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Abstract

A new direct method for estimating the power spectrum of two-dimensional

isotropic random fields its presented. It is shown that the problem of con-

structing the maximum entropy estimate of the power spectrum is equivalent

to that of estimating the value of the random field at the origin of a disk

of observation. An efficient algorithm for the construction of the MEM

spectrum estimate with 0(N2) operation (similar to the Levinson recursions

in one dimension) is described and illustrated.
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I. INTRODUCTION

The need for efficient power spectrum estimation techniques arises

in a number of practical applications, such as speech processing [1],

radar [2], sonar 131, image processing [4] and seismic signal processing

[5], to mention a few. For one-dimensional signals, the maximum-entropy

spectral estimation method (MEM) has become very popular due to the

facts that it can provide excellent frequency resolution, and that it

can be implemented in a computationally efficient way [6]. Because of

the multidimensional nature of the signals arising in some applications

(e.g. geophysical problems, imaging, sonar, etc.) a number of maximum

entropy algorithms have been developed over the past ten years ([7]-[9])

for estimating two-dimensional spectra. However, all of the proposed

two-dimensional MEM algorithms are iterative in nature. The convergence

of these algorithms has been observed to be slow in the case of highly

peaked spectra. Furthermore, some of the algorithms are not guaranteed

to converge [10]. In this paper we present a direct method for finding

the maximum entropy estimate of the power spectrum of a two-dimensional

isotroc field. Isotropic random fields are characterized by a co-

variance function which is invariant under all rigid body motions --

i.e. the correlation of the values of the field at two points depends

only on the distance between the points. Apart from the fact that

the isotropic property is the natural extention of stationarity in one

dimension, isotropic fields deserve special attention because they arise

in a number of physical problems of interest among which we can mention
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the study of sound propagation ([11] chapter 10), the investigation of

the temperature and pressure distributions in the atmosphere at a constant

altitude [12], and the analysis of turbulence in fluid mechanics [13].

This paper is organized as follows. In Section 2 we develop an

expression for the maximum entropy spectral estimate of an isotropic

field. In Section 3 the spectral estimation problem is related to the

problem of finding a smoothed estimate of an isotropic field given

some noisy observations. A fast algorithm developed for the smoothing

problem is then presented and used to construct the MEM spectral estimate.

The numerical implementation of this fast algorithm is discussed in

Section 4 and some examples are given in Section 5.
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II. THE MEM SPECTRAL ESTIMATE

Consider the following problem. Let

y(.r) = Z(r) + v(.r), r e ]R (2.1)

be some observations of a two-dimensional isotropic zero-mean Gaussian

random field z(.r) with covariance function K (Ir-si) = E[z(r)z(s)].

Here, v(r) is a two-dimensional white Gaussian noise of strength one,

and is uncorrelated with z(r). Given the value of the covariance function

of y(r),. K (jIr-s) = E[y(r)y(s)], for lr-sI < R it is required to

determine the "most random' field y(.-) whose covariance function is

consistent with the set of known values. The above problem can be

formulated -more precisely as the problem of maximizing the entropy

H 1= J dfldf 2 Zn Syy(flf 2 (2.2a)

where S Cfl,f2) is the spectrum of y(.-), i.e. the 2-D Fourier transform

of K (JrI) viewed as a function of the two-vector r. Since K (')
yy yy

depends only on r] , it is straightforward to show that S is actually

only a function of a = (f+f 2) 1/2 14], and with a slight abuse of

notation we will write this as S (X). Furthermore, S (X) can be shown

to be nothing more than the Hankel transform of K (r) viewed as a
YY

function of the scalar r = Irl:

S yy) = dr rJ0 (Ar)Kyy (r)

and (2.2a) can then be reduced to

H = 2r| dd X n S (X) . (2.2b)
Jo W
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The problem is now to maximize H subject to:

(i) S (A) > 0 for X > 0 (2.3)
YY -

and

(ii), s (x), J0 (r) AdA = K (r) , for r < R . (2.4)

Note that we assume here that K (r) is known for r < R.
YY

By using the approach outlined in t15] for solving optimization

problems with global pointwise inequality constraints, we find that the

power spectral estimate S (AX) is given by
yy

S (A) = (R A) (2.5)
yy A(R,%)

where

fR
A(R,%) = a(R,r) J0 (Ar) rdr , (2.6)

and a(R,r) is the Lagrange multiplier function associated with the

constraint (2.4). The spectral estimate S (X) as given by equation
YY

(2.5) is shown in the appendix to satisfy the non-negativity constraint

(2.3). Thus, the problem has been reduced to determining a(R,r).

