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Markov and Recursive Least Squares Methods for the 
Estimation of Data with Discontinuities 

Abstract-An algorithm is presented for smoothing data piecewise 
modeled by linear equations within regions of a one-dimensional (1-D) 
or two-dimensional (2-D) field, from measurements corrupted by ad- 
ditive noise. Its main feature is the combination of Markov random 
field (MRF) models with recursive least squares (RLS) techniques in 
order to estimate the model parameters within the regions. 

Applications to 1-D and 2-D data are given, with particular empha- 
sis on the segmentation of images with piecewise constant intensity lev- 
els. 

I. INTRODUCTION 
HE problem of restoring and segmenting data which T can be described by models with piecewise constant 

parameters has received recent attention by researchers. 
Examples of applications are the segmentation of images 
into regions of similar textures and/or intensity levels, or 
speech signals into phonemes. 

Because of the particular nature of the problem, sta- 
tionary models based on classical linear Gaussian tech- 
niques are not adequate, and yield excessive smoothing 
across the boundaries of the regions. 

An interesting approach is given by the doubly sto- 
chastic (DS) approach where local models (at the pixel, 
in two-dimensional (2-D), or sample, in one-dimensional 
(I-D),  levels) and global models (at the region levels) are 
used to describe the process within the regions, and to 
model the regions themselves. 

At the local level, Markov processes [I]-[3] and auto- 
gressive models [4], [ 5 ]  have appeared in the literature as 
models for textures, intensity levels, or speech signals. 
At the global levels the compact regions have usually been 
modeled by Markov processes, in terms of causal Markov 
chains [SI or noncausal Markov random fields (MRF’s) 

Estimation techniques based on these modeling as- 
sumptions have called for recursive algorithms by sto- 
chastic [2], [3], [6] or deterministic [7], [8] relaxation, 
and suboptimal techniques of line processing [9] or re- 
duced update Kalman filtering [5]. In all these instances, 
once the model is formulated, the main difficulty is to cope 
with the large dimensions of the search space where to 

11441. 

Manuscript received December 23, 1987; revised November 20. 1989. 
This work was supported by the Office of Naval Research under NPS direct 
funding. 

The author is with the Electrical and Computer Engineering Depart- 
ment, Naval Postgraduate School, Monterey, CA 93943. 

IEEE Log Number 9038426. 

find the optimal solution [I]-[4], or with the growing 
memory required by the estimator [5]. 

A common assumption in most of the above mentioned 
approaches is the fact that the set of local models must be 
known a priori, which calls for parameter estimation on 
training data. 

In this report an algorithm for filtering and segmenta- 
tion of processes locally modeled by autoregressive equa- 
tions is presented. This class of processes can be regarded 
as doubly stochastic (DS) in the sense that the observa- 
tions Y, are functions of a random process X,. Namely 

r, = J; ( 4 9  Wl) 

with t E Z k  for the k - D problem ( 2  being the set of in- 
tegers), W, a white noise process, X, a random process, 
constant within compact regions of Zk and f, a known 
mapping. In our case X, is assumed to be modeled by a 
MRF. 

The estimation by 2-D Kalman filtering techniques of a 
DS process with X ,  a causal hidden 2-D Markov chain is 
shown in [ 1 I ] ,  as an extension of earlier results in 1-D 

Connections between the MRF approach to smoothing, 
and theories based on smoothness priors are also high- 
lighted. In particular, the likelihood function associated 
with the MRF models with Gaussian disturbances has the 
same structure as the penalized likelihood at the basis of 
smoothing algorithms for nonstationary data found in Ki- 
tagawa and Gersch [ 151, and numerous references therein, 
going back to Whittaker [16]. In this light, the MRF 
model has the role of a smoothness prior which provides 
spatial continuity to the desired estimate of the data. 

The problem is stated in Section 11, together with rele- 
vant properties of MRF models. The estimation algorithm 
is presented in Sections 111 and IV, for two- and one-di- 
mensional applications, respectively. Considerations on 
MRF models as smoothing priors are given in Section V,  
while applications of the technique are the subject of Sec- 
tion VI. 

