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ARMA Parameter Estimation Using a Novel 
Recursive Estimation Algorithm with 

Selective Updating 
ASHOK K. RAO, YIH-FANG HUANG, MEMBER, IEEE, AND SOURA DASGUPTA 

Ahstract-This paper investigates an  extension of a recursive esti- 
mation algorithm (the so-called OBE algorithm) [9]-[ll], which fea- 
tures a discerning update strategy. In particular, an  extension of the 
algorithm to ARMA parameter estimation is presented here along with 
convergence analysis. The extension is similar to the extended least- 
squares algorithm. However, the convergence analysis is complicated 
due to the discerning update strategy which incorporates an  informa- 
tion-dependent updating factor. The virtues of such an  update strategy 
are: I )  more efficient use of the input data in terms of information 
processing, and 2) a modular adaptive filter structure which would facil- 
itate the development of a parallel-pipelined signal processing archi- 
tecture. It is shown in this paper that if the input noise is bounded and 
the moving average parameters satisfy a certain magnitude bound, then 
the a posteriori prediction errors a re  uniformly bounded. With an  ad- 
ditional persistence of excitation condition, the parameter estimates 
are shown to converge to a neighborhood of the true parameters, and 
the a priori prediction errors a re  shown to he asymptotically bounded. 
Simulation results show that the parameter estimation error for the 
EOBE algorithm is comparable to that for the ELS algorithm. 

I.  INTRODUCTION 
N many adaptive signal processing applications, such I as speech processing, seismic data processing, and 

channel equalization, a signal y (  t )  is often considered as 
the output of an IIR filter driven by unknown white noise 
w ( t )  [I]. The signal y ( t )  can therefore be modeled as an 
autoregressive moving average (ARMA) process of the 
form 

y ( t )  = a , y ( t  - 1) + - * + a,y(t  - n )  + w ( t )  
+ c ,w( t  - 1 )  + * * + c,w(t - r ) .  (1.1) 

Fitting this ARMA model to the measured data y (  t ) ,  t = 
1 , 2 ,  - * *  , requires the estimation of the parameters a l ,  

, c,. Many methods for the estimation 
of ARMA parameters have been proposed in the litera- 
ture, particularly from the spectral estimation viewpoint. 
Among the more recent are Cadzow's overdetermined ra- 

, a,,, cI ,  . 
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tional equation method [2], the spectral matching tech- 
nique of Friedlander and Porat [3], and the extended 
Yule-Walker method of Kaveh [4]. A common feature of 
these methods is the use of the sample autocorrelation se- 
quence of the output process y ( t ) .  In the context of sys- 
tem identification, the extended least-squares (ELS), the 
recursive maximum likelihood (RML), and multistage 
least-squares algorithms have been used to recursively es- 
timate ARMA parameters [5], [6], [12]. The ELS algo- 
rithm uses the a posteriori prediction error ~ ( t ) ,  as an 
estimate of w ( t ) .  The regressor vector is formed from 
y ( t  - I ) ,  , ~ ( t  - r ) .  
The standard recursive least-squares (RLS) algorithm is 
then employed to update the estimates. The algorithm is 
conceptually simple but restrictive in the sense that con- 
vergence of the algorithm can be assured only if the un- 
derlying transfer function H (  q - ' )  = 1 / C (  q-' ) - 1 /2  
is strictly positive real (SPR), with 4-l being the delay 
operator and 

* , y ( t  - n )  and ~ ( t  - I ) ,  

c(q-') = 1 + clq-' + c 2 q p  + * * + c,q-,. (1.2) 

The RML algorithm, which uses a filtered version of 
the regressor vector used in the ELS algorithm, does not 
require H ( q - ' )  to be SPR. However, the estimates have 
to be monitored and projected into a stability region to 
ensure convergence [5]. 

In addition to the aforementioned least-squares based 
methods, there exists a different class of estimation al- 
gorithms that estimate membership sets of parameters 
which are consistent with the measurements and noise 
constraints [7]-[ 111. These algorithms are particularly 
useful when the noise distribution is unknown but con- 
straints in the form of bounds on the instantaneous values 
of the noise are available. To the best of our knowledge, 
none of the algorithms has been applied to the problem of 
ARMA parameter estimation. Among these algorithms 
basedson membership sets, a group of seminal recursive 
algorithms are the so-called optimal bounding ellipsoid 
(OBE) algorithms [9]-[ll]. The OBE algorithms have 
been developed using a set-theoretic formulation and are 
applicable to autoregressive with exogenous input (ARX) 
models with bounded noise. One of the main features of 
these temporally recursive algorithms is a discerning up- 
date strategy. This feature, obtained by the introduction 
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of an information dependent updating/forgetting factor, 
yields a modular structure thereby increasing the potential 
for concurrent and pipelined processing of signals. The 
presence of such a forgetting factor also gives the algo- 
rithms the ability to track slowly time varying parameters. 
One of the algorithms [ 111 has been shown to possess the 
advantageous feature of automatic asymptotic cessation 
of updates if the model is time invariant. If a loose upper 
bound on the noise magnitude is known, and if the input 
is persistently exciting and sufficiently uncorrelated with 
the noise, then it has been shown in [ 1 I] that the param- 
eter estimates converge asymptotically to a neighborhood 
of the true parameter vector. 