Combining equations (2.4), (2.5) and (2.6) we obtain

1 _(r)j ds s a(R,s)k (r,s) + - a(R,r) = 2 , r < R (2.7)

where

k0 (r,s) = J 0 (r)J 0 (As) S zz(X)d , (2.8)

and S (X) is the Hankel transform of the covariance function K (r).

The function k0(r,s) can be interpreted as being the covariance function



-6-

of the process z (r), 0 < r < R, where z (r) is the zero order Fourier

coefficient of z(r), r c= (r sin e, r cos 0), in the Fourier expansion

of z(.r) in terms of the coordinate angle e [16]. It is assumed here that

k0(r,s) is known over 0 < r, s < R, which is a more stringent requirement

than knowing K (r) or equivalently K (.r) over 0 < r < R, since we have

1 2 2 1/2
k0 (r,s) 1 Tde K ((r2 +s2 -2rs cos )1/2) (2.9)

from which it appears that k0(r,s) depends on K Z(r) for 0 < r < 2R.

This last interval is twice as long as the one over which K (r) is
zz

assumed to be known. However, in practice k (r,s) is evaluated directly

from the observed data y(r), and it is therefore reasonable to assume that

k0(r,s) is given for 0 < r, S < R. Furthermore, let us make two additional

comments. The first is that although z(r) is isotropic, z (r) is not a

stationary process as a function of the scalar r, i.e. k0(r,s) is not a

function of r-s. Secondly, equations (2.5) - (2.7) imply that the optimal

spectral estimate depends only on the second-order statistics of z (r),

the process obtained by averaging z(r) along circles centered at the origin.

Instead of dealing with the integral equation (2.7), let us assume

that a(.R,r) has the form

a(R,r) = 47 2 - cR,r)) 0 < r < R (2.10)
c(Rr)) 0<r <

or equivalently that S (.X) has the form

yy 2M(1-Co(R) (2.11)
yy 27 (1-CO (R;,))

where

C0 (R ,) = dr r JO(0 r) c0 (R,r) . (2.12)



-7-

Substituting equation (2,10) into equation (2.7) yields the following

integral equation for the unknown cO (R,r)

R 1

k0(O,r) - J ds s k0(r,s;)c0Rs) c (R,r) , for r < R

(2.13)

Equation (2.13) is quite interesting,for it also arises in the context

of smoothing for isotropic random fields [16], as we shall see in the

next section. The function c0(R,r) turns out to be the optimum linear

filter for estimating z(0) given the observations y(r) on a disk of

radius R centered at the origin. A fast algorithm for the construction

of c0(R,r) was developed in 116] and is reviewed in the next section.
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III. A FAST ALGORITHM FOR THE CONSTRUCTION OF A(R,X)

We begin this section by giving a brief overview of some of the

work presented in 116]. Consider again equation (2.1) and assume that

we want to find the best estimates of both z(O) and z(R) given the

observations y(:r) on a disk of radius R = IRI centered around the origin.

This problem can be solved by'expanding each of the processes appearing

in equation (2,1). in Fourier series in terms of the coordinate angle O.

The main feature of such an expansion is that the Fourier coefficient

processes of different orders are uncorrelated for an isotropic random

field. The original two-dimensional estimation problem thus requires

only the solution of a sequence of one-dimensional estimation problems

corresponding to the measurements

n (r) = zn (r) + vn(r) 0 < r < R (3.1)

th
where y (r), z (r) and v (r) are the n order Fourier coefficients

n n n

associated with the observations y(r), the signal z(r) and the noise

v(r), respectively. The filtered estimate of z (R) given y (r) for
n

r < R can be obtained by passing y n(r) through a filter with kernel

gn(R,r). Similarly the smoothed estimate z0(0) = z(O) given y0 (r)

for r < R can be constructed by passing y0 (r) through the filter with

kernel c (R,r), where we have used this notation for the kernel in

anticipation of the result alluded to in the previous section.

