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Learned Classification of Sonar Targets Using a 
Massively Parallel Network 
R. PAUL GORMAN AND TERRENCE J. SEJNOWSKI 

Abstract-We have applied massively parallel learning networks to 
the classification of sonar returns from two undersea targets and have 
studied the ability of networks to correctly classify both training and 
testing examples. Networks with an intermediate layer of hidden pro- 
cessing units achieved a classification accuracy as high as 100 percent 
on a training set of 104 returns. These networks correctly classified a 
test set of 104 returns not contained in the training set with an accuracy 
of up to 90.4 percent. Networks without an intermediate layer of pro- 
cessing units achieved only 73.1 percent correct on the same test set. 
Performance improved and the variability due to the initial conditions 
for training decreased with the number of hidden units. The effect of 
training set design on test set performance was also examined. The 
performance of a three-layered network was better than trained hu- 
man listeners and the network generalized better than a nearest neigh- 
bor classifier. 

INTRODUCTION 
RADITIONAL pattern recognition techniques are T often used as a first step in the interpretation of com- 

plex signals [ 11-[3]. Typically, simplifying assumptions 
about the structure of a signal are made in order to reduce 
the computation required to achieve accurate classifica- 
tion [4]-[7]. For applications where such assumptions are 
valid, these techniques perform well. However, if the sig- 
nals are not simply distributed or are highly correlated, 
these techniques may be inadequate, and other more gen- 
eral techniques are often impractical [8], [9]. 

The recent development of learning algorithms for mul- 
tilayered massively parallel networks has provided poten- 
tial alternatives to traditional pattern recognition which 
make far less restrictive assumptions about the structure 
of the input patterns [ 101, [ 111. The inherent parallelism 
of these networks allows very rapid parallel search and 
best-match computations, alleviating much of the com- 
putational overhead incurred when applying traditional 
nonparametric techniques to signal interpretation prob- 
lems. However, few studies have been conducted to de- 
termine whether such networks can learn to discriminate 
continuous-valued signals or to compare the performance 
of massively parallel networks to more traditional tech- 
niques and with human performance. (See [12]-[14] for 
examples of studies which begin to address these issues.) 
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The present study addresses the application of a mas- 
sively parallel network to a signal classification problem 
with important practical applications, namely, the iden- 
tification of undersea targets from sonar returns, and dem- 
onstrates their ability to learn to classify such complex 
continuous-valued signals for target discrimination. This 
study also addresses network performance as a function 
of the number of hidden units and the sensitivity of net- 
works to initial weight values. The effect of training set 
design on network generalization for this particular signal 
classification problem is also studied. 

The following two sections introduce the network ar- 
chitecture and the learning algorithm used in the present 
study. The third section discusses the classification prob- 
lem and describes the network experiments. The prepro- 
cessing performed on the sonar returns for presentation to 
the networks is then described, followed by the experi- 
mental results. Finally, conclusions drawn from the ex- 
perimental results are discussed and a comparison of the 
performance of the networks to the results of a previous 
study [ 151 involving trained human listeners is presented. 

NETWORKS ARCHITECTURE 

The networks used for the experiments discussed below 
were composed of three layers of processing units [Fig. 
1 (a)] that performed a memoryless nonlinear transforma- 
tion on their summed inputs and produced continuous- 
valued outputs between 0.0 and 1.0. The networks were 
“feedforward” in the sense that each unit received input 
only from the units in the layer below it. Weights on con- 
nections between units were positive or negative real val- 
ues. In order to determine the output of the ith unit, all of 
its inputs p, were first summed as follows: 

E, = c wQpj + 6, 
j 

where wQ is the weight from thejth to the ith unit and 6, 
is the bias of the ith unit. A sigmoidal transformation was 
then applied to the result of this summation [Fig. l(b)]. 

