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Efficient Time Slot Assignment Algorithms for TDM
Hierarchical and Nonhierarchical Switching Systems

Kwan L. Yeung

Abstract—Two efficient time slot assignment algorithms,
called the two-phase algorithm for the nonhierarchical and the
three-phase algorithm for the hierarchical time-division multiplex
(TDM) switching systems, are proposed. The simple idea behind
these two algorithms is to schedule the traffic on the critical
lines/trunks of a traffic matrix first. The time complexities of these
two algorithms are found to beO(LN2) and O(LM2), whereL
is the frame length,N is the switch size, andM is the number
of input/output users connected to a hierarchical TDM switch.
Unlike conventional algorithms, they are fast, iterative and simple
for hardware implementation. Since no backtracking is used,
pipelined packet transmission and packet scheduling can be per-
formed for reducing the scheduling complexity of a transmission
matrix to O(N2) and O(M2), respectively. Extensive simulations
reveal that the two proposed algorithms give close-to-optimal
performance under various traffic conditions.

Index Terms—Heuristic, scheduling algorithm, TDM switching
system, time slot assignment.

I. INTRODUCTION

T IME-DIVISION multiplex (TDM) switching has been
widely employed in terrestrial and satellite communica-

tion networks to concentrate traffic from low bandwidth sources
onto high bandwidth lines [1]–[3]. A TDM switching system
can be either nonhierarchical or hierarchical. A nonhierarchical
TDM switch is shown in Fig. 1. The switching operation is
made up of frames and each frame is divided into time slots.
Each time slot can accommodate one packet. A switch config-
uration is an interconnection pattern of the switch such that at
most one packet can be transmitted by an input and one packet
can be received by an output. An switch has a switch
configuration that permits up to packets to be transmitted
in a conflict-free manner from inputs to outputs in each time
slot. A switching conflict occurs if two or more packets are
transmitted to the same output in the same time slot.

The TDM hierarchical switching system was first proposed
in [4]. Subsequent studies can be found, e.g., in [5] and [6]. The
TDM hierarchical switching system has a three-stage switching
structure with input users and output users as shown in
Fig. 6. The first and the third stages consist of multiplexers and
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Fig. 1. AnN �N nonhierarchical TDM switching system.

demultiplexers. The second stage has the same structure as that
of the nonhierarchical switch. If the number of the inputs and
outputs for all multiplexers and demultiplexers are equal, a hi-
erarchical TDM switching system degenerates into a nonhierar-
chical one.

A traffic matrix is used to represent the total amount of traffic
from all inputs to all outputs of a switch (a formal definition
will be defined later). For a given traffic matrix, the time slot
assignment (TSA) problem is to find a conflict-free assignment
of packets to slots such that the frame length, i.e., the number of
time slots required for switching the traffic from switch inputs
to outputs, is minimized. An optimal TSA is an assignment that
has the minimum frame length over all possible conflict-free
assignments.

Time slot assignment as well as traffic scheduling problems
have also been broadly studied in other areas, including design
of multirate TDM video switch [7] and input-buffered packet
switches [8]–[14]. There is also a growing interest in using TSA
algorithms to provide quality-of-service guarantee [15], [16].

For both hierarchical and nonhierarchical switching systems,
many optimal algorithms with polynomial time complex-
ities have been proposed [4], [1], [2], [17]–[20]. Most of
them use a maximum cardinality algorithm known as the
system of distinct representatives (SDR) [1], or maximum
size matching algorithm. For nonhierarchical TDM switching
systems, an algorithm with complexity , where
is the number of nonzero entries in the traffic matrix, was
proposed in [2]. Using the implementation of the maximum
matching algorithm in [21], an algorithm with complexity

was reported, where is the frame length
of the optimal time slot assignment. For hierarchical TDM
switching systems, an algorithm with time complexity of

was studied in
[18], where is the total number of input users. In [22], a
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slightly improved algorithm with time complexity was
proposed using a more efficient implementation of the max-
imum size matching algorithm. Algorithms using the neural
network approach have also been reported [6]. For high-speed
communications networks such as ATM, the complexities of
those reported algorithms are too high to be run in real-time and
are too complicated to be implemented in hardware. Therefore,
a near-optimal algorithm with a much lower time complexity
that can be easily implemented in hardware is desirable.

