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Complete Discrete 2-D Gabor Transforms by Neural 
Networks for Image Analysis and Compression 

JOHN G. DAUGMAN 

(In vi ted Pap er) 

Abstract-A three-layered neural network is described for trans- 
forming two-dimensional discrete signals into generalized nonortho- 
gonal 2-D “Gabor” representations for image analysis, segmentation, 
and compression. These transforms are  conjoint spat iahpectral  rep- 
resentations [lo], [15], which provide a complete image description in 
terms of locally windowed 2-D spectral coordinates embedded within 
global 2-D spatial coordinates. Because intrinsic redundancies within 
images a re  extracted, the resulting image codes can be very compact. 
However, these conjoint transforms are  inherently difficult to compute 
because t e elementary expansion functions a re  not orthogonal. One 
o r t h o g o n k i n g  approach developed for 1-D signals by Bastiaans [SI, 
based on biorthonormal expansions, is restricted by constraints on the 
conjoint sampling rates and invariance of the windowing function, as 
well as by the fact that the auxiliary orthogonalizing functions are non- 
local infinite series. In the present “neural network” approach, based 
upon interlaminar interactions involving two layers with fixed weights 
and one layer with adjustable weights, the network finds coefficients for 
complete conjoint 2-D Gabor transforms without these restrictive con- 
ditions. For arbitrary noncomplete transforms, in which the coeffi- 
cients might be interpreted simply as signifying the presence of certain 
features in the image, the network finds optimal coefficients in the sense 
of minimal mean-squared-error in representing the image. I n  one al- 
gebraically complete scheme permitting exact reconstruction, the net- 
work finds expansion coefficients that reduce entropy from 7.57 in the 
pixel representation to 2.55 in the complete 2-D Gabor transform. In 
“wavelet” expansions based on a biologically inspired log-polar en- 
semble of dilations, rotations, and translations of a single underlying 
2-D Gabor wavelet template, image compression is illustrated with ra- 
tios up to 20: 1. Also demonstrated is image segmentation based on the 
clustering of coefficients in the complete 2-D Gabor transform. This 
coefficient-finding network for implementing useful nonorthogonal im- 
age transforms may also have neuroscientific relevance, because the 
network layers with fixed weights use empirical 2-D receptive field pro- 
files obtained from orientation-selective neurons in cat visual cortex as 
the weighting functions, and the resulting transform mimics the bio- 
logical visual strategy of embedding angular and spectral analysis 
within global spatial coordinates. 

I. INTRODUCTION 
EVERAL broad classes of problems for which neural S networks appear to show promise involve the extrac- 

tion or exploitation of redundancy. Examples include 
content addressable memory [I], pattern classification and 
learning [2], signal reconstruction from partial informa- 
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tion [3], separation of signals from noise [4], cooperative 
and fault-tolerant processing [ 5 ] ,  estimation and predic- 
tion [6], and data compression. The last of these is per- 
haps both the simplest and the most generic example be- 
cause it most directly depends upon the exploitation of 
redundancy. In principle, data compression is possible for 
a nonrandom signal by virtue of the fact that its value at 
some points can be predicted from its values at other, pos- 
sibly remote, points or sequences. Correlation structure 
in a signal can take many forms and can involve different 
statistical orders, but in information-theoretic terms [7], 
its existence implies that the entropy or statistical com- 
plexity of the source is less than the entropy of the chan- 
nel, as determined by its resolution (e.g. ,  8 bits/pixel). 
Whenever this situation exists, compression of the signal 
to a lower bound specified by the elimination of redun- 
dancy is in principle possible, without loss of information 
(cf. Theorems 4.5.1 and 4.5.2 of [7]). 

Ordinary images are examples of signals having high 
degrees of self-correlation. Fundamentally, mutual infor- 
mation arises within an image because of the fact that 
physical objects and scenes tend to have internal mor- 
phological consistency, including first-order correlations 
(locally similar luminance values), second-order or dipole 
correlations (e.g., oriented edge continuation), as well as 
higher-order correlations (e. g . , homogeneity of tex- 
tural signature). These correlations are attributes which 
distinguish real images from random noise, a distinction 
that is not exploited in the standard pixel-by-pixel image 
representation. The analysis, communication, and storage 
of image information would benefit from an efficient 
means to encode image structure in ways that extracted 
and exploited these correlations. 