In this paper, we extend one of the OBE algorithms [ 1 11 
to the ARMA case. For the ARMA parameter estimation 
problem, the OBE algorithm cannot be applied in its pres- 
ent form. However, by assuming that the input white noise 
is bounded in magnitude, the OBE algorithm can be ex- 
tended in a manner similar to the ELS algorithm. Con- 
vergence analysis of the resulting algorithm is performed 
by imposing a bound on the sum of the magnitudes of the 
MA coefficients. This ensures that the true parameter vec- 
tor is contained in all the optimal bounding ellipsoids. A 
uniform bound on the a posteriori prediction error can 
then be derived. In contrast, even though the a posteriori 
prediction errors are generated in a stable fashion in the 
ELS algorithm [5], it is difficult to obtain an expression 
for even the asymptotic bound, if such a bound exists. By 
imposing a persistence of excitation condition on the re- 
gressor vector, the a priori prediction error of the ex- 
tended OBE algorithm is shown to be bounded and the 
parameter estimates are shown to converge to a neighbor- 
hood of the true parameter vector. 

The paper is organized in the following manner. In Sec- 
tion 11, a brief review of the OBE algorithm and its prop- 
erties is presented. In Section 111, the algorithm is ex- 
tended to ARMA parameter estimation. Convergence 
analysis of the extended algorithm is performed in Section 
IV. The performance of the algorithm is compared to the 
ELS algorithm through simulation studies in Section V. 
Section VI concludes the paper. 

11. THE OBE ALGORITHM 
Consider the ARX model described by 

y ( t )  = q y ( t  - 1)  + * * + uny( t  - n )  + b,u(t) 

+ b l u ( t  - 1)  + * * + b&(t - m )  + u ( t )  

where y ( t )  is the output, u ( t )  is the measurable input, 
and v ( t )  represents the uncertainty or noise. The above 
equation can be recast as 

y ( t )  = e*’+(t) + ~ ( t )  (2.1) 

where 

is the vector of true parameters and 

+ ( t )  = [ y ( t  - I ) ,  Y ( t  - 2 ) ,  * - , y ( t  - n ) ,  

u ( t ) ,  u ( t  - I ) ,  . * , u ( t  - m ) l T  

is the regressor vector. A key assumption here is that the 
noise is bounded in magnitude, i.e., there exists a yo 2 
0, such that 

v2( t )  I y;, for all t ,  hence, 

( y ( t )  - O*T+(”f I y;. 

Let S, be a subset of the euclidean space R n f m + l ,  defined 

1 .  
by 

S, = { e :  ( y ( t >  - e7+(t) l2  I e E R J ~ + ~ + I  

From a geometric point of view, S, is a convex polytope 
in the parameter space and contains the vector of true pa- 
rameters. The OBE algorithm starts off with a large el- 
lipsoid, Eo, in Rn+”’+’  which contains all possible values 
of the modeled parameter e*. After the first observation 
y ( 1 ) is acquired, an ellipsoid is found which bounds the 
intersection of Eo and the convex polytope SI. This el- 
lipsoid must be optimal in some sense, say minimum vol- 
ume [9], [ 101 or by any other criterion [9], [ 1 I], to hasten 
convergence. Denoting the optimal ellipsoid by El,  one 
can proceed exactly as before with the future observations 
and obtain a sequence of optimal bounding ellipsoids 
{ Et 1. The center of the ellipsoid E, can be taken as the 
parameter estimate at the rth instant and is denoted by 
8 ( t ) .  If at a particular time instant i, the resulting optimal 
bounding ellipsoid would be of a “smaller size,” thereby 
implying that the data point y ( i ) conveys some fresh “in- 
formation” regarding the parameter estimates, then the 
parameters are updated. Otherwise, Ei is set equal to E; - I 

and the parameters are not updated. It can also be shown 
[ 111 that all the ellipsoids { E,, t = I ,  2, . 1 contain 
the true parameter e*, provided that Eo does. 

Let the ellipsoid E,-l at the ( t  - l ) th  instant be for- 
mulated by 

E ~ - ,  = ( e :  ( e  - e ( t  - i f ~ - l ( t  - 1)  

(e - e ( t  - I ) >  I a2( t  - I ) )  ( 2 . 2 )  

for some positive definite matrix P ( t  - 1 ) and a nonneg- 
ative scalar a’(t - 1) .  Then, given y ( t ) ,  an ellipsoid 
which bounds E,- I fl S, “tightly” is 

{ e :  (1  - h,)(e - e ( t  - I ) ) ~ P - I ( ~  - 1 )  

( e  - e ( t  - 1 ) )  + ~ , ( ~ ( t )  - e T + ( t ) f  

I ( 1  - h,)a2(t  - 1)  + x , y q  

where the forgetting factor X ( r )  satisfies 0 I h ( 1 )  < 1. 
The size of the bounding ellipsoid is related to the scalar 
a2( t - 1 ) and the eigenvalues of P (  t - 1 ). The update 
equations for e ( t ) ,  P ( t ) ,  and a 2 ( t )  are derived in [ l l ] .  
The optimal ellipsoid which bounds the intersection of 
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INFORMATION PROCESSOR UPDATE PROCESSOR E, - I and SI is defined in terms of an optimal value of A,. 