In this paper, two efficient heuristic TSA algorithms, the two-
phase algorithm for nonhierarchical and the three-phase algo-
rithm for hierarchical TDM switching systems, are proposed.
They are designed based on the idea that the traffic on the crit-
ical lines/trunks (to be defined) of a traffic matrix should be
scheduled first. The time complexities of the two proposed al-
gorithms are and , respectively, where is
the frame length, is the switch size, and is the number of
input users. Since no backtracking is used in the proposed al-
gorithms, scheduled packets for time slotcan be transmitted
while the algorithm is scheduling for time slot . In other
words, packet scheduling and transmission can be operated in
a pipelined fashion. Therefore, the complexity for scheduling a
transmission matrix is only or . The parameter

will not affect the scheduling complexity in each time slot.
Because of the iterative nature of the two proposed algo-

rithms, they are simple for hardware implementation and thus
very suitable for high-speed switching networks. Extensive
simulations reveal that the two-phase and the three-phase
algorithms are very efficient. When switch sizeis large, we
found that for nonhierarchical switching systems, the prob-
ability that the two-phase algorithm failed to generate optimal
TSAs, is almost independent of , and has a very low value
of . For hierarchical switching systems, the
percentage increase in frame length as a result of nonoptimal
TSAs by the three-phase algorithm is only about 0.1%.

This paper is organized as follows. In the next two sections,
we focus on the designs of the two-phase and the three-phase
algorithms, respectively. For each section, we start with a formal
problem formulation and then follow by a detailed algorithm
description. The performance of the proposed algorithm is then
studied by simulations.

II. NONHIERARCHICAL SWITCHING SYSTEMS

A. Problem Formulation

Consider an time multiplexed switch as shown in
Fig. 1. Packets from all inputs can be represented by a traffic
matrix , where is the number of packets to be
transmitted from input to output . Let the packets to be trans-
mitted in time slot be represented by a transmission matrix

, where if a packet is scheduled to transmit

from input to output in the current time slot; otherwise,
. For a conflict-free transmission, each row and each column of

can have at most one 1. For a given traffic matrix, the time
slot assignment is to decomposeinto a series of transmission
matrices, one for each time slot, or ,
where is the frame length, or the length of a time slot assign-

Fig. 2. An example traffic matrixD for a4�4 nonhierarchical TDM switch.

ment. We further let denote the (remaining) traffic matrix at
the end of time slot , i.e., . An optimal time
slot assignment is an assignment that has the minimum length

such that .
Let and be the th row sum and the

th column sum of the traffic matrix . The following theorem
has been shown in [23].

Theorem 1: The necessary and sufficient number of
time slots required to transmit a traffic matrix is

.
An optimal time slot assignment algorithm is an algorithm

that finds an assignment with in all cases.

B. Two-Phase TSA Algorithm

Let a line be a row or a column in a traffic matrix . Let a
critical line be a line which has the maximum traffic. Consider a

traffic matrix as shown in Fig. 2. The row and the column
sums of are shown at the right-hand side and the bottom of

, respectively. We can see that row 3 and column 4 are critical
lines with (maximum) traffic 6.

Let and be the th row sum and the
th column sum of the traffic matrix . Further let

. A critical line of matrix
(at the beginning of time slot ) is a line with row sum or
column sum equals to . From Theorem 1, the following
corollary can be easily shown.

Corollary 1: The necessary and sufficient condition for an
algorithm to obtain an optimal time slot assignment is that
for each time slot, exactly one packet is transmitted from
each critical line of the traffic matrix . In other words,

must be satisfied for all .
We can see that it isnot necessary for an optimal TSA algo-

rithm to find a transmission matrix with maximum cardinality
in each time slot. This is, however, the approach used by most of
the exsiting optimal TSA algorithms. The algorithms for finding
a transmission matrix with maximum cardinality [1] use back-
tracking and their time complexities tend to be very high. From
Corollary 1, we can see that a more efficient optimal algorithm
can be designed by only focusing on scheduling packets on the
critical lines.