The bottom (input) layer of the network was made up of 
60 units, each clamped to an amplitude value of the signal 
to be classified. The number of output units was arbitrar- 
ily set at two. The states of output units determined the 
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Fig. 1. (a) Schematic model of a processing unit receiving inputs from 

other processing units. (b) Nonlinear transformation between summed 
inputs and outputs of a processing unit. 
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Fig. 2. Architecture of the network. The bottom layer consists of 60 pro- 
cessing units with their inputs “clamped” to the amplitude of the pre- 
processed sonar return. The hidden layer has modifiable weights on both 
the input and output connections, which allows the network to extract 
high-order features from the input waveform. 

class of the signal: (1,  0)  represented a return from the 
cylinder, and (0, 1 ) represented a return from the rock. 
An intermediate or “hidden” layer, which allows the net- 
work to extract high-order correlations in the signal, 
transformed the input pattern to the appropriate output 
pattern. A schematic of the basic architecture is shown in 
Fig. 2. 

NETWORK LEARNING ALGORITHM 

The backpropagation learning algorithm [ 111 was used 
to train the network. For each learning cycle, the input 
layer was initially “clamped” to a sample waveform from 
the training set. This simply means that the output of the 
ith unit in the input layer was assigned the value of the 
ith waveform value. The waveform was normalized to the 
range 0.0-1.0. The activity of each unit was propagated 
forward through each layer of the network using (1) and 
(2). The activity at the output layer was compared to the 
desired activity, and an error 6;” for each output unit was 
calculated as follows: 

( 3 )  

where N is the number of layers in the network, p ,  is the 
activity of the output unit, and p:  is the desired activity. 
P ’  ( ) is the first derivative of P( ). The error at the out- 
put was then backpropagated recursively to each lower 
layer ( n )  as follows: 

6;”) = C $ n + l )  (n)pt ( E ; “ ) )  

where w r )  is the weight from thejth unit in layer n to the 
ith unit in layer n + 1. This error was backpropagated 
only when the difference between the measured and de- 
sired activities at the output unit was greater than a margin 
of 0.2. In order for the network to learn, the value of each 
weight had to be incrementally adjusted in proportion to 
the contribution of each unit to the total error. The change 
in each weight was calculated as follows: 

(4)  WO 
J 

(5)  Awl;.) = E61n+l)p:n) 

where E controls the rate of learning (a value of 2.0 was 
used for these experiments). The weights of the network 
were initialized to small random values uniformly distrib- 
uted between -0.3 and 0.3 .  This was done to prevent the 
hidden units from acquiring identical weights during 
training. The networks were simulated on a Ridge 32 
computer (comparable to a VAX 780 in computational 
power) using a simulator written in the C programming 
language and developed at The Johns Hopkins Univer- 
sity. 

SONAR DATA 
The classification problem addressed in this study was 

undersea target identification. Target echos from an active 
sonar system had to be classified as a return from the ap- 
propriate target. The data used for the network experi- 
ments were sonar returns collected from a metal Eylinder 
and a cylindrically shaped rock positioned lengthwise on 
a sandy ocean floor. The impinging pulse was a wide- 
band linear FM chirp. Returns were obtained from each 
target at various aspect angles. 

A set of 208 returns (1 11 cylinder returns and 97 rock 
returns) were selected on the basis of the strength of the 
specular return (4.0-15.0 dB signal-to-noise ratio), mak- 
ing certain that a variety aspect angles were represented. 
The processed representation used as input to the network 
was chosen as the result of other experiments with human , 

listeners [ 151. First, a short-term Fourier transform 
F (  t ,  v )  of the sonar returnf( t )  was obtained: 

1 + T / 2  

F ( t ,  v )  = f( 7) e-’”’ d7 ( 6 )  
i - T / 2  

where T is the width of each temporal segment. From 
F (  t ,  v ) ,  the spectral envelope PfO,YO( 7) was computed: 

v -  ( v c , + - j - + T q ) ) d t d v  AV 
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(b) (C) 
Fig. 3.  The preprocessing of the sonar return produces a sampled spectral 

envelope normalized to vary from 0.0 to 1.0 for input to the network. 
(a) The set of sampling apertures offset temporally to correspond to the 
slope of the FM chirp. (b) Sampling apertures superimposed over the 
2-D display of the short-term Fourier transform. (c) The spectral enve- 
lope obtained by integrating over each sampling aperture. 

where vo and to are the starting frequency and temporal 
position of the FM chirp, respectively. The sampling ap- 
erture U, with temporal and spectral dimensions given by 
At and AV,  respectively, was defined as 

At At 
< t < -  

2 2 

AV AV 
< v < -  

2 2 

-- 

-- 
w ( t ,  v )  = 1 

At (-$< t <  - 2 
w ( t ,  v )  = 1 

AV 
2 

= 0 otherwise. ( 8 )  