determined by minimizing a2( t )  with respect to A, at every 

________......_._____________ ...........__.___________. 
For the OBE algorithm of [ 1 I], the optimum value A$ is 

time instant. The minimization procedure results in A: 
being set equal to zero (no update) if No 

I I I 

Fig. 1 .  A modular recursive estimator. 
a2(t  - 1 )  + s'(t) I y;. (2.4) 

If (2.4) is not satisfied, then the optimal value of A, is 
computed. The parameter estimation procedure is de- 
picted in Fig. l .  An outgrowth of this modular recursive 
estimation procedure is a parallel-pipelined networking 
structure [13]. The algorithm is such that the computa- 
tional complexity of the information evaluation (IE) pro- 
cedure is much less than that of the updating procedure 
(UPD). Since, in general, a good number of data samples 
would be rejected by the IE, both the IE and the UPD 
would involve significant amounts of idle time. A viable 
scheme then is to configure a parallel-pipelined network 
comprising of such modular estimators to process signals 
from multiple channels. Apart from reducing hardware 
costs, such a scheme would offer increased reliability 
since the failure of one UPD processor would not cause 
any of the channels CO fail, in contrast to a system with a 
dedicated UPD processor for each channel. 

Now just as in the ARX case, define for some suitable y2 
the convex polytope 

S, = (8: ( y ( t )  - O T + ( t ) f  I y2, 8 E R " " )  

and the bounding ellipsoid 

The update equations for 0 ( t ) ,  P (  t ) ,  and U*(  t ) ,  which 
then follow directly from [ 1 I], are as in the ARX case, 
with the only difference being that the regressor vector is 
now given by (3.5): 

P - ' ( t )  = (1 - A, )P- ' ( t  - 1) + A,+( t )  +'(t) (3.6a) 

(3.6b) 

as s ( t )  = y ( t )  - eT(t  - I )  + ( t )  ( 3 . 6 ~ )  

111. EXTENSION TO ARMA MODELS 
e ( t )  = e ( t  - 1) + A , P ( ~ )  + ( t )  s ( t )  

The ARMA model described by (1.1) can be rewritten 

(3.1) W ( t )  = y ( t )  - O*'+'(t) a 2 ( t )  = (1 - A,)a2(t - 1) + A,y2 

where e*, the vector of true parameters, and + ' ( t )  are 
defined by (3.6d) 

w ( t  - I ) ,  * * , W ( t  - r ) ] ' .  

d ( t )  I 7;. (3.2) 

Here again, w ( t )  is assumed to be bounded in magnitude, 
i.e.,  there exists positive yi such that 

Since the values of the noise sequence { w ( t )  1 are not 
available, the regressor vector + ' ( t )  is not known ex- 
actly. If, however, at time t ,  an estimate of e*, 

e o )  = [al(t) ,  . e a , a,( t )  c l ( t ) ,  - . . , crc t ) ] '  

(3 .3)  
is available, w( t )  could be estimated by the a posteriori 
prediction error 

E ( t )  = y ( t )  - e'(t) + ( t )  (3.4) 

where 

+ ( t )  = [ Y O  - 11, . . . 3 Y ( t  - 4, 
E(t  - I ) ,  . * * , E ( t  - r)] ' .  (3.5) 

where 

G ( t )  = +'(t) P ( t  - 1) + ( t ) .  (3.6e) 

The matrix inversion lemma can be used in (3.6a) to ob- 
tain the following recursion for P (  t ) :  

P ( t )  = - P ( t  - 1) 
1 - I i  A, 

. (3.6f) 

As in the OBE algorithm, the bounding ellipsoids are op- 
timized by choosing AT to minimize 0 2 ( t ) .  In order to 
facilitate the subsequent analysis, the initial conditions are 
modified to 

1 A,P(t - 1) + ( t )  +'(t) P ( t  - 1)  - 
1 - A, + A,G(t) 

P ( 0 )  = MI,+,, O(0) = 0,  and a2(0)  = y2  - E 

(3 .7)  
where M >> 1, E << 1, and is the identity matrix 
of dimension n + r .  This choice of initial conditions en- 
sures that the initial ellipsoid E, will contain the true pa- 
rameter vector O* and, more importantly, as shown in Ap- 
pendix A, simplifies the optimum forgetting factor 
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determination formula to 

If a2( t  - 1) + 6’(t) I y 2  

then A;* = 0, (3.8) 

otherwise 

1 - P ( t )  A;* = ~ 

2 

if G ( t )  = 1 (3  .sa) 

ii) E2(k) I e 2 ( t )  for all time instants k < t ,  (4 .2)  

and if t + j is the time instant at which the next update 
occurs, then 

iii) E2(k)  I E 2 ( t )  for all k < t + j .  (4.3) 

Proof: 
i) It has been shown in Appendix A that if a*( t - 1 ) 

+ S2( t )  > y2 ,  then the optimum forgetting factor AT sat- 
isfies 

if G ( t )  # 1 (3.9b) 

where 

(3.9c) 

Remarks : 
1) It is shown in Appendix A that if u2( t - 1 ) + 6 *( t )  

> y2,  then AT given by (3.9) satisfies 

and furthermore, 0 < AT < 1. Thus, unlike [ 1 11, no up- 
per bound need be imposed on the forgetting factor. 