In this paper, we propose an efficient time slot assignment
algorithm based on the observation that packets on critical lines
should have scheduling priority over those on the noncritical
lines. We call it the two-phase algorithm because for scheduling
each transmission matrix, the algorithm consists of two phases,
where

• phase 1 schedules the packets on critical lines of the traffic
matrix;

• phase 2 schedules the packets on the remaining noncritical
lines.
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The two phases of the two-phase algorithm are both imple-
mented using an iterative algorithm called maximum remaining
sum (MRS) [24]. The MRS algorithm is an efficient heuristic
algorithm for finding a matrix with maximum cardinality. Un-
like the system of distinctive representative [1] algorithm, no
backtracking is needed and its time complexity is found to be
only . During its operation, scheduling priority is given
to a nonzero traffic matrix entry , where the total number of
zero entries in row and column is maximum among all other
rows and columns. The idea is to give priority to the entry which
has the least assignment/scheduling choices (becasue it has the
largest number of zero entries, where a zero entry means there
is no traffic there for you to schedule).

The detailed operations of the two-phase algorithm are de-
scribed by the following pseudocodes and the MRS algorithm
is also summarized below.

Two-Phase TSA Algorithm
Inputs:
Outputs:
———————————————————————-
1. ;
2. Find all critical lines in ;

Set all entries of to 0 except those on the critical lines;
3. Run MRS algorithm with input and ;
4. ; for all , set the corresponding lines in

to 0;
5. Run MRS algorithm with input and ;
6. ;
7. If ; EXIT;

Else ; goto step 2.

MRS Algorithm
Inputs: and
Outputs:
———————————————————————-
1. Find and , the number of nonzero entries for each line

of ;
2. Find the line with minimum number of nonzero entries.

If the line is a row, denote it by and goto step 3.
If the line is a column, denote it byand goto step 4;

3. Find column such that ;
4. Find row such that ;
5. and set all entries in rowand column of to 0;

and for all ’s.
6. Goto step 2 until no packet can be scheduled into.

Steps 2 and 3 of the two-phase algorithm correspond to phase
1, and steps 4 and 5 correspond to phase 2. Steps 2–7 execute

times for scheduling transmission matrices, one for each
time slot. In each scheduling iteration, the MRS sub-routine is
executed twice (one for each phase) and the time complexity for
MRS is [24]. Therefore, for a given traffic matrix, the
overall time complexity of the two-phase algorithm is .

On the other hand, the two-phase algorithm does not per-
form any backtracking. That means once a packet is sched-
uled/assigned to a transmission matrix, its assignment will not

be changed by the subsequent scheduling assignments. There-
fore, packet transmission and packet scheduling can be oper-
ated in a pipelined fashion. That is after each scheduling itera-
tion, say the th iteration, the scheduled packets in transmission
matrix can be immediately transmitted while the next itera-
tion for scheduling transmission matrix is being carried
out. Because scheduling and transmission are now overlapped
in time, the complexity for scheduling a single transmission ma-
trix is only . It should be noticed that this pipelined op-
erationcannotbe used by algorithms using backtracking. For
a backtracking-typed algorithm, no packet can be transmitted
until the transmission matrices for the whole traffic matrix are
obtained.

C. Some Implementation Consideration

Unlike the maximum size matching algorithm [1], [21], the
two-phase algorithm is a fast and iterative heurtistic. It is very
simple to implement in hardware. The complexity of the two-
phase algorithm is dominated by the function MRS. A simple
special vector processor [24] can be used for updating the traffic
matrix, the row sum and the column sum in step 6 of MRS.
Then step 6 can be carried out in a constant number of steps
which is independent of switch size. Also simple combinato-
rial logic can be used to perform the vector comparison in steps
2–4. The time complexity of the MRS algorithm can then be re-
duced to and the time complexity of the two-phase algo-
rithm for scheduling a transmission matrix also becomes .
To further speed up the algorithm, one can follow the approach
of using hardware implementation for an iterative algorithm as
reported in [11] and [9].

