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1  Introduction.

The aim of this paper is to build a test algorithm devoted to detect when several independent
emissions are using the same carrier and, in such a situation, to determine the number of them.

Let us consider the case of phasis or frequency modulation. If there is only one modulation
in the observed signal, its module remains constant with respect to time and the fluctuations of
the module of the observed signal is only due to additive white noise. If now, one consider the
sum of two modulations, as the phasis of each modulations are assumed to be independents, the
module of the observed signal will be fluctuating. As a consequence of this remark, the
algorithm which is proposed is based on the prediction of the module of the observed signal
conditionally to the number of modulation supposed. The innovations involved are then used
to construct a sufficient statistic for the detection in the sense that its expectation maximize
some contrast criterium.

2  Statistics of a multi-emission.

In our problem, the hypothesis to be tested is the number of emissions in the observed
complex signal  obtain after two channels demodulation. It can be written:

(2.1)

where:

(2.2)

is the sum of independent modulations and is a complex white noise with
real and imaginary assumed to be independent and of variance . The moments of the white
noise  are all zero except the following:

(2.3)

with:
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 and (2.4)

Let us examine the statistics of multi-emission in the particular case of a digital phasis
modulation. Each signal can be represented, after demodulation, as the complex signal:

(2.5)

with where is the (constant) amplitude of the signal and the initial
phasis. is the current phasis carrying the information to be send. Let be the sample
period. Between to samples, the evolution of the signal is defined as:

(2.6)

where designates the phasis increment. As the transmitted information is unknown,
may be viewed as a white noise with characteristics depending of the kind of modulation used.
Let .

For an analogical modulation, the density of probability of may be assumed gaussian.
In such a situation, if the variance of  is , the moments of  are defined by:

(2.7)

where  is complex conjugate of .
For a digital modulation, the phasis jumps time of occurrence may be modelised with a

Poisson process of frequency and the amplitude uniformly distributed on points on the
unit circle. In that case, the density of probability of  is:

(2.8)

where is the Dirac distribution centered on . The resulting moments of are then
defined by:

(2.9)

One may of course consider other kind of modulations but it is important to note that, for all
types of modulations, one has always the same property:

(2.10)

with .
Let us now analyze the evolution of moments of one modulation. According to (2.10), one

has:

(2.11)

As a consequence, because , it is clear that all moments of are asymptotically zero
expect the set  which are constant.
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The first moment of a multi-emission can now be computed using (2.11). One may derive
that all moments of degree  are asymptotically zero except the following:

(2.12)

(2.13)

Let us compare these moments when the global power is the same but when the number
of modulation is different. On has:

(2.14)

and the fourth order moment is:

(2.15)

This relation means that the number of signals is detectable as the ratio within the fourth
order moment and the square of the second order moment depends on . This property will be
exploited in the sequel to construct the detection test based on predictors of the signal square
module.

3  The IIR Volterra quadratic predictor.

Let us applied the quadratic Volterra predictor as defined in [2] to our problem. When one
deals with real numbers, the purely quadratic IIR predictor of any function of the state has
the following recursive structure:

(3.1)

where is the output and are time variant parameters computed to minimize the mean
square prediction error, that is:

(3.2)

The optimal parameters are computed using the following orthogonalities:

(3.3)

which leads to the following linear system:

(3.4)
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The optimal parameters are then computable if all the expectations in (3.4) are computable.
Note that this condition is achieved when the prediction system of  is bilinear.

Let us generalize this estimator to the complex number case. Let to be
estimated. It is easy to verify that, according to (2.13), the only non-zero quadratic projection
of is the projection over the term . As a consequence, the structure of the predictor must
be as following:

(3.5)

with . The term  makes sure that the predictor is not biased.
The stochastic observability concept introduced in [2] is used here to determine the

dimension of the predictor, that is the dimension of . In the general case, the variable
is stochastically observable if the following relation:

(3.6)

is one to one. To verify this property, let us compute first the conditional expectation:

(3.7)

According to (2.11), one may write:

(3.8)
In the same way, one has:

Let:

(3.9)

It is clear that the relation is one
to one. As a consequence, the dimension of must be at least two. Note that it is equivalent
to consider  and the more natural following set:

(3.10)

Note moreover that if , the two components of are identical and the dimension of
the quadratic predictor is reduced to .
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4  Detection test.

The detection test used here takes one’s inspiration from the linear gaussian case. Recall
that in that classical case, one constructs the optimal predictor of the signal
under each hypothesis . One then computes the likelihood of each hypothesis that has
the following expression:

(4.1)

The decision process is then defined as:  if , the hypothesis  is chosen.

Our test is based on the innovation processes generated by the signal square module
prediction. Let be the one step predictor of under hypothesis " modulations in
the signal". The test variable  is imposed to have the following form:

(4.2)
where and are parameters devoted to normalize the contrast within the two hypothesis.
A natural way to satisfied this condition  is to impose:

(4.3)

assuring that the expectation of the distance within the test variable under each hypothesis
increases linearly with  the number of data treated. The test is then reduced to:

 and (4.4)

The constraints (4.3)  leads to the following values of :

(4.5)

where:

(4.6)

Note that all the variances  may be computed a priori since the system is bilinear.

5  Simulation results.

In all the following simulations. the signal to noise ratio is fixed to .
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5.1  Detection within 1 and 2 modulations.

The first step of construction of the test is the computation of the predictor of the signal
square module. One shows on figure 1 the estimation of the signal square module under each
hypothesis when only one signal is present with power equal one. Il appears clearly that the
estimator which deals with , the good hypothesis, is much more accurate than the estimator
which deals with . The situation is inverted when two signals are present as it appears on
figure 2.

 figure 1: Module estimation - 1 modulation.

 figure 2: Module estimation - 2 modulations.

The test variable as defined by (4.2) is presented on figure 3. The dotted lines are the
expectations of  under each hypothesis. One may oberve that the detection is very fast.
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 figure 3: Detection within 1 and 2 modulations.

5.2  Detection within 2 and 3 modulations.

 figure 4: Dtection within 2 and 3 modulations
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