[ 1214 141, 

11. MODELING ASSUMPTIONS 
Let S be a rectangular lattice, subset of the integers Z 

(in 1-D) or Z 2  (in 2-D) of dimensions N or N X N .  On 
the lattice S we define the processes A, X ,  Y as follows: 

s E S }, A,s E Z (or any countable set), the 
random field of labels. They mark different regions on S 

a) A = { 
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which correspond to different objects (in 2-D) or different in the sense that 
segments (in 1-D). 

b) X ( A )  = { X , ( A ) ,  s E S } ,  X ,  E R " a  random field of 
parameters with realizations constant within regions of 
equal label. Namely 

X , ( A )  = X , ( A )  if A ,  = A,. (2.1) 

c) Y ( X ,  W )  = { Y , ( X ,  w ) , s ~ S } ,  YsER"'theprocess 
of observations, assumed dependent on X as 

Y , ( X ,  W )  = c,'x, + w, (2.2) 

with c, E R" known for all s, and W, a zero mean white 

6 ( X ,  = x, I X ,  = x,, A, # A,) = 6 ( X ,  = x,) (2.6) 

for all s # t E S, and any realization A, x (  A). 
Observation: Previous approaches to segmentation 

using MRF models assume X, E 5 = { FI, F,, , FM} 
with Fi E R"  known a priori. This is the case of images 
composed of regions of known intensity levels and/or tex- 
ture, for example determined from training data. By this 
approach the values of X can be considered as the labels 
themselves ( A  = X )  and a MAP estimation follows from 
the likelihood 

L ( x ( y )  = In 6 ( y / x )  + In 6 ( x )  - In 6 ( y )  (2.7) Gaussian noise independent on X .  
Throughout we assume scalar observations (Y, E R).  

Typical examples are images of objects with different light 
intensity levels and noisy measurements, or different tex- 
tures. In the former case, the processes X, ,  Y, E R are 
associated with the true (X,) and measured ( Y , )  light in- 
tensities at point s in the lattice S ,  and in this case c, = 
1, for all s E S .  In the latter, each texture realization can 
be represented by an autoregressive model 

Ys = c xs.,yr + w, 
reAr 

with A, C S and the coefficients { x , ,~ ,  7 E A,} character- 
izing the texture at point s. 

Since we consider S to be partitioned into compact re- 
gions (as in the case of image segmentation) correspond- 
ing to sizable objects, the model for the labels A is as- 
sumed to be a Markov random field [4], [6]-[  101 having 
Gibbs distribution 

In 6( A) = /3 c y$(  A )  + yf'( A)  - In 2 (2.3) 
S € S  

with 6 (  y 1 x), 6 ( x )  readily computed from (2.2), (2.3). 
Approaches to the maximization of (2.5) with respect to 
x on the set S N x N  have been presented, based on relax- 
ation (stochastic [7], deterministic [8], [9]) or dynamic 
programming [22]. 

Notation: In the sequel we make frequent use of the 
recursive least squares (RLS) update of the estimate f of 
the vector x based on observations y, = h,x + w, with h, 
a matrix of appropriate dimensions, and w, a realization 
of a white Gaussian noise process 37. (0, RI). By the no- 
tation 

[ X I ,  PI] = RLS [xo, Po 1 h, y, RI (2.8) 

we denote the recursion 

xI = xo + Poh[hPohr + RI-' ( y  - hxo)  

PI = Po - PohT[hPohT + R]-lhPo. (2.9) 

111. TWO-DIMENSIONAL ESTIMATION AND 
SEGMENTATION 

In this section we address the problem of estimating the 
processes X ,  A from the given observations y, a realiza- 
tion of the random variable Y. 