D. An Example

To illustrate the two-phase TSA algorithm, consider a 44
TDM switch with a traffic matrix given by

The row and column sums of the traffic matrix are shown at the
right-hand side and the bottom of, respectively. Row 3 and
column 4 are critical lines. Following step 2, a running matrix

is constructed.
-
-

-
- - -

Then we excecute the MRS algorithm in step 3. The number
of nonzero entries of the critical lines are found by step 1 of
MRS and are shown next to row 3 and column 4. Step 2 of
MRS identifies column 4 is the line with the minimum nonzero
entries. Then by step 4, row 3 is chosen and a packet from input
3 to output 4 is scheduled
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Since no more packet in can be scheduled, exit MRS algo-
rithm and return to the two-phase algorithm at step 4. We obtain

-
-

-
The number of nonzero entries of each row and column are again
shown next to their respective lines. Next, we call the MRS algo-
rithm again at step 5. Column 2 of is chosen since it has the
minimum number of nonzero entries. Similarly row 1 is chosen
and a packet from input 1 to output 2 is scheduled. The resulting
transmission matrix is

Follow the MRS algorithm, the updated matrix is obtained
and then we proceed to the second iteration of MRS.

-

-
-

- -
Finally, the transmission matrix for the first time slot is obtained

The traffic matrix is then updated in step 6 of the two-phase
algorithm.

Skipping the remaining steps, the transmission matrices for
the subsequent time slots are found to be

Note that the total number of time slots required for this ex-
ample is 6 and is equal to , the maximum line traffic of the
original . Therefore, from Theorem 1, the resulting time slot
assignment is optimal.

E. Performance Evaluation

In this section, the performance of the two-phase TSA algo-
rithm is studied by simulations. To examine the effect of giving
priority to critical lines, two simplified versions of the two-phase

Fig. 3. Probability that the proposed algorithms failed to generate optimal TSA
versus switch sizeN ;n = 4.

algorithm are constructed. We call them the phase-1-only algo-
rithm and the phase-2-only algorithm. The phase-1-only algo-
rithm consists of steps 1–3, 6, and 7 of the original two-phase
algorithm, while the phase-2-only algorithm consists of steps 1
and 4–7. We can see that the phase-1-only agorithm can take ad-
vantage of scheduling critical lines first, but not the throughput
maximization offered by the second phase. And the vice versa
is true for the phase-2-only algorithm.

Let the number of packets from inputto output be
a random integer uniformly distributed between 0 and. The
input traffic load increases asincreases. Let be the
difference in frame length generated by a heuristic algorithm
and that by an optimal algorithm. if an optimal
assignment is obtained using a heuristic algorithm. Otherwise,

. Fig. 3 shows in logarithmic scale that , the
probability that a heuristic algorithm failed to generate optimal
TSA (i.e., ), versus switch size for . Each
point of the simulation results shown in the figure is obtained by
averaging over one million traffic matrices.

For the phase-1-only algorithm, the probability of generating
suboptimal TSA increases almost linearly with switch size.1

For the phase-2-only algorithm, is the highest and it has a
value between 0.22–0.29. It shows that scheduling the traffic on
the critical lines first is very important. For the two-phase al-
gorithm, is the lowest and when is large, is almost
independent of the switch size. When switch size
is found to be 0.10 for the phase-1-only algorithm, 0.22 for the
phase-2-only algorithm, and 3 10 for the two-phase algo-
rithm. This represents a three order of magnitude improvement
over the phase-1-only and phase-2-only algorithms. This sig-
nificant performance improvement comes from the facts that 1)
scheduling priority is given to the critical lines (using phase 1),
and 2) the number of packets sent in each slot is maximized
(using phase 2).

Next, we concentrate on the quality of the time slot assign-
ments given that the suboptimal assignments are obtained, i.e.,

. We found that when the two-phase algorithm
is used, the frame length difference is at most equal

1It is easier to see this trend wheny-axis is in linear scale.
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Fig. 4. Probability distribution of the frame length difference between the
phase-1-only algorithm and the optimal;n = 4.

