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Maximum Flatness Spectral Modeling 

CLIMENT NADEU 

Abstract-The maximum entropy method obtains the flattest spec- 
trum consistent with the given autocorrelation values, according to a 
specific flatness measure. In this correspondence, the suitability of the 
maximum flatness criterion for spectral estimation is discussed, con- 
cluding that it offers useful insight into the spectral models arising from 
the optimization approach. 

I .  INTRODUCTION 
In Burg’s optimization o r  variational approach to spectral esti- 

mation [ I ]  the objective is to maximize the functional 

J=’y 27T -7 F [  S ( w  11 dw ( 1 )  

subject to the autocorrelation constraints ’ S ( w ) e ’ ” “ d w  = r,,, tz = 0. + I ,  . . . .  + M  ( 2 )  
27r - -T  

where the area of S ( w )  will be normalized here to unity, i .e . ,  r,, 
= I .  

Using Lagrange multipliers to solve the constrained maximiza- 
tion problem, the implicit spectral model 

F ‘ [ S ( w ) ]  = f(w) ( 3 )  
is obtained, where F’ (S ) denotes the derivative of F (  S ) with re- 
spect to S, and f ( w )  is a trigonometric polynomial whose coeffi- 
cients depend on the data r, l ,  I Z  = 0 ,  k I ,  . . . . k M ,  Given a spec- 
tral model and a set of autocorrelations, those coefficients and,  
consequently, the spectral estimate are determined by means of an 
algorithm that solves the set of equations (2). Since these equations 
are generally nonlinear, the algorithm has to be iterative [ I ] ,  121. 

Thus, once the constraints (2)  are specified, the performance of 
the spectral estimation method arising from the above approach is 
completely characterized by the spectral modcl or, equivalently, 
by the objective function F (  S ), so it  can be useful to consider the 
problem of designing a proper function F (  S ). As will be shown i n  
the following section, this problem may be regarded as one of mea- 
suring flatness, i .e . .  the similarity between the shape of the spcc- 
trum estimate S ( w )  and the flat shape of the constant spectrum 
S ( w )  = 1. 

11. M A X I M U M  ENTRCPY VERSUS M A X I M U M  FLATNESS 
First, we shall consider the maximum entropy method [ I ]  (re- 

ferred to here as MEM I )  whose objective function is F (  S ) = logS. 
It maximizes the entropy of the zero-mean Gaussian process deter- 
mined by the second moment s ( ~ ) ,  resulting in the most unpre- 
dictable process consistent with the constraints. Hence, the MEM 1 
aims at obtaining an estimate S ( w )  maximally close to the white 
noise (flat) spectrum. For this reason, it has been claimed that i t  
yields the flattest spectrum among those matching the given auto- 
correlations [ I ] ,  [3]. 

On one hand, the flatness concept is understood in its usual geo- 
metrical sense. On the other, i t  is a common claim that the M E M l  
estimate is a high-resolution spectrum on account of its ability to 
show sharp peaks. Therefore, as Makhoul observes [3], “the two 
notions (flatness and high-resolution) are clearly contradictory. ” 
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Fig. I ,  (a) Exact spectrum; (b)  spectrum estimates. for M = 3.  obtained 
w i t h F , ( S ) , f o r g  = 0 ,  l . 2 . a n d 3 .  

Makhoul further discusses the high-resolution quality of the 
M E M l .  Conversely, we will question its flatness quality. 

In  fact, whiteness or unpredictability is related to geometrical 
flatness and,  in the extreme case S( w )  = 1, both reach their max- 
imum point. However, the peaky spectra yielded by the M E M l  can 
be hardly conceived, in general, as the flattest alternatives. Let us 
consider, for  example, the spectrum shown in Fig.  I (a) ,  that was 
formed by adding two Gaussian functions of opposite sign to unity. 
The four estimates of this spectrum which are shown in Fig. I(b) 
match its first four autocorrelation values and result from the same 
general objective function F , ( S )  for g = 0. I ,  2 ,  and 3. This ob- 
jective function, as well a s  its associated spectral model (3). can 
be properly described by means of its second derivative with re- 
spect to S [4], which is given by 

B ( 4 )  F “ ( S )  = -s-s 
where g is a real parameter that equals 2 for  the MEM 1. 