On a MAP estimation framework we estimate the labels 
A by maximizing the conditional probability 

with Z a normalizing constant and y$, yf' potential f inc- 
tions associated with the horizontal (y:) and vertical 

to be of the form 
cliques. For each = ( k ,  t )  on the lattice define 

+ 1 

- 1  otherwise 
if A k , , +  I = A,., 

l n 6 ( A ( y )  = l n ~ ( y I ~ )  + 1 n 6 ( ~ )  - 1 n 6 ( y ) .  

r;.l( A )  = 

(3 .1 )  

The term 0 is a parameter and it is evident that (2.3) and 
(2.4), with 0 > 0, penalize transitions ( y = -1 )  be- 
tween regions. Also the actual values and nature of the 
labels A have no particular significance and two realiza- 
tions A', A"  with ys( A ' )  = ys( A " )  for all s E Shave the 
same probabilities. 

About the process X its realizations are constant within 
regions as in (2.1) with values from a Gaussian popula- 
tion, namely 

@(Xs = x.,) = 37.( CL,, 9,) (2.5) 

92 ( - , ) denoting normal distribution. Also, the values 
of X are assumed to be independent from region to region, 

The prior on A is readily given by the Markov assumption 
given in the previous section 

In 6(  A)  = /3 c y t (  A )  + y:( A)  - In Z. (3.2) 

The combination of the term In 6 ( y 1 A )  is addressed be- 
low. It is shown that, given the observed data y, a) the 
likelihood function can be computed recursively on a line- 
by-line basis, and b) it depends on the edges y (  A )  only. 

In order to proceed, call X ,  ( t ) ,  Y, ( t ) ,  - - - the random 
variables associated with the element s = ( k ,  t )  of the 
lattice, and 

S € S  

Y, = { Y k ( f ) ,  0 I r < N }  
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the observation process associated with line k. Also define 
the random variables 

J ik ( t  It - 1) = E [ X k ( t )  1 Yk(t - l ) ,  * * . , 

Ji&) = E [ X k ( t )  I Yk, * * 7 yo, A ]  

Xk(k-,(t) = E [ X k ( t )  [Jik-I(t) ,  

yk (o), A] 

* * , 

J i k -  d o ) ,  A] 

Y k ( O ) ,  %- dt ) ,  X k -  do), A]. 

& l k - l ( r  1 t - 1) = E [ X k ( t )  I Y k ( t  - l ) ,  - - , 

(3 -3 )  
Fig. 1 shows the region of support of the above variables. 
Also we denote by lower case (2, ( r  I t - 1 ) * * ) their 
realizations corresponding to the given realizations y. 

Then we can show the following: 
Lemma: Given the observations y and the labels A, the 

realizations of the random variables (3.3) and their re- 
spective error covariance matrices P can be recursively 
computed by filtering and smoothing operations as fol- 
lows: 

Filtering: 

[%(r  + 11 t ) ,  p k ( t  + 11 t ) ]  

RLS [ & ( t  I t - l ) ,  P k ( t  

i f d , , + l  = =I [ p,, P,] otherwise 
(3.4a) 

I i f d . , + I  = -1. 
(3.4d) 

P' &(tlt - 1) 

Fig. I .  Regions of support for definition (3.3). 

Proof: Recursion a) is straightforward from simple 
1-D considerations, and the fact 

E [ &  ( t )  I Y k  ( f  - 1 >, * * 9 Y k  (O), A] 

= E [ &  ( t )  I Yk ( f  - 1 ) ?  * * > Y k  ( t  - t s ) ]  

with the elements (k,  t ) ,  - , ( k ,  t - t,) having all the 
same label. 

Recursion b) comes from the fact that if yL,,+ I = + 1 
(no vertical edge) then the elements (k, r + l ) ,  ( k  - 1, 
t + 1 )  have the same label and&lk-I ( t  + 1 )  = & - l ( t  
+ 1 ) with the same error covariance matrices. If y;,,+ I 

= - 1 (vertical edge) then either i k l k -  I ( t  + 1) = 
ik I k -  I (  t )  (if no horizontal edge) or it is reinitialized. 

