vides roughly the same steady-state error performance as the
RLS-type algorithm, whose . The convergence speed
superiority of the latter is evident. The stochastic gradient
algorithm with provides approximately the same
convergence rate as the RLS-type algorithm. The penalty that
the former pays, however, is the substantially increased residual
error.

VIII. C ONCLUSIONS

An analysis of a steady-state and transient error performance
of a two stage multiuser detector is presented. The detector does

Fig. 7. Transient-error probability forW = 100.

Fig. 8. Transient-error probability.

not require prior estimation of the received signal amplitudes, or
the use of training sequences. Its first stage is a one-shot decorre-
lator with a parallel structure that is particularly suitable for base
station detection, and only requires an inversion of ma-
trices in a user system. The steady-state error performance of
the detector is significantly better than that of the conventional
receiver and generally outperforms the decorrelating detector as
well. The stochastic gradient algorithm trades the speed of con-
vergence with the residual error, while the RLS-type algorithm
demonstrates a clear advantage over the former with regard to
the speed of convergence for a given value of the residual error.

APPENDIX A

Define , , , after premultiplying
(5) to obtain equal noise terms variances, we obtain

Applying MRC on the elements of

where , we obtain the solution for the optimum
in (6) as

(A1)



ZHONG et al.: ADAPTIVE MULTIUSER CDMA DETECTOR FOR ASYNCHRONOUS AWGN CHANNELS 1549

APPENDIX B

The elements on the main diagonal of are
equal to unity, while the off-diagonal ones are

Each probability term in the above summation defines four in-
tegrals. Therefore

(B1)

where denotes the bivariate Gaussian density function of
random variables and , and is an appropriate
rectangular region of integration.

The diagonal elements of are

in error

(B2)

where .
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