The vmax locations of the aperture were determined by the 
temporal and spectral sampling intervals U, = 0. lAt and 
uf = A V .  The values of U, and ufare related by 

(9) 

where d v / d t  is the slope of the FM chirp. This process is 
indicated schematically in Fig. 3 where a set of sampling 
apertures are superimposed over the 2-D display of the 
short-term Fourier transform sEectrogram of the sonar re- 
turn. As shown in Fig. 3(b) and (c), the spectral envelope 
Pt,,,( q )  was obtained by integrating over each aperture. 
Sixty sample points were obtained for each envelope. 
These samples were normalized to take on values between 
0.0 and 1 .O and were used as input to the network. 

NETWORK EXPERIMENTS 

Experiments were designed to address several issues. 
The central issue was to determine whether a network 
could be trained to classify the targets by presenting the 
network with examples of sonar returns from each target. 
In addition, two factors affecting network performance 
were examined, namely, the number of hidden units and 
the initial weight values. Finally, the performance of the 
network on the test set is compared for networks trained 
on randomly selected training sets (an aspect-angle inde- 
pendent experiment), and a training set selected to contain 
examples from each aspect angle represented in the total 
set of sonar returns (an aspect-angle dependent experi- 
ment). This comparison allowed us to evaluate the impact 
of aspect-angle dependent information on classification 
accuracy. 

For both the aspect-angle independent and aspect-angle 
dependent experiments, a training set was selected from 
the total set of returns, and performance, in terms of per- 
cent correct classification, was determined after 300 pre- 
sentations of the training set to the learning network. Gen- 
eralization was tested by measuring the performance of 
trained networks on the set of returns excluded from the 
training set. 

To determine the sensitivity to initial conditions, each 
experiment was repeated ten times with different, ran- 
domly selected, initial weight values. This procedure was 
used to train networks with varying numbers of hidden 
units in order to evaluate the role of the hidden layer in 
network performance. Networks with 0, 2, 3, 6, 12, and 
24 hidden units were trained and tested using identical 
training and testing sets and their performance was com- 
pared. 

For the aspect-angle independent experiment, the above 
paradigm was repeated 13 times using different training 
sets. For each iteration, a set of 16 returns were randomly 
selected from the total set of 208 returns to serve as the 
test set, and the remaining 192 returns were used to train 
the networks. Testing sets were selected so that each sonar 
return served only once as a test signal. This allowed 13 
experiments to be conducted with disjoint testing sets. 

This procedure is routinely used in pattern recognition 
to obtain a more accurate estimate of the probability of 
misclassification given a finite set of samples [16]. The 
variation in performance across test sets provided an in- 
dication that features required to accurately classify a sig- 
nal varied from one return to the next. This suggested that 
some important signal patterns were aspect-angle depen- 
dent. 

For the aspect-angle dependent experiment, the training 
and testing set were designed to ensure that returns from 
each target aspect angle represented in the total data set 
were included with representative frequency in both the 
training and the testing set. Both the training and the test- 
ing set consisted of 104 returns. The networks' perfor- 
mance was again taken as the average performance over 
ten trials. 
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Fig. 4 .  Network learning curves for experiments with randomly chosen 
training sets. Each curve represents an average of 130 learning trials for 
a network with the specified number of hidden units. 

TABLE I 
SUMMARY OF THE RESULTS OF THE EXPERIMENT WITH RANDOMLY SELECTED TRAINING SETS. THE 

STANDARD DEVIATION SHOWN IS ACROSS TRAINING AND TESTING SETS, AND WAS OBTAINED BY MEASURING 
THE VARIATION OF PERFORMANCE VALUES AVERAGED OVER TEN TRIALS DIFFERING I N  INITIAL CONDITIONS 

Standard 
Average Deviation on Average Standard 

Number of Performance on Training Performance on Deviation on 
Hidden Training Sets Sets Testing Sets Testing Sets 
Units (percent) (percent) (percent) (percent) 