2 )  Since a 2 ( t )  = a 2 ( t  - 1 )  if A,? = 0, any nonzero 
value of AT which minimizes a 2 ( t )  will cause a 2 ( t )  < 
a2( t  - 1). Thus, choosing A,? to minimize a 2 ( t )  causes 
{ u2( t )  } to be a nonincreasing sequence. 

The recursive relations (3.6), the initial conditions 
(3.7), the selective update strategy (3.8), and the forget- 
ting factor determination formula (3.9) form the Extended 
Optimal Bounding Ellipsoid (EOBE) estimation algo- 
rithm [14]. The choice of the threshold y 2  will become 
clear from the analysis below. The algorithm retains the 
discerning update strategy and the modular adaptive filter 
structure of the OBE algorithm [ l l ] ,  [13]. 

IV. ANALYSIS OF THE EOBE ALGORITHM 

The main difficulty in the analysis of the EOBE algo- 
rithm arises from the presence of the a posteriori predic- 
tion errors in the regressor vector. Unlike the OBE algo- 
rithm, in this case, boundedness of w ( t )  does not 
guarantee that all the convex polytopes S,, t = 1, 2, 
. . * , will contain 19”. The first step in the analysis is to 
find conditions under which this happens. The minimi- 
zation of a 2 ( t ) ,  at every time instant, and the choice of 
initial conditions (3.7), facilitate the characterization of 
the behavior of the a posteriori prediction errors. 

Lemma I :  For the EOBE algorithm of Section 111, if 
a 2 ( t  - 1)  + 6’( t )  > y2,  i.e., if an update occurs at time 
instant t ,  then 

i )  a 2 ( t )  + c 2 ( t )  = y2 ,  (4.1) 

Taking the derivative in (3.6d) and using (4.4) yields 

which can be rewritten in the form 

In (4.5) and in the remainder of the paper, when there is 
no risk of confusion, the optimum forgetting factor AT 
will be denoted by A,. It is also easily shown from (3.6b), 
(3.6c), and (3.6f) that the a posteriori and a priori pre- 
diction errors are related by 

1 - A, 
E( t )  = W). 1 - A, + A,G(t) (4.6) 

Note that the nonnegativeness of G ( t )  implies that E * (  t )  
I s 2 ( t ) .  Substituting (4.6) in (4.5b) and rearranging 
terms yields 

( 1  - A,)y2 - (1 - A,)u2(t - 1) 

Now using (4.6) in (3.6d) gives 

a2( t )  = ( 1  - A,)a2(t - 1) + A,y2 

e 2 ( t ) .  (4.8) - A,E2(t)  - ~ 

1 - A, 

Finally, subtracting (4.8) from (4.7) gives (4.1). 

gives 
ii) Case I :  If k < t is an updating instant, then (4.1) 

a 2 ( k )  + e 2 ( k )  = y2.  (4.9) 

But since { a2( t )  } is a nonincreasing sequence, (4.9) and 
(4.1) together would imply that 

E2(k)  I e 2 ( t ) .  
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Case 2: If k < t is a nonupdating instant, then E 2 ( k )  
= S 2 ( k ) ,  and so by (3.8), a 2 ( k  - 1 )  + E 2 ( k )  I y 2 ,  and 
since a2( t )  is nonincreasing, e * (  k )  I c2(  t ) .  

iii) Since X k ,  k = t + 1, t + 2, . . * , t + j - 1, are 
all zero, a 2 ( k )  = a 2 ( t ) ,  for all t < k < t + j .  And be- 
cause k is a nonupdating instant, a 2 ( k  - l )  + E 2 ( k )  = 
a2(r) + e 2 ( k )  I y2,  and so (4.3) follows. 

We can now deiive sufficient conditions under which 
the convex polytopes S, and E, will contain 8". 

Theorem I :  The convex polytopes S, and consequently 
the ellipsoids E,, t = 1, 2, * - - , will contain the true 
parameter, if 

(4 .  loa)  i)  Eo contains O*, 
ii) the true moving average coefficients satisfy 

r r i2 

i i i)  the threshold y 2  satisfies 

Proof: Let the induction hypothesis be O* E E,- 
Then defining 

v(t)  = ( e ( t )  - e*) 'p - I ( t ) ( e ( t )  - e*> (4.11) 

and recalling the definition of E,- yields 

V ( t  - 1)  I o2(t - 1)  (4.12) 

and since P - l ( t )  is positive definite for all t ,  02( t  - 1 )  
> 0. 

Now using (3.1) and (3.5) 

( Y O )  - e*Tw)f 
= (C(q- ' ) [w(t) l  - (G-9 - N 4 ~ ) I ) '  

where the operator C ( q - l )  has been defined in (1.2). De- 
fining n ( t )  = C( q-' ) [ w ( t ) ] ,  and recalling an elemen- 
tary algebraic inequality 

( a  - b)2 I 2a2 + 2b2 

yields 

( y ( t )  - e * T q t ) f  I 2n2(t) + 2 ( c l E ( t  - 1)  

+ c2E(t - 2)  - * + c+(t - r)) ' .  (4.13) 

But 

n2( t )  I t y r 2 ,  for all t 

where 

Hence, 

( y ( t )  - e * T q t ) f  I + 2(1cll I +  - i )1  

+ \c21 lE(t - 211 + - + 1crl ~ c ( t  - r)I)'.  
(4.15) 

But by Lemma 1, if t - j is the updating instant imme- 
diately preceding time instant t ,  then 

IE(t - i ) I  I I e ( t  - j ) l  for 1 I i I r. 