Notice that in Fig. I (b)  the M E M l  spectrum does not have the 
flattest aspect among the plotted estimates, since it shows a too 
sharp peak. In  fact, a s  (4) suggests, the M E M l  flatness measure is 
just an item (g  = 2 )  among an infinite sequence of measures. As 
it appears in Fig. I(b), for g > 0, the measures give more emphasis 
to the peaks than to the valleys and they proportionally increase 
the amplitude range of spectral values as g grows [4]. If we ask 
which spectrum is the flattest, the answer will depend on whether 
we pay more attention to the peak than to the valley or vice versa. 
In fact, geometrical flatness is an arbitrary concept, so many cri- 
teria can be used to define it. In  other words, the entropy measure 
that characterizes the MEM 1 is just a way of measuring flatness. 

For example, there exists an alternative version of the maximum 
entropy principle (we will refer to it as MEM2) whose functional 
J is an entropy measure of the instantaneous frequency of the as- 
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TABLE I 
CHARACTERISTIC FUNCTIONS OF FOUR SPECTRAL ESTIMAI-ORS 

REAL PARAMETER g. P IS A TRIGONOMETRIC POLYNOMIAL 
OF T H E  V A R I A B I . ~  w 

CORRESPONDING TO CONSECUTIVE INTEGER V A L U t S  OF THE 

Fg(S) Model S= ... 

O.S(S-1)2  

-s log  s 

MEMl 1 IS2 log  s 1 / P  

- 1 1 ~ 3  . ( ~ 1 / 2 - ~ - 1 / 2 ) ?  l j p i / z  

sociated (not necessarily Gaussian) random process 151. The prob- 
ability density function of this random variable is just the spectrum 
of the process and its entropy is a measure of  closeness to the flat 
density function 121. This  flatness measure corresponds to F,  ( S  ) 
for g = I and can be seen in Table I. Note that in the MEM2 
spectrum depicted in Fig. I@), the peak is not as emphasized a s  in 
the M E M l  spectrum, and that the opposite occurs at the valley. As 
another example, at the other side of MEM I ,  the case g = 3 results 
from the asymptotic symmetrized Kullback divergence [7] between 
a Gaussian process and white noise when the sign is reversed. Its 
objective function and its spectrum are  also shown in Table I and 
Fig. l(b), respectively. 

Taking another viewpoint, we can avoid any reference to the 
entropy of the random process or other information measures, and 
just pay attention to the spectrum itself. Then, the Euclidean mea- 
sure of closeness to the constant spectrum appears a s  a sensible 
flatness measure. It corresponds to  the selection g = 0, also indi- 
cated in Table I. The result is the classical Blackman-Tukey method 
(BTM) with rectangular window that extrapolates with zeros the 
given autocorrelations. Since this method assumes a finite autocor- 
relation sequence, it actually involves an all-zero o r  moving-aver- 
age (MA) modeling of the process (if the estimate S ( w )  is non- 
negative), in the same way a s  the M E M l  involves an autoregres- 
sive (AR) modeling. The BTM spectrum is also depicted in Fig. 
I(b); for  this particular example, it may reasonably be considered 
as the best estimate among those in Fig. I(b). However, the BTM 
estimate may show negative values. In fact, the positivity of S (  U )  

is only guaranteed for g > 0 [4]. 
Let us now consider another example. The exact spectrum, which 

is plotted in Fig. 2(a), was also formed by using two Gaussian 
functions of opposite sign; however, in this case, the amplitudes 
of the peak and the valley are logarithmically equivalent, so the 
peak is noticeably higher than in the foregoing example. Fig. 2(b) 
shows the BTM spectrum and the MEM 1 spectrum obtained using 
the first 20  autocorrelations a s  constraints. Note that the M E M I  
again yields a sharper peak. Moreover, its spectrum is not s o  influ- 
enced by the leakage phenomenon as  the BTM spectrum. Due to 
these two reasons, i t  is obvious that the M E M l  performs better 
than the BTM in this case. 

Hence, there can exist many criteria for measuring flatness, i . e . ,  
many maximum flatness methods, and each of them will be useful 
as far as its assumed spectral model (3) is close to the actual spec- 
tral model of  the underlying random process. 

111. IS THE MAXIMUM FLATNESS CRITERION SUITED FOR 

SPECTRAL ESTIMATION? 
When the spectral area ro is the only constraint ( i . e . ,  M = 0) ,  

P ( w )  in (3) is a constant, so S ( w )  equals I whatever F ( S )  is. 
Therefore, maximum flatness is a common tendency of the methods 
arising from the optimization approach, a tendency that is only 
bounded by the constraints. For  this reason, it was used a s  a unify- 
ing principle for spectral estimation 161. Furthermore, a compara- 
tive investigation based on both the flatness concept and the func- 
tion F" ( S  ) was revealed to be useful in explaining the salient trends 
of the various spectral models, even making possible a generalized 
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F i g .  2 .  (a) Exact spectrum; (b) M E M l  spectrum (-) and BTM spec 
truin ( - - - ) .  forM = 19. 

approach in which any kind of flatness measure, either analytic or 
numeric, could be envisaged [4]. 