A second typical goal in signal processing is to find a 
representation in which certain attributes of the signal are 
made explicit. Often this involves transformations into 
representations in which the attributes or features sought 
for in the signal are used as the expansion functions. But 
it is only for certain transforms that the coefficients for 
projecting the signal onto that chosen set of functions can 
be easily obtained. If the desired elementary functions are 
not orthogonal, for example, then simply computing their 
inner products with the signal will not produce the correct 
coefficients. A further problem may be that the primitive 
functions of interest for extracting certain kinds of signal 
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structure may not constitute a complete basis, or it may 
be difficult to establish whether or not they do except un- 
der strong constraints. 

One conjoint transform which illustrates the desirability 
of obtaining the expansion coefficients on a set of over- 
lapping nonorthogonal, yet complete, elementary func- 
tions is portrayed by Figs. 1 and 2. Displayed in Fig. 1 
is a pixel histogram of the 8-bit “Lena” picture com- 
monly used in image processing research. This gray-scale 
distribution of 65 536 pixels has an entropy of S = 7.57, 
where entropy is defined as average self-information of 
the pixel ensemble 

n 

s = -,x PI log1 PI (1) 
I =  1 

given that 
n 

where the P, are the relative rates of occurrence of each 
of the n (in this case 256) gray levels in the picture. Char- 
acteristically, the pixel histogram is broad and multimo- 
dal, with large entropy. (Uncorrelated 8-bit white noise 
would have only slightly more entropy, namely, S = 8. ) 
But when the Lena picture is transformed into a complete, 
discrete, 2 - 0  Gabor representation (to be defined later), 
the coefficient values in the transform have the far more 
compact distribution shown in Fig. 2. Quantized again to 
8-bit resolution, the set of 65 536 complete 2-D Gabor 
coefficients has an entropy of only 2.55, while capturing 
all of the image structure in the original picture and per- 
mitting its exact reconstruction. (The reconstruction may 
be seen in Fig. 8.) For data compression purposes, one 
consequence of this observation is that the information 
cost per pixel for transmitting or storing this 8-bit image 
could be reduced dramatically without any loss of infor- 
mation. By constructing a code whose word length varies 
inversely with the frequency distribution shown in Fig. 2, 
such images could in principle be encoded with a 
compression factor amounting to 5 fewer bits per pixel. 
This conjoint 2-D Gabor transform is also useful for im- 
age analysis and segmentation, since it extracts locally 
windowed 2-D spectral information concerning form and 
texture without sacrificing information about 2-D location 
or more global spatial relationships, as does a Fourier 
transform. 

The problem is that the overlapping elementary func- 
tions which form the projection vectors for this transform 
are not orthogonal, and so finding their coefficients is dif- 
ficult. In research to date, it has only been possible to find 
these coefficients under limiting restrictions on the rela- 
tionships between the conjoint sampling rate parameters 
of the elementary functions, and through the use of aux- 
iliary biorthogonal functions [8] expressed as nonlocal in- 
finite series. The main purpose of this paper is to describe 
a simple neural network architecture for finding optimal 
coefficient values in arbitrary two-dimensional signal 

Fig. 1. Pixel histogram of the Lena image, comprising 65 536 8-bit pixels. 
The entropy of this pixel ensemble is 7.57, only slightly smaller than the 
entropy of random 8-bit noise with uniform density (namely, 8 ) .  Rep- 
resenting images by ensembles of independent pixels does not exploit 
their intrinsic correlation structure. 