Thus 

( Y W  - O f 7 W ) f  

I 7 ' 2  + 2 ( j l  lcll)? E 2 ( t  - j )  

I y f 2  + 2 c IC,I ( 7 2  - a2( t  - 1 ) ) .  )? 
Since E 2 ( t  - j )  = y 2  - a 2 ( t  - j )  = y 2  - a 2 ( t  - 1) .  
Now by the induction hypothesis, a 2 ( t  - 1 )  L 0. Hence, 

So the convex polytope S, will contain e* if 

yr2 + 2 c ( C l (  y 2  I y2. (4.17) 

The inequality (4.17) will hold iff (4. lob) and ( 4 . 1 0 ~ )  are 
true. Assuming (4. lob) and ( 4 . 1 0 ~ )  thus guarantees that 
for all time instants t 

( y ( t )  - e*'a(t)) I y2. (4.18) 

)? 

2 

Using (3.6) and (4.11), it can be shown that 

v(t) - a2( t )  I ( 1  - X,) (V( t  - 1)  - a2(t  - 1 ) )  

+ h [ ( Y ( t )  - e*Tw)f - Y 2 ]  (4.19) 

and so from (4.18) it follows that 

v(t) - a2( t )  I ( 1  - X,) (V( t  - 1)  - 02(t  - 1 ) ) .  

(4.20) 

Finally, by (4.12), it follows that 

V ( t )  - 0 2 ( t )  I 0,  (4.21) 

i.e., E, contains e*,  and 02( t )  is nonnegative for all t .  
Remarks: 
1) The assumption (4. lob) says that the noise sequence 

n ( t )  = C(q-')[w(t)] shouldnotbe "toocolored." This 
condition is analogous to the Strictly Positive Real (SPR) 
condition which appears in the ELS algorithm (cf. Section 
I). It is not very difficult to show that for the SPR condi- 
tion to hold, it is necessary that 

r c I C i I 2  < 1. 
i =  I 

(4.22) 
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It can also be seen that condition (4. lob) is a stricter form 
of the Strictly Dominant Passive (SDP) condition [I51 
which appears in the analysis of some signed LMS algo- 
rithms, and from [15], it follows that (4.10b) is sufficient 
for the SPR condition to hold and hence is more restrictive 
than the SPR condition. 

2) Selection of the right "noise bound" y 2  is made 
possible by ( 4 . 1 0 ~ ) .  The user would, however, need to 
have some knowledge of the magnitude of the true mov- 
ing average coefficients. Simulation results show that 
overestimation of y has very little effect on the parameter 
estimates (centers of the bounding ellipsoids), although it 
may have an adverse effect on the size of the bounding 
ellipsoids. 

3) The conditions (4.10b) and ( 4 . 1 0 ~ )  are not neces- 
sary conditions, and the algorithm has been observed to 
perform well in several examples where these conditions 
were violated. 

The following result follows straightforwardly from 
Lemma 1 and Theorem 1. 

Corollary I :  If the conditions of Theorem 1 hold then 

a)  lim e2(tj)  exists (4.23a) 

where { t j }  is the subsequence of updating instants of the 
EOBE algorithm, and 

b) uniformly bounded a posteriori prediction errors 

t , + m  

e 2 ( t )  I y2, for all time instants t. (4.23b) 

b) Asymptotically bounded parameter estimation er- 
rors 

where yi and cy4 are as in (3.2) and (4.24b), respectively. 
c) If, in addition, the process (1.1) is stable, then the 

algorithm yields asymptotically bounded a priori predic- 
tion errors 

6 " d  + [O, r21. (4.27) 

Proof: 
a) From (3.6b) and (3.6f) 

I I e ( 4  - - 1)112 

(4.28) 
- A:','(t) P 2 ( t  - 1 )  ' ( t )  P ( t )  - 

(1  - A, + A,G(t))* 

where emax { P (  t - 1 ) } is the maximum eigenvalue of 
P ( t  - l ) ,  and 11 * 11 denotes the Euclidean norm. Using 
(3.6d) in (4.5a) yields 

The nonnegativity of U'( t ) therefore implies 

= U 2 ( O )  - o'(t) < W .  

Boundedness of 6 *( t ) ,  the a priori prediction error, and 
convergence of the parameter estimates to a neighborhood 
of the true parameter can be assured by requiring the re- 
gressor vector to be persistently exciting. The next lemma 
relates the positive definiteness of P - I (  t )  to the richness 
of the regressor vector ( t ) .  Hence, 

Lemma 2: If there exist positive a3 and N such that, for 
all t lim 

Afs2(i) G ( i )  

( 1  - A, + A,G(i)) 
(4.31) 

= 0. (4.32) Af&'(t) G ( t )  
r + m  (1  - A, + A,G(t))  

t + N  

I = ,  ' ' ( i )  ' T ( i )  > ' 9  (4.24a) If (4.24a) holds, then by Lemma 2, e m a x { P ( t  - l ) ,  the 
maximum eigenvalue of P (  r - 1 ), is bounded for all t ,  
and hence (4.29) and (4.32) yield then there exists a positive a4 such that 

P - ' ( t )  1 aqz > 0. (4.24b) 

Proof of the lemma is the same as that of Theorem 4.1 of 
[l 11, it is thus omitted here. 