Note that since

+00

z(r) = z (r)ej (3.2)
n= -oo n



-9-

the optimal estimate of zC.Y is given by

z(r)- = n zS Cr) ei 40 (3.3)
n - O-a n

where i (rl is the best estimate of z (r) given y (r), 0 < r < R.
n n n

Recall that what we are interested in doing is estimating z(0) and z(R)

given the data. Clearly z(O) has a trivial Fourier series decomposition,

s-ince the zero radius circle degenerates to a point. Thus, we must

have

z (0) = (0) = c0 (R,r)y0 (r)rdr (3.4)

Thus the best estimate at the center of the data disk depends only on

the average values of the data on circles centered at the origin. For

r > 0, all of the z (r) are non-zero, and we must in principle estimate
n

them all. In particular

n(R) = gn(R,r) y n(r)rdr . (3.5)
n nn0

The problem we now investigate is the determination of cO (R,r) and g n(R,r).

By using the orthogonality property of linear least-squares estimates,

we find that the weighting functions g n(R,r) and c (R,r) satisfy the

integral equations

k (r,R) = R (r,s)gn(R,s)sds + gn(R,r) (3.6)
n J0 n n 2s n

k(0,r) = ko(r,s)co(R,s)sds + 2 co(R,r) , (3.7)

for 0 < r < R, where



-10-

k (r,s) = EIz (r) (s)] = J (Ar)J (As)S (X)XdX , (3.8)
n n n n zz

are assured to be known for 0 < r,s < R. Comparing (2.12)

and (3.7). we see that our use of the notation c (R,r) is justified.

Equations (3.6) and ('3.7) can be discretized individually and solved

seperately for gn (R,r) and c (R,r). However, such an approach requires

O(N 3 operations-, where N is the number of discretization points at which

gn(R,r) and cO(R,r) are computed. A more efficient procedure for

constructing g (R,r) and c (R,r) results from using equations (3.6) and

(3.7) together with the following coupled partial differential equations

1161:

(-R ) gn (R,r) = p (R)g (Rr) , (3.9a)) g (Rr) + r+ 

- ) g (Rr) + ( + -) g (R,r) = p (R)g (.Rr) , (3.9b)'3r r n '~R R n+l n n+l

cR O(R,r) Rc (R,R)g (R,r) , (3.10)

with

p (R) R(g (R,R) - g (R,R , (3.11)
n n n+l

and initial conditions

r go(R,r) = , (3.12a)
3r n r0

g- (R,0) =0 , for n R 0 (3.12b)

cO(0,r) = K (r) . (3.12c)
Pn =~~~z



Equations (3,.9 - (.3.11) can be derived by exploiting the special

structure of k (.r,s) as displayed by equation (.3.8), and by using the
n

properties of Bessel functions. Our primary interest now is in computing

c0 (R,r). Examining (.3.9) - (3.,12) we see that by specializing (3.9) to

n=O only, we obtain a set of coupled equations for g0 (R,r), gl(R,r) and

c0 CR,r). It is these equations that we will solve. Note also that by

using the above mentioned coupled partial differential equations, one

can compute c0(R,r) recursively as a function of R so that the spectral

estimate S (a)j can be easily updated whenever new measurements become
YY

available -- i.e. as the disk radius R is increased. In this respect

equations (3.9) - (3.11) are similar to the Levinson equations of one-

dimensional linear prediction. Once c0(R,r) becomes available, its

Hankel transform C (R,X) can be obtained easily by using any of the

existing fast Hankel transform techniques (.see I17]).
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IV. NUMERICAL IMPLEMENTATION

For the case where n=O, the system (3.9) can be rewritten as

Da 90 (Rr+ gl(R,r) = -P0(R)g 0(R,r) , (4.1a)

ar g (Rr) + + - R gR) = (R) g= (R,r) g (4.lb)

where these equations are subject to (3.11) - (3.12) and must be solved

for r<R and O<R<R*, where R* is the disk radius beyond which K (r) needs to

be extended. The system (4.1) constitutes a quasilinear hyperbolic system [18]

with characteristics given by

= +1 . (4.2)
dr

We shall now apply the method of characteristics [18], [191 to solve this

system. Specifically we consider a new coordinate system a,r where

a = R+r (4.3a)