Fig. 2. Histogram of 65 536 coefficients in a complete discrete 2-D Gabor 
transform, quantized to 8 bits each as was the pixel histogram of Fig. 1 
but obviously far more compactly distributed. The entropy of this en- 
semble of 2-D Gabor coefficients is only 2.55 bits, yet they completely 
capture the Lena image and allow its exact reconstruction (as shown in 
Fig. 8). The 2-D Gabor transform itself is shown in Fig. 7. 

transforms which in general might be neither complete 
nor orthogonal. The application of this coefficient-finding 
scheme to generalized two-dimensional signal transforms 
is useful for purposes such as image analysis, feature ex- 
traction, and data compression. It also leads to an inter- 
pretation of the biologically measured two-dimensional 
anisotropic visual neural receptive field profiles, which 
have to a large extent motivated the development of the 
2-D Gabor transform [ lo] ,  [ 151. 
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11. NEURAL NETWORK FOR FINDING PROJECTION 
COEFFICIENTS 

The general neural network architecture for finding the 
coefficients in (possibly nonorthogonal and noncomplete) 
signal transforms is shown in Fig. 3. We shall deal with 
some discrete two-dimensional signal Z[x, y ] ,  say, an im- 
age supported on [ 256 X 2561 pixels in [ x ,  y ] ,  which we 
wish to analyze or compress by representing it as a set of 
expansion coefficients { a ; }  on some set of two-dimen- 
sional elementary functions { Gi [x, y ]  } . We may regard 
a given image I [ x ,  y ]  as a vector in a 65 536-dimensional 
vector space, and different representations of the image 
based on complete orthonormal expansions constitute dif- 
ferent bases of this vector space. For example, the con- 
ventional pixel representation projects the image onto a 
set of unit basis vectors, one for each pixel, with coeffi- 
cients representing lightness values. At the other extreme 
from the unit basis, each of the linearly independent or- 
thonormal basis vectors might be a 2-D Fourier compo- 
nent, with the associated coefficient being the inner prod- 
uct projection of the image onto this basis vector. More 
generally, for certain purposes such as feature extraction, 
we might also wish to represent I [ x ,  y ]  on a set of linearly 
dependent vectors, which may or may not completely span 
the vector space; even if they are neither orthogonal nor 
complete, we can still find optimal projections of the im- 
age onto each one by satisfying global optimization cri- 
teria. 

Thus, we wish to represent Z[x, y ]  either exactly or in 
some optimal sense by projecting it onto a chosen set of 
vectors Gi [ x ,  y ] .  This requires finding projection coeffi- 
cients {ai} such that the resultant vector H [ x ,  y ]  

n 

~ [ x ,  Y ]  ,c aiGi[x, Y I  ( 3 )  
r = l  

is either identical to Z[x, y ]  (the complete case) or gen- 
erates a difference-vector Z[x, y ]  - H [ x ,  y ]  of minimal 
length (the optimization case). If the elementary functions 
{ Gj[x, y ]  } form a complete orthogonal set, then the rep- 
resentation in H [ x ,  y ]  is exact (the difference-vector is 
zero) and the solution for {ai } is simple: 

c ( G ; [ x ,  Y l  Y 1 )  

If they do not, however, then in general the representation 
H [ x ,  y ]  will be inexact and the desired set of coefficients 
{ a i  } must be determined by an optimization criterion, 
such as minimizing the squared norm of the difference- 
vector: 

( 5 )  

The norm E will be minimized only when its partial de- 
rivatives with respect to all of the n coefficients { ai } equal 
zero: 

Fig. 3 .  A three-layered neural network for finding the optimal coefficients 
in arbitrary image transforms which in general may be neither orthogonal 
nor complete, nor limited by constraints on sampling uniformity. The 
first and third layers have fixed weights (in the present work taken to be 
2-D Gabor elementary functions as seen in Fig. 4), while the middle 
layer has weights which are adjusted by interlaminar interactions. In the 
stable state when equilibrium is reached [see (6) and (9)], the cost func- 
tion E is minimized and the weight values of the middle layer correspond 
to the desired transform coefficients. 

(6 )  
Satisfying this condition for each of the ai then generates 
a system of n simultaneous equations in n unknowns: 

Thus, the solution which minimizes the squared norm of 
the difference-vector [ (5 ) ]  amounts to finding the set of 
coefficients { a i }  such that the inner product of each vec- 
tor Gi [ x ,  y ]  with the entire linear combination of vectors 
C akGk[x ,  y ]  is the same as its inner product with the 
original image I[x, y ] .  It should be noted that in the case 
when the { G i [ x ,  y ]  } form a set of orthogonal vectors, 
then the inner products in the right-hand side of (7) are 
nonzero only for k = i, and so each of the n equations 
then has only a single unknown, and it is immediately 
apparent that the minimal-difference-vector solution for 
each ai is identical to that given earlier in (4) as the fa- 
miliar orthogonal case. 