For recursion c) consider the fact that, given the esti- 
mates i k - l ( 0 ) ,  - * , &- I (  t )  and the labels A, we can 
write 

& ( t )  = ikI,-l(f) + VI 

& ( t I t -  1 ) = X k ( f )  

where v l ,  v2 are realizations of Gaussian, zero mean, in- 
dependent random variables VI,  V2 with E [  VI V l ]  = 0 and 
covaraiance matrices Pk I k - I (  t ) ,  Pk ( t  1 t - 1 ), respec- 
tively. Therefore ( 3 . 4 ~ )  follows from standard results on 
Kalman updating [2 11. 

Finally, recursion d) comes from the fact that, on line 
k, the process X is constant within the regions and so is 
its smooth estimate ik, reinitialized at each of the transi- 
tions between adjacent regions. 
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Observation: Apart from the complication due to the 
fact that the process X changes value from region to re- 
gion, recursions (3.4) are extensions to the 2-D case of 
the standard recursive least squares estimation algorithm. 
In fact, since a) the process X is assumed to be piecewise 
constant (say constant within a region So C S )  with dis- 
tribution (2.5), and b) the observations are as in (2.2), the 
MAP estimate io on So ( in this case ik 1 k - I (  t + 1 1 t ) ) can 
be obtained from MAP estimates .fl, i2 on nonoverlapping 
partitions So = SI U S, (respectively, ik I - ,( t ) ,  ik ( t  I t 
- 1 )  in our case) as 

a() = i ,  + PIIPI + p4-I (a, - a , )  

Po = PI - PIIPI + P2]-IPI 
Pi being the respective covariance matrices. This is valid 
regardless of the dimensionality of the problem ( 1-D, 

The estimates in the previous theorem can be used to 
compute the probability terms 6( y I A )  in (3.1). In par- 
ticular, we can show the following: 

Theorem: Given the observations y ,  for any realization 
A of the label process A we can compute 6 ( y 1 A )  as 

2-D, * * ). 

In @ ( Y  I A )  
N -  I 

= - C In ( ~ [ ~ ~ ~ l ~ - ~ ( t  1 t - l ) c k . ,  + a’) 
k . r =  I 

- J Y k ( t )  - C L R k l k - l ( t l t  - 1 ) 1 ’  + 

C L P k l k -  I Q  1 t - 1 )Ck.r + 0’ 

( 3 . 5 )  
withikIk-I  ( t  I t - l ) ,  P k l k - l  ( t  1 t - 1 )  as in (3.4), and 
C a constant. 

Proof: First notice that 
N -  I 

In @ ( Y  I A )  = - C In P ( Y ~ / Y ~ - ~ ,  * - . , Y O .  A )  (3 .6)  
k = O  

and consider two adjacent rows k, k - 1 .  Since Yk ( t )  = 
c l f x k  ( r )  + wk ( t )  and the distribution 6 ( x k  ( t )  I y k -  I ,  

. . .  , yo ,  A )  depends on the estimates {ak - I ( T), 0 5 7 

< N }  only, we can write 

@ ( Y k ( Y k - l ,  - * * 9 Yo9 A )  

4- I(N - 1 ), A )  

= @ ( y k ( O ) ,  * , y k ( N  - 1) l a k - l ( O ) ,  * . * , 
(3 .7  1 

with ik- , ( t )  as in (3.3). From standard Bayes factoriza- 
tion we can write the recursion 

Now: a) by definition (3.3) the random variable gL- I ( r )  
is independent on the observations on line k, therefore 
the middle factor of the right-hand side (RHS) of (3.8) 
is always equal to one; b) from the Gaussian assump- 
tions on the parameters X and the noise W the first term on 
the RHS of (3.8) represents a Gaussian distribution 

with f, P as in the previous lemma. The result then fol- 

From the recursions in  the lemma it is evident that the 
a posreriori probability In 6 ( X I y )  depends on the tran- 
sitions y = { ( ya, y y ) ,  s E S } associated with the labels 
A .  In this respect equations (3.2), (3.4), and (3.5) define 
a mapping ( y( A), y )  -+ L ( y( A )  1 y )  with L the likeli- 
hood 

W C L ~ k l k - l ( t  1 1 - I ) ,  ckT.,Pk(L-I(t I - 1)Ck.r + a’)  

lows easily. rn 

L ( Y ( A ( Y )  = l n @ ( A I y )  + l n @ ( A )  + f ( Y )  (3 .9)  
andf(  y )  = - In 6( y )  indicating terms independent on 
A. 