0 
2 
3 
6 

12 
24 

89.4 
96.5 
98.8 
99.7 
99.8 
99.8 

2 . 1  
0 . 7  
0.4 
0.2 
0.1 
0.1 

77.1 
81.9 
82.0 
83.5 
84.7 
84.5 

8.3 
6.2 
7.3 
5.6  
5.7 
5.7 

EXPERIMENTAL RESULTS 
The aspect-angle independent experiment conducted 

using randomly selected training sets consisted of 130 
trials for each network with a given number of hidden 
units. The overall performance of each network was taken 
to be the average over a set of 13 values obtained from 
experiments with different training sets. These 13 values 
were in turn averaged over ten trials differing in initial 
conditions. Fig. 4 shows the overall average learning 
curves for three of the networks trained on randomly se- 
lected returns. The best average performance was 
achieved by a network with 24 hidden units (99.8 percent 
correct classification accuracy). The network with no hid- 
den units, essentially an Adaline [17], could classify the 
training set with an average accuracy of 89.4 percent, in- 
dicating that, on average, the hidden layer contributed at 
least 10 percent to the networks’ performance. However, 
because of the ceiling effect on the performance of net- 
works with large hidden layers, it may be a low estimate 
of the importance of the hidden layer in general. 

The results of this set of experiments are summarized 
in Table I. The standard deviation reported is the Yaria- 
tion over 13 average performance values. Each average 
performance value was obtained over the ten trials differ- 
ing in initial conditions. Thus, this variation is primarily 

due to training set selection. Average performance on the 
training and testing sets improved with the number of hid- 
den units up to 12 hidden units. Increasing the number of 
hidden units from 12 to 24 produced no further improve- 
ment. 

For the aspect-angle dependent experiment, the average 
learning curves for the networks were similar to those for 
the aspect-angle independent experiment shown in Fig. 4,  
with the best performance of 100 percent being attained 
by the network with 24 units. The two-layered network 
achieved an accuracy of only 79.3 percent on this training 
set, 10 percent lower than the first experiment, whereas 
the performance of the networks with hidden units was 
slightly higher. The performance of the two-layered net- 
work on the test set was also lower in the second set of 
experiments ( 73.1 percent compared to 77.1 percent ), 
while the performance of the networks with hidden units 
was markedly better. 

The results of the second experiment are summarized 
in Table 11. The variation reported for this experiment was 
only over ten trials differing in the initial conditions. 
Again, the performance increased with the number of hid- 
den units up to 12 units. In addition, the variation in per- 
formance of networks with hidden units decreased as the 
number of hidden units increased. 



GORMAN AND SEJNOWSKI: LEARNED CLASSIFICATION OF SONAR TARGETS 1139 

TABLE I1 
SUMMARY OF THE RESULTS O F  THE EXPERIMENT W I T H  TRAINING A N D  TESTING SETS SELECTED TO INCLUDE 

INITIAL CONDITIONS 

Standard 

ALL TARGET ASPECT ANGLES. THE STANDARD DEVIATION SHOWN IS ACROSS NETWORKS WITH DIFFERENT 

Average Deviation on Average Standard 
Number of Performance on Training Performance on Deviation on 

Hidden Training Sets Sets Testing Sets Testing Sets 
Units (percent ) (percent) (percent) (percent ) 

0 
2 
3 
6 

12 . 
24 

79.3 
96.2 
98.1 
99.4 
99.8 

100.0 

3.4 
2.2 
1.5 
0.9 
0.6 
0.0 

73.1 
85.7 
87.6 
89.3 
90.4 
89.2 

4.8 
6.3 
3.0 
2.4 
1.8 
1.4 

DISCUSSION 
Massively parallel networks have been trained to iden- 

tify two undersea targets on the basis of single sonar re- 
turns. Two experiments were conducted. In an aspect-an- 
gle independent experiment, training and testing sets were 
selected at random and, in an aspect-angle dependent ex- 
periment, these returns were selected to ensure that all 
target angles in the total set of sonar returns were repre- 
sented in both the training and testing sets. In both ex- 
periments, the networks with hidden units could be trained 
to achieve a high degree of classification accuracy. 

The performance of the two-layered network (without 
hidden units) was 10-20 percent lower than the three-lay- 
ered networks on the training sets and 8-17 percent lower 
on the testing sets, which supports previous findings on 
the importance of the hidden layer for difficult classifica- 
tion problems [18], [19]. The performance of the net- 
works also tended to improve as the number hidden units 
was increased from 0 to 12, but little or no improvement 
was realized with the increase from 12 to 24 units. 