= R-r . (4.3b)

Equations (4.1) can now be rewritten in the new coordinate system

as

9 go (a)+ a gl('°) -Po2 ) g0( 'g)

+ ( 0 (---~ - gl( , ' ) (4.4a)
(22-_ 2)/
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0 go, (e ') = - PO ("" go ( c2')e

(P(')+ 4 g1 a,- ' * (4. 4b)

Note that in the new- coordinate system each partial differential equation

involves differentiation with respect to only one of the independent

variables a and 3. Thus, to compute g0(R,r) and gl(R,r) within the domain

of influence of an initial data segment, we can integrate equations (4.4)

along the characteristic direction a = constant (for (4.4b)) and B = constant

(for (4.4a)). (or equivalently along lines of slope + 45
° in the (R,r) plane),

as- shown in Fig. 1. The domain of influence of a point (Ror 0) is the set

of points (.R,r) at which the solution is influenced by the initial data

at the point (R0,ro). For example, if the values of g0(R,r) and gl(R,r)

have been computed inside the triangle OAB (see Fig. 1), and in particular

on the line AB, then by integrating equation (4.4a) along B = constant

lines- starting on AB, we can compute the sum g0 (R,r) + gl(R,r) inside

the parallelogram ABGF. Similarly, by integrating (4.4b) along a = con-

stant directions starting on AB, we can compute the difference g0(R,r)-

gl(R,r) inside the region ABED. Thus, g (R,r) and gl(R,r) can be uniquely

determined within the triangle ABC (the intersection of regions ABED and

ABGF). The values of g0 (R,r) and gl(R,r) which are outside triangle ABC,

will have to be computed using integral equations (3.6) and (3.7).

Our numerical procedure is based on equations (3.6) - (3.7), (3.10)-

and (4.4). We divide the interval [0,R*] into N subintervals of length A

R*/N. Denoting G n(k,Z) = gn(kA,kA) and C0 (k,k) = c (kA,kA), if at
nn0
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stage k we assume that G0 (k,~), Gl(k,k) and CO(k,ik have been computed

for 0 < Q < k (-i',e, on the li'ne AB of Fig. 1), then G0(k+l,Q), Gl(k+l, )

and C (k+l,k) can be evaluated for 0 < K_ kx l by integrating equations

(:4.4) along the characteris5tic directions R:= constant ±r for G0 and G1,

and by integrating (3.10) along r = constant for C0. For Q = k, k+l

(i.e. outside of the triangle ABC), GO(k+l,k), Gl(k+l,Z) and CO(k+l,k)

can be computed by solving three two by two linear systems obtained by

discretizing integral equations (.3.6) and (3.7) (see Fig. 1). If we use

a simple Euler difference method to integrate (4.4) and (3.10), and solving

for G0(k+l,Z) and Gl(k+l,), we obtain the following recursions for

0 < Q < k-l,

(alb 2 .a2b)
G (k+l,9.) =, 1 (4.5)
0 a3 (al-a2)

(bl-b2 )(1 j2
Gl (k+l,,) = (a ) (4.6)

(G1 (k,9-1)-GO (k, -l) )

b1 = G0(k,Z-1) + Gl(k,0-l) + p(k)A

1 1 (4.7)
k -l (47)

1 1 G1(k,'+l)
b2 = (k,Q+l) - Gl ( k,k+l) + (t - k) 1

(.Gl(k,Z+l) + GO(k,Z+l))

- p(k)A 1 0 (4.8)
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a1 =1 + ( + A) (4.9)

a2 = -1 + (jk+1 - + F.(k):a) (4.10)

p(k) A
a3 = 1 + , (4.11)

p(k) = kA(G (k,k) - G(k,k)) -, (4.12)

Co(k+l,S) = CO(k, h) - kA 2C0 (k,k)G0(k,Z) . (4.13)