An optimal MAP estimation of the labels A (or its tran- 
sitions y ( A ) )  would require an exhaustive search over all 
possible transitions y ( A )  E { - 1,  + 1 } for the one 
which maximizes the likelihood function L in (3.9). Since 
this is an unfeasible operation, suboptimal techniques have 
to be considered. In the next section a sequential, line- 
by-line, estimation procedure is presented. 

A .  Suboptimal Estimation 

can be written as 
From (3.2), (3.4), (3.5) we see that the likelihood L 

where 
i = -In ( c : r P k l k - l ( t  1 t - l ) c k , f  + a‘) 

) Y k ( t )  - C l , r a k ( k - l ( t (  t - I ) / ’  - 
c ; , P k l k - l ( t  I t - l )Qf + a’ 

+ NY:,, + rLJ. 
The dependence on yk. ,, yk. - I ,  * . is implied in the es- 
timates 2, I k -  I (  t I t - 1 ) and respective covariance ma- 
trices Pk l - , ( t  1 t - l ). A suboptimal estimation of y k q r  
can be obtained by the maximization 

T k . f  = a%max,,,, %k. f9  ? k , t - l 9  * * I Y )  

with the maximum over the set of all possible transitions 
E { - 1, + 1 }’ which are consistent with the 

previous estimates c-i.8, ?:’). 

(3 .8)  
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IV. ONE-DIMENSIONAL ESTIMATION 
The arguments presented for the 2-D case can be easily 

extended to the simpler 1-D case. In particular, given the 
labels X with transitions y ( A )  define the random variable 

R ( t (  t - 1)  = E [ X ( t )  1 Y ( t  - 1) . * Y ( O ) ,  A]. 

It is now easy to show that we can write the updating as 

[ a , + , ,  Pf+ll  

RLS [a,, P, I c;, y , ,  a2Z] if y, + I = + 1 

= Lpx3 9,) otherwise. 

From this, the likelihood function becomes 

with u,(y)  = a* + c,?P,(y)c, and the estimation of y 
follows the same arguments presented in the previous sec- 
tion. 

V. CHOICE OF THE PARAMETER I N  THE MRF 
A crucial point in the effective application of the filter- 

ing algorithm presented above is the choice of the model 
parameter appearing in the likelihood (2.8).  

In the framework of this paper and in most previous 
works along similar lines [9], [20], [23] the Markov ran- 
dom field models the original data, and therefore is a 
characteristic of the class of data we want to reconstruct. 
Procedures to estimate the model parameters account for 
the “coding scheme” of Besag [4] where subsets of data 
are used to determine conditional probabilities. For the 
case of MRF as models of textures a more rigorous tech- 
nique by Derin and Cole [24] has been effectively used. 
A different approach is taken by Geman and Geman’s [7] 
simulated annealing, where stochastic relaxation is com- 
bined with a monotonic increasing parameter. 

In spite of the above mentioned results in the model 
parameter estimation, the MRF parameter f l  in (2.3) is set 
mostly by trial and error until a reasonable filtering is 
reached. Furthermore, extensive simulation results in this 
and other related works ([20] for example) have shown 
that satisfactory values for 0 are strongly influenced by 
the signal-to-noise ratio of the data. 

A better understanding of the role of MRF in estimation 
can be reached by relating the likelihood function (2.8) to 
the general form of a penalized likelihood as 

-c ( Y f  + A+) (5 .1)  
1eL 

where 4 ( x )  2 0 for all x is a function chosen so to reward 
“smooth” realizations. The parameter A, often called the 
hyperparameter in the Bayesian literature [25], is a factor 
weighting deviation from the observations y (left most 
term in (5.1)) and smoothness + ( x ) .  A great amount of 
work has appeared on estimating data from penalized 
likelihood (see, for example, Kitagawa and Gersch [l5] 
with references). 