Fig. 5. Probability that the proposed algorithm failed to generate optimal TSA
versusn;N = 10.

to 1. That means all suboptimal assignments are justonetime
slot longer than the optimal. For the phase-1-only algorithm, the
frame length difference spreads out to values 1, 2 and
3. Fig. 4 shows their respective distributions against the switch
size. It can be seen that the majority of the suboptimal cases
have . As switch size increases, the probability
of is slightly reduced and the probabilities of

and are slightly increased. Similar results (not
shown) are obtained for the phase-2-only algorithm.

Fig. 5 shows versus , the maximum value for the traffic
matrix entry , with a switch size of 10. As increases,
the input traffic load increases. For the phase-1-only and the
phase-2-only algorithms, is around 0.3 and 0.01, respec-
tively. For the two-phase algorithm, it is interesting to notice
that decreases with . This is because the line sums of the
traffic matrix spread out to a much wider range asincreases.
This causes the number of critical lines (lines with the max-
imum traffic) in a traffic matrix to decrease. From Corollary 1,
a TSA algorithm fails to generate an optimal TSA if it fails to
schedule a critical line. If the number of critical lines decreases,
the chance of scheduling failure (i.e., fail to transmit exactly

one packet for each critical line in each time slot) is reduced.
An important implication from this result is that the two-phase
algorithm will give a better performance under nonuniformly
distributed traffic situations than the uniformly distributed
traffic we examined here.

Next, we focus on the worst-case scenario that all lines
in an traffic matrix are critical. To generate such an
matrix, we simply set all entrires of a traffic matrix equal to a
constant , where is used. The switch size (or, matrix
size) is varied from 2 to 100 one by one. We found that when

and (14
cases out of 99), the two-phase algorithm generates suboptimal
time slot assignments. But in all such suboptimal cases, again
only one extra time slot is required. We then vary the value of
the constant from 1 to 10 for all 14 suboptimal cases above, we
found that still only one extra time slot is required in each case.
That implies when all entries of the traffic maxtrix are equal to,
the value of does not affect or has little impact on the quality of
the time slot assignments generated. From the above worst-case
scenerio, we can see that the two-phase algorithm still generates
a close-to-optimal performance but the performance improve-
ment is reduced as expected.

It should also be noticed that the two-phase algorithm is de-
signed and evaluated for minimizing the frame length in this
paper. For packet switching systems [24], [8], [14], [13] where
packets arrive at inputs on a slot-by-slot basis, the two-phase al-
gorithm can still be applied with the modification that the traffic
matrix is updated in each time slot.

III. H IERARCHICAL SWITCHING SYSTEMS

A. Problem Formulation

In this section, we focus on a hierarchical TDM switching
system. A TDM hierarchical switching system has a three-stage
switching structure as shown in Fig. 6. The first stage consists
of multiplexers and a total of input users,
where multiplexer concentrates input users to lines. (Thus

.) A total of concentrated input lines
are then connected to the nonblocking TDM switch
in the middle stage. The output lines of the TDM switch
are then grouped into sets, where setwith lines is con-
nected to theth demultiplexer in the third stage. The number of
output lines/users of demultiplexeris (where ) and

. When and for all ’s, the hi-
erarchical switching system degenerates into a nonhierarchical
system we studied in the previous section.

Packets from all input users are represented by a traffic
matrix , where is the number of packets
to be transmitted from input userto output user . Let

be the total number of packets in. Let the input
users be grouped intosets and each set corresponds to a mul-
tiplexer. We denote the set of users at multiplexeras . Simi-
larly, we group the output users intosets and denote each set
by . We call each set an inputtrunk and each set an
output trunk. Let and denote
the total traffic in row and column of matrix , respectively.
Let and denote the total traffic
in (row) trunk and (column) trunk , respectively.
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Fig. 6. A three-stage hierarchical TDM switching system.

For a given traffic matrix, the time slot assignment problem
is to find a way to decompose traffic matrix into a series of
zero-one transmission matrices, or , where
frame length is minimized. Unlike a nonhierarchcial system,
the following two conditions must be met for a valid transmis-
sion matrix : i) at most one 1 in each row or each
column of , and ii) at most 1’s in trunk and 1’s in
trunk .