Even in the nonorthogonal case, the system of n equa- 
tions [ ( 7 ) ]  could still be exactly solved in principle by 
algebraic means to find the set of optimal coefficients 
{ai }. But unless the enormous (65 536 X 65 536) matrix 
generated by (7) is very sparse (requiring strictly compact 
support for the members of { G j [ x ,  y ]  } ), it would be 
completely impractical to solve this huge system of simul- 
taneous equations by algebraic methods such as matrix 
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manipulation, since the complexity of such methods grows 
factorially with the number of simultaneous equations. 
(Using Stirling’s approximation for the factorial, the gen- 
eral matrix solution for the system of equations in (7) 
would require 2.5 X lo2” 157 floating-point multiplica- 
tions to find. ) Methods based upon iterative improvement 
are far faster for such large n ,  although they converge on 
an exact solution only as a limit, and can become trapped 
in local minima. Fortunately, the difference-vector cost 
function ( 5 )  is quadratic in each member of { a, } , and so 
a unique global minimum for E exists. The neural net- 
work architecture shown in Fig. 3 converges through it- 
eration upon the desired image representation { a, } by im- 
plementing gradient descent along the E ( a , )  surface, 
which expresses the quadratic cost function’s dependency 
on all of the { a, } coefficients. 

A common feature of neural network architectures is 
the combination of layers of neurons having adjustable (or 
adaptive) synaptic weights, and layers with fixed weights. 
The present scheme begins with a layer of fixed connec- 
tion strengths which are specified by an arbitrary set of 
(generally nonorthogonal) elementary functions { GI [ x ,  
y ]  }; by summing the different image pixels through these 
weights, the output of the ith neuron in this layer is simply 
the inner product of the ith elementary function, G, [ x ,  y] ,  
with the input image Z[x, y ]  in that region. This is pre- 
cisely the neurophysiological concept of a (linear) neu- 
ron’s “receptive field profile,” which refers to the spatial 
weighting function by which a local region of the retinal 
image is multiplied and integrated to generate that neu- 
ron’s response strength. The second layer contains ad- 
justable weights for multiplying each of these outputs, ac- 
cording to a control signal which arises from interlaminar 
interactions. The third layer is identical to the first layer 
and stores the same fixed set of elementary functions. The 
adjustable weights of the middle layer constitute the trans- 
formed image representation as the set of coefficients 
{ a , } .  The adaptive control signal adjusts each of the 
weights by an amount A , ,  given by the difference between 
a feedforward signal and a feedback signal. The feedfor- 
ward signal is the level of activity of the neuron from the 
first layer, and the feedback signal is the inner product of 
the weighting function of the corresponding neuron in the 
third layer with the weighted sum of all the other neigh- 
boring neurons in that layer with which it is connected. 
Thus, the weight adjustment is 

A, = c (Gib, Y l  I [ x ,  Y l )  
X,) 

- X . Y  c [ G I [ 4  Y 1 (  jl UkGk[X, Y l ) ]  ( 8 )  

and the iterative rule for adjusting the value of each coef- 
ficient is a, * a, + A , .  It should be noted that the network 
does not require a “teacher” that generates the weight 
adjustment signal by comparing the current representation 
with a separate copy of the desired pattern. Rather, the 
adaptive control signal A, arises only from interlaminar 
network interactions. 

It can be seen by inspecting [6] and [8] that the weight 
adjustment rule is equivalent to 

A . =  1 aE 
I 2 aa;‘ 

It should be noted that the minus sign implies that the 
weight adjustment is always in the downhill direction of 
the cost surface E ( a i ) ,  and that the adjustment is propor- 
tional to the slope of the cost surface at this point. A fuller 
discussion of gradient descent methods may be found in 
[4, ch. 41. The equilibrium state of the network that is 
reached when all Ai = 0 is the state in which the cost 
function E representing the difference-vector squared 
norm IIZ[x, y ]  - H [ x ,  y ]  \ I 2  has reached its minimum; 
this is the point at which the partial derivative of E with 
respect to all of the adjustable weights is nil: 

(9) 

Thus, in the stable state, the middle layer of the network 
has weights which represent the optimal coefficients { ai } 
for the projection of the signal Z[x, y ]  onto any set of 
elementary functions { Gi[x, y ]  } which, as noted earlier, 
need be neither orthogonal nor complete. 