Similarly, if we discretize equations (3.6) and (3.7) using the trapezoidal

rule, we obtain for Q=k, k+l

m G (k+l,Q) =k ((k+l)A, ZA)
21r n n

k
- Z k (ZA, iA)G (k+l,i)iA 2

i=1 n n

(k+l) A2
- k (9A, (k+1)A)G (k+l, k+1) 2

n = 0,1 , (4.14)

2- Co(k+l,') = kO (O,RA)

k
- Z k0 (A ,iA)C (k+l,i)iA2

i=l

A2

- k o(A, (k+l)A)Co(k+l, k+l) (k+l) - . (4.15)

other integration rules can be used as well instead of the ones we have

chosen. Note that our algorithm involves only numerical integration

of ordtnary differential equations
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and thus can be implemented in a well behaved, stable and convergent

manner. Furthermore, it can be checked that this approach requires 0(N 2 )

operations. Recalling that fast Hankel transform algorithms require

o(N log(N)) operations [17], we see that the construction of the

spectral estimate requires 0(N2 ) operation and its complexity is of the

same order as that of the one-dimensional MEM algorithm.

The procedure for computing the power spectrum can therefore be

summarized as follows.

1) From the given data, estimate K (r) for O<r<R, and k0(r,s) and

kl(r,s) for 0 < rs < R, which are respectively the covariances of the zero

and first order Fourier processes associated with the signal.

2) Use a discretized form of equations (3.6), (3.7), (3.10) and

(4.4), such as equations (4.5) - (4.15), to compute co (R,r) recursively.

3) Evaluate the Hankel transform CO(R,X) of c (R,r) by using a

fast Hankel transform method.

4) Obtain the spectral estimate as

A (R) 1yy 27(1-C (R,X))
0
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V. EXAMPLES

In this section, we discuss various examples to which our fast

algorithm was applied to obtain the maximum entropy estimate of the

power spectrum.

Example 1: Consider a covariance function of the form

K (r) = 8J (8r) + 10J (13r) + 4J (24r) + 6(r), (5.1)
y 0 0 0 2Trr

with corresponding power spectrum

S (X) = 2 + 86(X-8) + 106(X-13) + 4 6(X-24) . (5.2)
yy 27r

The spectral estimate obtained by assuming that we are given ten

equally spaced values of K (r) on the interval [0,1] is shown in Figure
YY

2. The algorithm clearly uncovers the impulses at their correct location

and is able to resolve the impulses at 8 and 13 rad/sec. A spurious bump occurs

near the origin and is due to the finite extent of our original data.

With ten equally spaced samples of K (r) on the larger interval [O,2]
YY

the algorithm yields a much better resolution of the impulses (Fig. 3)

and the bump at the origin becomes negligible. However, a peak now

appears at a frequency slightly below 21 rad/sec.

Note that 21 rad/sec is equal to the sum of 13 rad/sec and 8 rad/sec.

This observation leads us to suspect the presence of a nonlinear effect

in our algorithm giving rise to the harmonic at 21 rad/sec. In fact,

as in the one-dimensional case, the maximum entropy method is better

suited to estimating smooth spectra as can be seen in the next example.
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A Pisarenko type procedure will probably be better behaved when the

covariance function is equal to a sum of Bessel functions of the zero

order, which corresponds to the case when the spectrum S (X) is
YY

constituted of pure lines with a white noise (flat spectrum) background.

Example 2: Consider now a covariance function of the form

K (r) = 20rK (5r) + 2 - Ir (5.3)

with power spectrum

200 1
S (X) = (5.4)

YY I(2+25)2 2T

which is plotted in Figure 4. The estimated spectrum given ten equidistant

values of K (r) on the interval [0,1] is shown in Figure 5. Note that
YY

the spectral estimate we obtain is excellent in spite of the small number

of known covariance values.