Remark: The positive definiteness of P - I (  t )  implies 
that the eigenvalues of P (  t )  are upper bounded. 

f ieorem 2: If the assumptions of Theorem 1 are sat- 
isfied and (4.24a) holds, then the EOBE algorithm en- 
sures the following. 

a) Parameter difference convergence 

lim IIe(t) - e ( t  - k)II = o 
t + m  

for any finite k. (4.25) 

IIe(t) - e ( t  - i)II ---f 0. (4.33) 

Applying the Minkowski inequality to 11 e ( t )  - O ( t  - 
k )  1 1  and using (4.33) completes the proof of (4.25). 

b) Using (3.6), (4. I]), and (4.6), an expression similar 
to (4.19) can be derived as 

~ ( t )  = ( 1  - A , ) v ( ~  - 1) + A, (~(q-')[w(r)] r. 
1 (4.34) 

- ( C ( q - 7  - I ) [E( t ) l )  

E 2 ( t )  . 
- 1 - A, + A,G(t) 

1 - A, 
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Just as in the proof of Theorem 1, (4.34) can be expressed 
as 

V ( t )  I (1  - A,)V(t - 1 )  + XIy'2 

(4 .35)  
1 - XI + AIG(t) - 

1 - A, 

where y'2 is as in (4.14), and t - j is the updating instant 
immediately preceding time instant t. Assume t is an up- 
dating instant. Then (4. lob), (4.2), and the nonnegativity 
of G ( t )  would imply that the term in square brackets on 
the right-hand side of (4.35) is not positive, and so 

V ( t )  I (1  - A,)V(t  - 1)  + A1yr2. (4.36) 

It is obvious that if t is not an updating instant, then (4.36) 
would still follow from (4.35). A nonrecursive form for 
(4.36) can be obtained as 

V ( t )  4 ;I (1  - X,)V(O) + y2 i ql, (4.37) 
r = l  i = 1  

where 

For large t ,  the first term on the right-hand side of (4.37) 
can be neglected. In Appendix B, it is shown that 

I c qi, < 1. (4.39) 
i =  I 

Hence, for large enough t 

v(t)  = ( e ( t >  - e * ) ' P - l ( t ) ( e ( t )  - e*> 4 y 2 .  

(4.40) 

And so (4.26) follows from Lemma 2 and (4.14). 
c) Stability of the process (1.1) and the boundedness of 

w ( f )  implies that the outputs y ( t )  are bounded. Hence, 
from (3.6e), (4.23b), and Lemma 2, it follows that 

G ( t )  4 e m a n { P ( t  - l ) } [ r y 2  + n max y 2 ( i ) ]  
t -  n 5 i 5 f - 1 

< a  (4.41 ) 

where n is the order of the AR process and r is the order 
of the MA process. It can now be shown, just as in Theo- 
rem 3.2 of [ 111, that the a priori prediction errors satisfy 
(4.27). 

Remarks: 
1) The results of Theorem 1, and the results (4.25), 

(4.26) of Theorem 2, do not require the process to be sta- 
ble. However, if the process is unstable, then on account 
of finite precision effects, the matrix P ( t )  may not stay 

positive definite, thus invalidating the notion of bounding 
ellipsoids and causing the algorithm to fail. In this situa- 
tion, the ELS algorithm will fail, too. 

2) Theorems 1 and 2 do not impose any statistical 
properties on the input noise sequence { w ( t ) } . However, 
our simulation experience has been that the parameter es- 
timates are usually not close to the true parameters if the 
noise is not white. Of course, such is also the case for the 
ELS algorithm. 

V. SIMULATION RESULTS 
Simulations have been performed to investigate the per- 

formance of the EOBE algorithm vis 2 vis the ELS algo- 
rithm. In this paper, we present simulation results for two 
examples-a broad-band ARMA ( 3, 3 ) process and a nar- 
row-band ARMA (2,  2 )  process where the indexes n ,  r in 
an ARMA( n,  r )  process refer to the orders of the A (  q-') 
and C ( q - l )  polynomials, respectively. 

Example I-Broad-band ARMA (3, 3) Process: The 
output data { y ( t )  } are generated by the following differ- 
ence equation: 

y( t )  = -0.4y(t - 1) + 0.2y(t - 2)  + 0.6y(t - 3)  

+ w(t) - 0.22w(t - 1) + 0.17w(t - 2)  

- O.lw(t - 3 ) .  