An optimal time slot assignment is the assignment which has
the minimum frame length . It was shown [4], [19] that a
time slot assignment with length exists if and only if the
following conditions are satisfied:

for

for

for

for

The following theorem has been proved [4], [19].
Theorem 2: The necessary and sufficient number of time

slots to transmit traffic matrix is

(1)

B. Three-Phase TSA Algorithm

Let a critical trunk be a trunk with or
. Note that a critical line may or may not re-

side in a critical trunk. Unlike that for nonhierarchical switching
systems, a critical line or a critical trunk may not exist. This
happens when the maximum term on the left-hand side of (1) is

, i.e., . From Theorem 2, we found that if
the following conditions are not satisfied, an optimal time slot
assignment cannot be obtained.

Corollary 2: The necessary and sufficient conditions for an
algorithm to obtain an optimal time slot assignment are, for each
time slot, as follows:

1) exactly one packet is transmitted from each critical line
(if any) of traffic matrix ;

2) the number of packets transmitted from each critical
trunk (if any) is sufficient to make it become non-
critical, i.e., (after) (before)
or (after) (before) , where

(before) and (after) denote the value of
before and after the time slot assignment in a time slot.

To design an efficient TSA algorithm for hierarchical
switching systems, we concentrate on scheduling the traffic on
critical lines and critical trunks. For scheduling a critical line,
the algorithm needs to decide which packet in the given critical
line to transmit. For scheduling a critical trunk, the algorithm
has more flexibility as it needs to decide which packet from
whichline (in the critical trunk under consideration) to transmit.
An efficient algorithm should give priority to the assignment
with higher assignment difficulty, or less assignment flexibility.
Therefore, scheduling for critical lines should have a higher
priority over the scheduling for critical trunks, and scheduling
for critical trunks should have a higher priority over the
scheduling for the remaining traffic.

Following this approach, a new algorithm called the
three-phase algorithm is proposed. It consists of three phases
for scheduling a transmission matrix in each time slot, where
phase 1 has the highest priority and phase 3 has the lowest
priority. To have a easy-to-follow presentation of each phase,
we try to use less symbols and notations below.

• Phase 1 focuses on scheduling traffic on the critical lines
while giving priority to lines inside a critical trunk.For
all critical lines in traffic matrix , find the critical line
with the minimum number of nonzero entries (i.e., has the
minimum number of assignment choices).

1) If the line is a row, denote it by and the associated
row trunk (i.e., the trunk where lineresides in) by

. Find a column line according to the following
order and denote it by and the associated column
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trunk by . The number of 1’s in trunks and
of the transmission matrix must be less thanand

, respectively.

a) Find a critical column such that it has the
minimum number of nonzero entries among
all critical columns with .

b) Find a column such that it has the minimum
number of nonzero entries among all columns
within critical column trunks and with
.

c) Find a column such that it has the minimum
number of nonzero entries among all columns
with .

2) If the line is a column, denote it byand the associ-
ated column trunk by . Find a row line according
to the following order and denote it by and the
associated row trunk by . The number of 1’s in
trunks and of the transmission matrix must be
less than and , respectively.

a) Find a critical row such that it has the min-
imum number of nonzero entries among all
critical rows with .

b) Find a row such that it has the minimum
number of nonzero entries among all rows
within critical row trunks and with .

c) Find a row such that it has the minimum
number of nonzero entries among all rows
with .

3) Schedule a packet to be sent from input userto
output user by setting . Repeat phase 1
until no more critical lines are found.

• Phase 2 focuses on scheduling traffic on the critical
trunks. It should be noticed that after performing phase
1, some critical trunks may now become noncritical.2

Among all critical trunks, find the line with the minimum
number of nonzero entries.

1) If the line is a row, denote it by and the associated
row trunk by . Find a column line according to the
following order and denote it byand the associated
column trunk by . The number of 1’s in trunks
and of the transmission matrix must be less than

and , respectively.

a) Find a column such that it has the minimum
number of nonzero entries among all columns
within critical coulumn trunks and with
.

b) Find a column such that it has the minimum
number of nonzero entries among all columns
with .