(C) 

Fig. 2 .  (a) Original 32 x 32 data. (b) Noisy data. (c) Estimated data 

However, a fundamental difference exists in the inter- 
pretation given to the parameter X in (5.1). By regarding 
the rightmost term in (5.1) as a “smoothness prior” the 
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Fig. 4. Noisy data: U = 20.0. 

7 0  140 65 110 

180 60 90 190 

(b) 

(black = 0, white = 255) .  
Fig. 3 .  (a) Original chessboard data (128 x 128). (b) Intensity levels 

hyperparameter X is disengaged from being numerically 
set a priori and becomes, as Shiller states it in [26] (also 
in Kitagawa and Gersch [15]) the measure of stiffness of 
a “flexible rule.” 

In this respect, optimal values of the parameters X (and 
therefore (3) can be computed on line (as in [15]) by in- 
cluding this parameter in the likelihood function. For ex- 
ample in Gull and Daniel [27] the parameter X becomes a 
Lagrange multiplier in the maximization of the smoothing 
function +(x )  subject to the known standard deviation of 
the noise. 

Research is presently conducted on this problem. Nu- 
merous simulation results strongly indicate that optimal 
values of the parameter (3 do not change for data subject 
to the same degradation. 

VI. APPLICATION EXAMPLES 
The estimation technique presented in the previous sec- 

tions has been tested on both synthetic and underwater 
images having compact regions of different intensity lev- 
els. This case corresponds to the assumed model (2.1), 
(2.2) with X ,  E R representing the actual (piecewise con- 
stant) intensity levels, and Y, = X ,  + W, the noisy obser- 
vations (i .e. ,  c, = 1 for all s E S ). 

On Fig. 2 an example of application on a two-dimen- 
sional set of data ( 3 2  X 32 points) is shown. The data 

Fig. 5 .  Filtered data 

set is characterized by two different values of 50 and 100 
units, shown in Fig. 2(a). The same set of data with 
Gaussian noise added ( U  = 25.0 units) is shown in Fig. 
2(b), with the estimated data in Fig. 2(c). 

Images investigated ( 128 x 128 pixels) have been pro- 
cessed on a VAX 11/785 using standard FORTRAN 77 
with a computing time of 45 s. 

The examples shown include a chessboard of 16 differ- 
ent intensity levels, corrupted by a random Gaussian noise 
(Fig. 3-5), and an underwater scene (Figs. 6-8). 

In the case of the chessboard, the improvement on the 
SNR is in excess of 6 dB. The significant feature, how- 
ever, is the fact that this improvement has been obtained 
without smoothing the edges of the image. 

I T- 7-- 
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Fig. 10. True ( x ,  ) and estimated ( a , )  AR parameter. 

Fig. 6. Original underwater data (128 X 128). 

Fig. 9. Original autoregressive data. 

Fig. 7. Filtered underwater datal 

Fig. 8. Filtered underwater data showing estimated transitions. 

The underwater scenery data (Fig. 6) is naturally cor- 
rupted by disturbances due to particles and sand, as well 
as the glare caused by lighting equipment. The effect of 
filtering is shown in Figs. 7 and 8, which highlights the 
different regions of the pictures. In particular, Fig. 8 
shows the detected transitions. 

A realization of a 1-D random process with a piecewise 
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Fig. 1 I .  True (I?) and estimated (f,) AR parameter. 

constant autoregressive model is shown in Fig. 9. A sec- 
ond-order model is assumed with parameters xI  and x2 
shown in Fig. 10 and 11. The estimates f, and f2 are also 
shown, with the estimated transition vector in Fig. 12. 

VII. CONCLUSIONS 
An algorithm for estimation and segmentation of data 

which are piecewise described by autoregressive models 
has been presented. The particular feature of the algo- 
rithm is that it searches for the best sequence of edges in 
order to maximize a suitable likelihood function. 

The issues of on line estimation of the Markov random 
fields parameters and efficient implementations using par- 
allel processing techniques are under consideration. 
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