The noise sequence { w ( t ) }  is generated by a pseudo- 
random number generator with a uniform probability dis- 
tribution in [ - 1.0, 1.01. The upper bound y 2  was set 
equal to 25. The parameter estimates were obtained by 
applying the EOBE algorithm to 1000 point data se- 
quences. Twenty-five runs of the algorithm were per- 
formed on the same model but with different input noise 
sequences. The average squared parameter error Ll(  t )  is 
computed for the AR coefficients according to the formula 

. 25 
1 

L ( t )  = - c l, ( t )  
25 j = ~  

where l j (  t ) ,  the squared AR parameter error at time t for 
thejth run, is defined by 

n 

with a, and a , ( t )  being defined by (1.1) and (3.3), re- 
spectively. The average squared parameter error L2( t )  for 
the MA coefficients is defined analogously. Figs. 2 and 3 
display the average squared estimation errors for AR and 
MA parameters using both the EOBE and the ELS algo- 
rithms. The curves show that the performance of the two 
algorithms is comparable. The average number of updates 
for the EOBE algorithm was 160 for 1000 point data se- 
quences. Thus, only 16% of the samples are used for up- 
dates, as compared to the ELS algorithm which updates 
at every sampling instant. 
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Fig. 2. Average squared AR parameter estimation error for the EOBE and 

ELS algorithms-Example 1. 

- EOBE (y2= 25. 

- ELS (h = I )  
P(0) = 101) 

-25b 260 d o  SA0 sdo Id00 
Time 

Fig. 3 .  Average squared MA parameter estimation error for the EOBE and 
ELS algorithms-Example 1. 

TABLE I 

Total Number Total Number Average Average 

Bound y * Tap Error of Updates is Out of S, is Out of E, Volume of Axes 
Upper Average Average Number of Times 0* of Times 0 *  Final Final Sum 

- - 0.5 0.031 160 7309 23952 
1.0 0.031 160 315 0 0.22 10.46 
2.0 0.031 160 0 0 2.6 X 10‘ 74 

25.0 0.031 153 0 0 2.1 X IO”  1537 
5.0 0.031 154 0 0 5.4 x 10’ 265 

100.0 0.0308 156 0 0 1.0 x 10I6 6303 

The effect of different choices for the upper bound y2 
on the performance has also been studied. For each value 
of y2, the asymptotic average squared parameter error T 
was computed over 25 runs of the algorithm, according 
to the formula 

where O j (  1000) is the parameter estimate at the 1000th 
iteration in thejth run. The lower bound on y 2  as calcu- 
lated from ( 4 . 1 0 ~ )  is y 2  2 8.54. The second column of 
Table I lists the different values of T obtained when y is 
varied from 0.5 to 100. It is clear that the centers of the 
bounding ellipsoids are insensitive to the value of y2, 
since the tap error is almost constant. However, the final 
size of the ellipsoids does depend on y2. The negative 

volume obtained when y 2  = 0.5 is an indication of the 
fact that a2 ( t )  is no longer positive and so bounding el- 
lipsoids cannot be constructed. 

The performance of the algorithm, when the noise se- 
quence { w( t ) }  has a Gaussian distribution, was evalu- 
ated in a similar fashion. A constant value of y2 = 25 
was used and the standard deviation of the noise was var- 
ied. The results for 25 runs of the algorithm are shown in 
Table 11. It is clear that the unbounded noise has marginal 
effect on the parameter estimates. 

Finally, the tracking capability of the EOBE algorithm 
was compared to that of the ELS algorithm (with forget- 
ting factor = 0.99). The same model was used to generate 
400 data points. The parameters were then changed by 
150% and the next 400 points were generated. Finally, 
the last 200 points were generated by using the original 
parameters. The average squared parameter error was 
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TABLE I1 

Standard Total Number Total Number Average Average 
Deviation Average Average Number of Times 8* of Times 8* Final Final Sum 
of Noise Tap Error of Updates is Out of S, is Out of E, Volume of Semiaxes 

0.5 0.29 93 0 0 5.6 X lo'* 1575 
1 .o 0.317 108 0 0 4.89 x IO8 333 
2.0 0.313 117 323 0 1.47 x 10' 20 

- - 3.0 0.32 122 2439 19787 
- 

0 
- EOBE (y2= 25. 

E 65- -10 i\r P(0) = 101) 
ELS (h =1) 

-40A 2dO 4dO 660 8d0 Id00 
Time 

Fig. 5 .  Average squared AR parameter estimation error for the EOBE and 
ELS algorithms-Example 2. 

evaluated over 25 runs and is shown in Fig. 4. Even 
though the formulation of bounding ellipsoids is based on 
the assumption that the parameters are constant, the sim- 
ulation results show that the algorithm is able to accom- 
modate changes in  model parameters. Analysis of the 
tracking ability of the algorithm is currently under inves- 
tigation. 

Example 2-Narrow-band ARMA (2 ,  2 )  Process: The 
output data { y ( t )  } are generated by the following differ- 
ence equation: 

y( t )  = 1.4y(t - 1) - 0.95y(t - 2) + w(t )  

- 0.86w(t - 1 )  + 0.431w(t - 2 ) .  

Note that, in this case, condition (4. lob) of Theorem 1 is 
violated. The noise sequence is uniformly distributed in 
[ - 1 .O, 1 . O ] ,  as in the first example. The upper bound y 2  
was set equal to 25. The average squared AR and MA 
parameter estimation errors are calculated over twenty five 

on I I I I 

-""O 200 400 600 800 1000 
Time 

Fig. 6. Average squared MA parameter estimation error for the EOBE and 
ELS algorithms-Example 2.  

runs and plotted in Figs. 5 and 6, respectively. The aver- 
age number of updates was 78 for 1000 point data se- 
quences. 