2) If the line is a column, denote it byand the associ-
ated column trunk by . Find a row line according
to the following order and denote it by and the

2In case a critical line resides in a critical trunk, if a packet on this critical
line can be successfully transmitted in phase 1, the corresponding critical line
becomes noncritical but the the corresponding critical trunk is not necessarily
to become noncritical. This is because of the ceiling functions on expressions
U =k andV =h in (1).

associated row trunk by . The number of 1’s in
trunks and of the transmission matrix must be
less than and , respectively.

a) Find a row such that it has the minimum
number of nonzero entries among all rows
within critical row trunks and with .

b) Find a row such that it has the minimum
number of nonzero entries among all rows
with .

3) Schedule a packet to be sent from input userto
output user by setting . Repeat phase 2
until no more critical trunks are found.

• Phase 3 schedules the remaining traffic in the matrix in
order to maximize the number of packets to be transmitted
in a time slot, i.e., throughput.Find the line with the min-
imum number of nonzero entries.

1) If the line is a row, denote it by and the associated
row trunk by . Find a column line and denote the
associated column trunk by . Column is found
such that

a) it has the minimum number of nonzero entries
among all columns with ;

b) the number of 1’s in trunks and of the
transmission matrix must be less thanand

, respectively.

2) If the line is a column, denote it byand the associ-
ated column trunk by . Find a row line and de-
note the associated row trunk by. Row is found
such that

a) it has the minimum number of nonzero entries
among all rows with ;

b) the number of 1’s in trunks and of the
transmission matrix must be less thanand

, respectively.

3) Schedule a packet to be sent from input userto
output user by setting . Repeat Phase 3
until no more packets can be added to the transmis-
sion matrix.

Similar to the two-phase algorithm, the overall time com-
plexity of the three-phase algorithm is found to be . For
scheduling a single time slot transmission, the time complexity
is since pipelined operation of scheduling and transmis-
sion can be used. Like the two-phase algorithm, the three-phase
algorithm can also be easily implemented in hardware for faster
operations. Its circuit complexity will be higher than that of the
two-phase algorithm because three levels of scheduling priority
are required.

C. Performance Evaluation

Consider a symmetric hierarchical TDM switching system
with and . Then for an
hierarchical switching system, the TDM switch in the
middle has a size of . Let the number of packets
from input source to output source be a random integer uni-
formly distributed between 0–4. Fig. 7 shows , the proba-
bility that the three-phase failed to generate optimal TSA, and



358 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 2, FEBRUARY 2001

Fig. 7. Performance of the three-phase algorithm.

Fig. 8. Probability distribution of the frame length difference between the
three-phase algorithm and the optimal.

the percentage increase in frame length as a result of nonop-
timal TSAs, against the number of input sources. We can see
that gradually increases with . However, the percentage
increase in frame length remains at a constant value of about
0.1%. That means on the average only one extra time slot is re-
quired for a frame length of 1000 time slots.

Fig. 8 shows the distribution of for all suboptimal
TSAs. When the number of input sources is small, at most two
extra time slots are required for any suboptimal assignment. For

up to 40, at most three extra slots are required.

IV. CONCLUSION

Two efficient TSA algorithms, called the two-phase algo-
rithm for the nonhierarchical and the three-phase algorithm
for the hierarchical TDM switching systems, were proposed
in this paper. The simple idea behind these two algorithms is
to schedule the traffic on the critical lines/trunks of a traffic
matrix first. Their time complexities are found to be
and , respectively, where is the frame length,
is the switch size and is the number of input/output users

connected to a hierarchical TDM switch. Since the proposed
algorithm does not use backtracking, pipelined operation of
packet transmission and packet scheduling can be carried out.
Because of the iterative nature of the proposed algorithms, it is
found that hardware implementation for these two algorithms
are very simple and efficient. Based on the extensive simulation
results obtained, the two proposed algorithms are found to be
very efficient. For nonhierarchical TDM switching systems, we
found the probability that the two-phase algorithm failed to
generate optimal TSAs is about 3 10 and is independent
of switch size. For hierarchical switching systems, the per-
centage increase in frame length as a result of nonoptimal TSA
generated by the three-phase algorithm, is only about 0.1%.
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