111. 2-D GABOR ELEMENTARY FUNCTIONS AND 

BIOLOGICAL VISION 
The particular choice of nonorthogonal elementary 

functions which will be used in the remainder of this pa- 
per for the fixed-weight layers of the network are taken 
from actual neurophysiological measurements of the two- 
dimensional anisotropic receptive field profiles describing 
single neurons in mammalian visual cortex [9], [ lo],  [ 151. 
A scientific topic of great interest to neural network re- 
searchers is the investigation of the properties and func- 
tioning of “real” (biological) neural networks. In the case 
of the mammalian visual nervous system, a great deal is 
now known about neural signal processing strategies for 
the extraction and representation of image structure, at 
least in the earlier levels of visual processing (retina, lat- 
eral geniculate, and primary visual cortex). Among the 
many questions which can fruitfully be studied regarding 
signal processing strategies in biological visual systems 
are the following: how image structure is encoded at var- 
ious levels; the efficiency of these codes in terms such as 
dynamic range compression, entropy, noise characteris- 
tics, and invariances; the interweaving of multiple coding 
dimensions within single channel firing rates and across 
separate channels; the roles of spatiotemporal filtering and 
of nonlinear operations; and the transformations of image 
information which support higher level visual cognition. 
For all of these questions, a potential dialogue between 
neural network theory, signal processing theory, and ex- 
perimental neurobiology is an exciting prospect, and the 
potential mutual benefits for all three disciplines could be 
high. 

The several cortical visual areas of mammals contain 
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many populations of neurons, some linear and many non- 
linear, with selectivities for a variety of stimulus attri- 
butes. These include location in 2-D visual space, orien- 
tation, motion, color, stereoscopic depth, size or spatial 
frequency, symmetry, and others [ 111. In the primary vi- 
sual cortex (Area 17), perhaps the most striking of these 
is orientation selectivity [ 121, which imparts to individual 
neurons a pronounced dependency between their firing 
rate and the planar orientation of a stimulus such as an 
edge or bar. Moreover, assemblies of neurons are orga- 
nized into “columns” which share the same orientation 
preference, and on a larger scale, these columns reveal a 
functional ‘‘sequence regularity” of systematic shifts in 
their preferred orientation [ 131. The sequence regularity 
of columnar orientation preference is one of the most 
crystalline features of visual cortical architecture now 
known, and it clearly plays a crucial role, although an as 
yet unspecified role from a signal processing viewpoint, 
in the logic of the brain’s representation of the visual 
world. A second striking feature, although true only of 
the linear class of neurons (so-called “simple cells”), is 
their pairing by symmetry into quadrature phase pairs: ad- 
jacent simple cells have spatial receptive field profiles 
which share the same location in space and the same ori- 
entation preference but differ by 90” in their phase [14]. 
This quadrature phase relation in neural receptive field 
pairs is suggestive of a kind of local harmonic expansion 
of image structure. 

One suitable model of the two-dimensional receptive 
field profiles encountered experimentally in cortical sim- 
ple cells, which captures their salient tuning properties of 
spatial localization, Orientation selectivity, spatial fre- 
quency selectivity, and quadrature phase relationship, is 
the parameterized family of “2-D Gabor filters,” as seen 
in Fig. 4. This neural model was originally proposed in 
1980 simultaneously by Daugman [ 151 in two-dimen- 
sional form and by Marcelja [16] in one-dimensional 
form. The 2-D form has the virtue of capturing explicitly 
the critical neurobiological variables of a given neuron’s 
orientation and spatial frequency preference, the tuning 
bandwidths for these variables, the receptive field dimen- 
sions, and the relationships among all of these parameters 
as captured by generalized uncertainty relationships [ 101 
which the 2-D filter family (in complex form) optimizes. 