Example 3: In this last example we apply our algorithm to a covariance

function of the form

K (r) = 20rK1 (10r) + J0 (15r) + 6(r) , (5.3)
YY 2'r

where the corresponding power spectrum

400 1
S (X) = + 6(X-15) +- (5.4)

yy 2 2 27
(X2+100)

has a smooth part and an impulse as indicated in Figure 6. The estimated

power spectrum given ten values of K (r) equally spaced on the interval
06is shown in Figure 7. The smooth part is clearly displayed while

[0,0.6] is shown in Figure 7. The smooth part is clearly displayed while
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the impulse is replaced by a bump centered at the correct impulse

location. With thirty equally spaced samples of K (r) on the larger
YY

interval [0,3] (Fig. 8) the algorithm identifies the impulse at its

correct location. However, ripples are now superimposed on the smooth

part and are due to some interference effect. Once again the behavior

of our algorithm is reminiscent of the behavior of MEM in the 1D case.

These experimental results and others we have obtained indicate that the

spectral estimates obtained via the technique we propose, depend strongly

on the size of the interval on which K (r) is known and depend much
YY

more weakly on the number of samples that are taken within the interval.
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VI. CONCLUSION

In this paper we have presented a direct and fast (O(N )) method

for the evaluation of the MEM estimate of the power spectrum of an

isotropic random field in additive white Gaussian noise. The success

of this method is predicated on the fact that one can come up with

reasonably accurate estimates of K (r) (and hence of k (r,s) and k1(r,s))

and of the intensity of the two-dimensional white noise process. Further

studies might be required in this area. It would also be desirable

to obtain a "digital" signal processing theory for isotropic fields

based on a theory of sampling for these fields, and to redevelop the

above method in a completely discrete setting.
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APPENDIX

Proof of the Non-Negativity of the Spectral Estimate S (X)

We will show in this appendix that C (R,X) as defined by equations

(2.10) and (2.12) satisfies the inequality constraint

IC0 (R,X) I < 1, V X>O . (A.1)

Combining this result with equation (2.11) it follows that S (X) is
YY

non-negative for all values of X.

From equations (2.9) and (2.13), we have

k (0,r) = Kzz(r) = I ds s k(r,s)c0 (R, s) 2 (R,s) + r) (A.2)

0-dfor r _s R. Let r

for r < R. Let

c (R,r) = 0 for r>R

and define a new function e (R,r) by the following integral equation

R
K .(r) = I ds s k (r,s) e (R,s) + - e0 (R,r) Vr>0, (A.3)

with

e (R,r) c0(R,r) + d0 (R,r) (A.4)-

and

d (R,r) = 0 for r<R . (A.5)0~~~~~~~~~~~~~~~~~~A5
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Clearly,

c0 (R ,r ) = e0 (R ,r) · PR(r) (A.6)

where

r<R
PR(r) = (A.7)

0,() 1 r>R

By multiplying both sides of equation (A.3) by rJ0 (Xr), and integrating

the resulting equation from 0 to infinity, we obtain

Se (X)
E (R,X) = (A.8)
0 .1

S (X) +
zz 2WT

where E (R,X) is the Hankel transform of e0(R,r). Equation (A.8)

together with equation (A.6) imply that ([14])

1 c- 2r Sz (A) R J (RX')
Co(R X) dX' dO , (A. 9)

JO~. ~ J S (A) +.( (9

where

A2 = 2 + ,2 _ 2XX'cosO, (A.1O)

J1 (R)
and where R X is the Hankel transform of PR (r). Since S (2) is

a power spectrum then

S (A)
O < < 1 . (A.11)

S (A) + -
zz 2Tr
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Hence

2Tfr RJl(R)

IC (Ro,) I> < - d { de XI (A.12)

or

IC 0 (R,X)I < 1 , (A.13)

where we have used the fact that

| dX RJ1 (RX) = PR(O) = 1 . (A.14)

It follows from (A.13) and (2.10) that

A i

S (X) = (A.15)
yy 2r(1-CO (R,X)) A15)



-24-

REFERENCES

1] J. Makhoul,- "Spectral analysis of speech by linear prediction,"

IEEE Trans-. Audio Electroaco-ust.., Vol. AU-21, pp. 140-148, June

1973.

[2] J.H. McClellan and R.J. Purdy, "Applications of digital signal

processing to radar," in Applications of Di qital Signal Processing,

A.V. Oppenheim, Ed.: Prentice-Hall, Englewood Cliffs, N.J., 1978.