Thus, the maximum flatness criterion appears well suited to the 
optimization approach. Nevertheless, there may actually exist sen- 
sible flatness measures that can hardly be useful for spectral esti- 
mation. In order to illustrate this fact, we shall now consider a new 
family of measures obtained from F, ( S  ) that will allow us to make 
some additional observations. The second derivatives of their cor- 
responding objective functions Fs ( S  ) are defined by symmetrizing 
Fi  ( S  ) in (4) with respect to g ,  namely 

Note that F , , ( S )  reduces to the Blackman-Tukey function for g 
= 0. Due to the fact that, a s  shown in [4], for g > 0, F, ( S  ) flattens 
valleys (see Fig. I@)) whereas F - , ( S )  has the same effect with 
peaks, both peaks and valleys are flattened by the family F , ( S ) ,  
so it  actually aims at minimizing the spectral amplitude range. 

This fact is illustrated in Fig. 3, which shows the spectral esti- 
mates obtained from F2 (S ) for the two above mentioned examples 
(Figs. 1 and 2); these estimates will be referred to  a s  the symme- 
trized M E M l  (SMEMI)  spectra. Comparing them with the BTM 
spectra in the same Fig. 3, a smaller amplitude range than that of 
the Fx ( S  ) family, as well as  a more accentuated effect when g 
grows, are observed. Both examples illustrate the fact that the 
greater g is, the farther the spectral estimate obtained with F, ( S  ) 
is from :he exact spectrum. This is especially true for the last ex- 
ample, where the decrease of the peak amplitude is accompanied 
by a more accentuated effect of leakage to the extent that, surpris- 
ingly, the valley is better matched by the M E M l  than by its sym- 
metrized version, the SMEM 1 .  

Note from the autocorrelation functions of  the last example, 
which are depicted in Fig. 4 ,  that the M E M l  takes into account the 
trend contained in the first 20  autocorrelations to obtain, in this 
case, a reasonable or "natural" extrapolation. Conversely, the 
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Fig. 3. SMEM 1 spectra ( - ) and BTM spectra ( - - - ) corresponding to 

the examples of (a) Fig. I and (b) Fig. 2 .  

SMEMI  spectral model uses this knowledge of the trend to perform 
an extrapolation of reversed sign which allows it to lower the am- 
plitude of the spectral peak more than with a zero extrapolation. 

IV. CONCLUSIONS 
Taking advantage of an  infinite sequence of spectral Estimators 

characterized by a real parameter g and including the BTM, MEM I ,  
and MEM2 as particular cases, the maximum flatness property usu- 
ally attributed to the MEM 1 spectrum has been discussed, observ- 
ing that there can exist many ways of seeking maximum flatness 
and the M E M l  is just one of them. 

Finally, if we are given a set of constraints extracted from the 
signal samples which incorporate some sort of information about 
the spectrum, the actual aim must be to succeed in a proper spectral 
model for the underlying random process rather than to obtain an 
estimate according to some a priori criterion as maximum flatness 
or maximum entropy. Nevertheless, the criterion on which a given 
objective F (  S ) is based offers useful insight into the corresponding 
spectral model arising from the optimization approach. This  is es- 
pecially true for the flatness concept since in addition to furnishing 
an interpretation of  the various spectral models that result from the 
optimization approach it serves as a basis to compare them. 
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Using the Sphericity Test for Source Detection with 
Narrow-Band Passive Arrays 

DOUGLAS B .  WILLIAMS A N D  DON H. JOHNSON 

Abstract-A prerequisite for many high resolution hearing estima- 
tion algorithms is an accurate estimate of the number of sources 

Manuscript received March 15, 1988; revised November 2,  1989. This 
work was supported by the NASA Johnson Space Center under Grant NGT 

D. B. Williams was with the Computer and Inforniation Technology 
Institute. Department of Electrical and Cornputer Engineering, Rice Uni- 
versity, Houston. TX 77251-1802. He is now with the School of Electrical 
Engineering, Georgia Institute of Technology. Atlanta, GA 30332. 

D. H. Johnson is with the Computer and Information Technology Insti- 
tute. Department of Electrical and Computer Engineering. Rice University. 
Houston. TX 77251-1892. 

44-006-807. 

lEEE Log Number 90384 17. 

0096-3518/90/1100-2008$01.00 0 1990 IEEE 