For this example too, different values of the upper 
bound y2 were used and no significant difference in the 
quality of estimates, number of updates or convergence 
rate was observed. Thus, it is verified once again that a 
precise knowledge of the upper bound is not a prerequisite 
for satisfactory performance of the algorithm. 

VI. CONCLUSION 
A recursive parameter estimation algorithm has been 

extended for ARMA parameter estimation. The main fea- 
tures of the algorithm are a membership set theoretic for- 
mulation and a discerning update strategy. Convergence 
analysis of the algorithm has been performed under the 
assumption that the noise is bounded. The main results 
of the analysis are that all the bounding ellipsoids will 
contain the true parameter, provided the true moving 
average coefficients satisfy a condition, which is analo- 
gous to the SPR condition of the ELS algorithm. In ad- 
dition, the algorithm yields uniformly bounded a poster- 
iori prediction errors. With a persistence of excitation 
condition on the regressor vector, boundedness of the a 
priori prediction errors can then be established and the 
parameter estimates are shown to converge to a neighbor- 
hood of the true parameters. Simulation results show that 
the performance of the algorithm is comparable to the ELS 
algorithm while requiring far fewer updates. 

APPENDIX A 

of the proof of Lemma 2.1 in [ I l l .  
Proof of (3.8) and (3.9): The proof is along the lines 
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Since A: minimizes a 2 ( t )  

a2(t ,  A:) I a2( t ,  0) = a2( t  - 1) ( A . l )  
and 

da2( t )  -- - y 2  - a2(t  - 1 )  
d h ,  

( 1  - A,)2 - A:G(t) 

( 1  - X, + A,G(t)f 
- s’(t) (A.2)  

and 

(A.3)  
2s2( t )  G( t )  

( 1  - A, + AIG(t))3‘ 
-- - d2a2( t) 

dA: 

Thus, d 2 a 2 ( t ) / d A :  > 0, unless s 2 ( t )  = 0 or G ( t )  = 0. 
Since P(t  - 1)  is positive definite, G ( t )  = 0 iff @ ( t )  = 
0. The algorithm can be modified to detect the occurrence 
of a null @ ( t )  and set it to a small nonzero value, prior 
to the calculation of G ( t ) .  Thus, it can be assumed that 
G(t )  # 0 for all t .  If s 2 ( t )  = 0 (a2(t  - 1) + s’(t) < 
y 2  in this case), then, since a ’ (0 )  < y 2  by (3.7), and 
since a2( t )  is nonincreasing, therefore, by (A.2) 
do2( t )  / d A ,  is positive, and hence a’( t )  is minimized if 
A: = 0. Now, for the sequel, the second derivative of 
a2( t )  can be assumed to be positive, and hence the unique 
minimum occurs at da2( t ) / d A ,  = 0. From (A.2),  if G( t )  
= 1 ,  is2( t )  is minimized if 

A:: = ( 1  - P(t) ) /2 .  (A.4)  
Otherwise, if G( t )  # 1, a*( t )  is minimized if 

Moreover, in (A.4) and (A.5) 

X:: > 0 e P ( t )  < 1 * a2( t  - 1 )  + s ’ ( t )  > y2. 

( A 4  
It is easy to show that 1 + P ( t )  ( G ( t )  - 1 )  is always 
positive. Since a2( 0)  < y 2  and a2( t )  is nonincreasing, 
therefore, P ( t )  > 0. From (A.6), P ( t )  < 1, hence 1 - 
1 / P ( t )  < 0. Then 

1 + P ( t ) ( G ( t )  - 1 )  I 0 3 G(t)  

I 1 - l / p ( t )  * G ( t )  < 0 

which is a contradiction. Thus, (A.5) would always yield 
real A,*. It is now shown that (A.4) and (A.5) yield values 
of A; which are upper bounded by unity. If G (  t )  = 1, 
then since P ( t )  > 0, (A.4) yields A,* < 1. If G ( t )  < 1 ,  
then A:: I 1 e 1 - [ G ( t ) / ( l  + P ( t ) ( G ( t )  - 1)) ] ’ /2  
I 1 - G ( t )  

e G ( t ) ( l  + P ( t ) ( G ( t )  - 1 ) )  L 1. ( A . 7 )  
But G( t )  < 1 and ,6 ( t )  > 0 contradict (A.7). Hence, if 
G(t )  < 1, then A: < 1 .  It can be shown in exactly the 

same way that G( t )  > 1 would imply that A,* < 1. Thus, 
unlike the case in [ 111, no upper bound has to be imposed 
on the forgetting factor. 

APPENDIX B 
Proof of (4.39) (by Induction): Let 

f 

Then 

R ( t )  = ( 1  - h,)R(t  - 1 )  + A, (B.2)  

and 

R ( 1 )  = A, < 1 .  

Assume 

R ( t  - 1 )  < 1 .  

Then by (B.2) 

R ( t )  < (1 - A,) * 1 + A,, 
i.e., 

R ( t )  < 1 .  
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