131 A.B. Baggeroer,- "Sonar signal processing," in Applications of
Digital Signal Processing, A.V. Oppenheim, Ed., Prentice-Hall,

Englewood Cliffs, N.J., 1978.

I4] S.J. Wernecke and -L.R. D'Addario, "Maximum Entropy image reconstruc-
tion,1 ' IEEE Trans. Comput., Vol. C-26, pp. 351-364, April 1977.

15] E.A. Robinson and S. Treitel, "Maximum entropy and the relationship
of the partial autocorrelation to the reflection coefficients of a

layered system,'~ IEEE Trans. Acoustics, Speech and Signal Processing,

Vol. ASSP-28, No. 2, pp. 224-235, April 1980.

16] S.M. Kay and S.L. Marple, "Spectrum analysis - a modern perspective,"
Proc. IEEE, Vol. 69, No. 11, pp. 1380-1419, Nov. 1981.

17] S.E. Roucos and D.G. -Childers, "A two-dimensional maximum entropy

spectral estimator," IEEE Trans. Inform. Theory, Vol. IT-26,
pp. 554-560, Sept. 1980.

[8] J.S. Lim and N.A. Malik, "A new algorithm for two-dimensional
maximum entropy power spectrum estimation, ' `"TEEE Trans. AcoUstics,

Speech and Signal Proces-sing, Vol. ASSP-29, pp. 401-413, June 1981.

19] A.K. Jain and S. Raganath, "Two-dimensional spectral estimation,"
in Proc. RADC Spectrum Estimation Workshop, Rome, N.Y., May 1978,

pp. 217-225.

110] J.H. McClellan, "Multidimensional spectral estimation," Proc. IEEE,
Vol. 70, pp. 1029-1039, Sept. 1982.

1111] N.S. Burdic, Underwater Acoustic System Analysis, Prentice Hall
Inc., Englewood Cliffs, N.J., 1984.

112] P.R. Julian and A. Cline, "The direct estimation of spatial
wavenumber spectra of atmospheric variables," Jour. Atmospheric

Sci., Vol. 31, pp. 1526-1539, 1976.



-25-

113.] A.S. Monin and A.M. Yaglom, 'Statistial Fluid-Mechanics: Mechanics

of 'TurbulrSce, Volume 2, MIT Pres-s, Cambridge, MA., 1975.

114] A. Papoulis, 'Sytms: and-Tratsforms' with Applications in/Optics,
McGraw-Hill, New- York, N.Y,, 1968.

I15] D.R. Smi'th, Vartiationai Methods in Optimization, Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1974.

I161 B.C. Levy and J.N. -Tsitsiklis, "A fast algorithm for linear
estimation of two-dimensional isotropic random fields," Report

LIDS-P-1192, Laboratory for Information and Decision Systems, MIT,

Cambridge, MA., Jan. 1985; also to appear in IEEE Trans. Inform.

Theory, Sept. 1985.

1171 D.R. Mook, "An algorithim.for the-numerical evaluation of the Hankel
and Abel trans-forms," IEEE Trans. on Acoustics, Speech and Signal
Proces-sing, Vol. ASSP-31, pp. 979-985, August 1983.

[18] L. Lapidus- and G.F. Pinder, 'Numerical Solution of Partial Differential
Equations in Science and Engineering, John Wiley, New York, N.Y.,

1982.

[191 W.F. Ames, Numerical Methods for Partial Differential Equations,
Academic Pres-s, New York, N.Y., 1977.



-26-

FIGURE CAPTIONS

Fig. 1. Discretization scheme and numerical implementation of the recursions

for g0(R,r) and gl(R,r).

Fig. 2. Spectral estimate for Example 1 when K (r) is given on the interval
YY

[0,1].

Fig. 3. Spectral estimate for Example 1 when K (r) is given on the interval
yy

[0,2].

Fig. 4. True spectrum for Example 2.

Fig. 5. Spectral estimate for Example 2 when K (r) is given on the interval

[0,1].

Fig. 6. True spectrum for Example 3.

Fig. 7. Spectral estimate for Example 3 when K (r) is given on the interval

[0,0.6].

Fig. 8. Spectral estimate for Example 3 when K (r) is given on the interval
YY

[0,3].
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