When the number of training samples is small com- 
pared to the number of adjustable weights, the informa- 
tion capacity of the network may exceed the total amount 
of information contained in the set of samples. In such 
cases, the network would not be sufficiently constrained 
to force generalization, and therefore might simply mem- 
orize each individual pattern in the training set. Such a 
solution would prove of little value for the general target 
recognition problem. 

In the present study, the number of adjustable weights 
generally exceeded the number of training samples. How- 
ever, the improvement in performance with the number of 
hidden units suggests that the capacity of the networks did 
not exceed the information contained in the training set. 
Furthermore, the performance of trained networks on test 
waveforms not contained in the training set demonstrates 
that these networks utilized general signal features to 
achieve accurate classification. It is interesting to note that 
the performance on the testing sets did not deteriorate 
when the number of hidden units was increased from 12 
to 24, which effectively doubled the number of weights. 
Apparently, the extra degrees of freedom did not reduce 

the ability of the network to generalize from a limited 
number of training examples as occurs in other problems 
P O I .  

The variation in performance due to initial conditions 
was moderate for networks with few or no hidden units, 
and decreased with increasing numbers of hidden units. 
This suggests that networks with larger hidden layers tend 
to be less sensitive to initial conditions. The variance on 
the test set shown in Table I is higher than the variation 
shown in Table I1 because the variation in performance in 
the first experiment included an additional factor due to 
the choice of training and testing examples. 

The performance of the three-layered networks on the 
test sets was higher in the aspect-angle dependent exper- 
iment than in the aspect-angle independent experiment. 
This supports the interpretation of the variation in perfor- 
mance on test sets in the aspect-angle independent exper- 
iment as being due to the exclusion of important aspect- 
angle dependent patterns from the randomly selected 
training sets. This implies that certain features extracted 
by the networks were related to target geometries. How- 
ever, the consistent achievement of between 80 and 84 
percent performance by three-layered networks, indepen- 
dent of the set of training examples, suggests that aspect- 
angle independent information, such as target material, 
may have also been important. 

The lower performance of the two-layered network on 
the training and testing set in the second experiment as 
compared to the first may have been as the result of a 
number of experimental factors. The total number of in- 
put pattern presentations was higher in the aspect-angle 
independent experiment due to the larger number of ex- 
amples in the training set. The number of distinct patterns 
in the aspect-angle dependent experiment may have also 
been greater due to the inclusion of all aspect angles in 
the training set. Finally, the fact that performance was 
very near perfect for three-layered networks may have 
distorted the comparative performance between two- and 
three-layered networks. 

The performance of the network classifier can be com- 
pared, in some respects, to human performance and to the 
performance of a linear classifier based on human percep- 
tual features. In a previous experiment [ 151, three human 

. 
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subjects were trained to classify the same two targets by 
listening to single returns taken from the set of returns 
used to train the networks. The human listeners were pre- 
sented with the raw signal data shifted down to auditory 
frequencies. They continued to train until their perfor- 
mance ceased to improve. The average performance of 
the three trained human listeners was 91 percent. The per- 
formance of the networks, trained on preprocessed ver- 
sions of the signals, was close to 100 percent. 

The comparison to trained listeners is incomplete in 
several respects. First, the humans were not tested for 
generalization, although these experiments are planned. 
Second, different signal representations were used for the 
human listeners and the networks, and therefore, different 
information may have been utilized for signal classifica- 
tion. An analysis of trained networks to determine the sig- 
nal features used would perhaps address this issue. None- 
theless, sonar target recognition is one area where human 
performance has been consistently better than automatic 
systems, and the superior performance of massively par- 
allel networks on a similar task suggests that such net- 
works may provide a viable alternative to current tech- 
niques. 

Finally, a nearest neighbor classifier ( k  = 1 ) was de- 
veloped for comparative purposes. The classification of 
each return was determined by the class of its nearest 
neighbor according to a Euclidean metric. The perfor- 
mance of this classifier was 82 percent correct classifica- 
tion on the total set of 208 returns. The performance of 
network classifiers with hidden units on test sets was con- 
sistently better than the nearest neighbor classifier. 
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