The general functional form of the 2-D Gabor filter 
family is specified in (10) and (1 1), in terms of the space- 
domain impulse response function G ( x ,  y )  and its asso- 
ciated 2-D Fourier transform F (  U ,  U ) :  

~ ( x ,  Y >  = exp (-+ - x J a 2  + ( Y  - Y ~ ) ~ P ~ ] )  

. exp (-2+,(x - x,) + 4 Y  - Y o > ] )  

SPATIAL FILTER PROFILE 

FREQUENCY RESPONSE 

Fig. 4. Example of  a 2-D Gabor elementary function (real part) and its 
2-D Fourier transform, as originally proposed by Daugman in 1980 [ 151. 
These functions have optimally compact support in conjoint 2-D spatial/ 
2-D spectral representation, and they achieve the lower bound in the 
general uncertainty relation (12).  In the present network (Fig. 3), they 
provide the weighting functions { G, [ x ,  y ]  } for the first and third layers. 

This family of 2-D elementary functions constitutes a 
generalization of the 1 -D elementary functions proposed 
in 1946 by Gabor [17] in his famous monograph, “The- 
ory of communication.” It should be noted that the 2-D 
Gabor filter impulse response function G ( x ,  y )  and its 
2-D Fourier transform F (  U ,  U )  have identical functional 
form; the 2-D Fourier transform theorems for shift, sim- 
ilarity, and modulation are reflected in the position pa- 
rameters ( xo,  y,), the modulation parameters ( uo, U , ) ,  and 
the two scale parameters (CY, 6 ) .  If a # 0 ,  then a further 
degree of freedom [for simplicity not included in (10) and 
(l l)]  is coordinate rotation of (x, y )  out of the principal 
axes corresponding to (a, P ) ,  which in the Fourier do- 
main results in the same coordinate rotation of (U, U ) .  

These “noncanonical” members of the 2-D Gabor family 
simply have additional cross terms in xy in (10) and in uu 
in (11). 

An important property of the family of 2-D Gabor fil- 
ters is their achievement of the theoretical lower bound of 
joint uncertainty in the two conjoint domains of (x, y )  
visual space and ( U ,  U )  spatial frequency variables. De- 
fining uncertainty in each of the four variables by the nor- 
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2D Receptive Field 

2D Gabor Function 

Difference 

Fig. 5 .  Top row: illustrations of empirical 2-D receptive field profiles 
measured by J .  P. Jones and L. A. Palmer (personal communication) in 
simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor 
elementary function for each neuron, described by (IO).  Bottom row: 
residual error of the fit, indistinguishable from random error in the Chi- 
squared sense for 97 percent of the cells studied. 

malized second moments (Ax) ,  ( A y ) ,  ( Au),  ( A u )  about 
the principle axes (see Daugman [ lo]  for details), it may 
be shown that a fundamental uncertainty principle exists: 

(Ax)  (Ay)  ( Au) (Au)  2 1 / 16a2 (12) 
and that the lower bound of the inequality is achieved by 
the family of 2-D Gabor filters [(lo) and ( l l ) ] .  In this 
sense, these filters achieve the maximal possible joint res- 
olution in the conjoint 2-D visual space and 2-D Fourier 
domains. These elementary functions also can be re- 
garded as forming a continuum between the opposite ex- 
tremes of either Kronecker delta functions in the space 
domain (inherent in the pixel representation of an image) 
or Kronecker delta functions in the frequency domain (in- 
herent in the 2-D Fourier representation of an image). 
These limiting cases arise when the parameters ( a ,  0) in 
(IO) and (1  1) become either very large or very small; in 
the mixed case when one is very large and the other very 
small, the representation corresponds to taking 1-D Fou- 
rier transforms on each raster line in a rastered image. In 
general, we will work with intermediate values of ( a ,  0) 
in self-similar conjoint representations, because this sit- 
uation appears to have great neurobiological significance. 

It is interesting that the great majority of mammalian 
cortical simple cells (97 percent in the studies described 
in [9] and [ lo])  have 2-D receptive field profiles which 
can be well fit, in the sense of satisfying statistical chi- 
squared tests, by members of the family of 2-D Gabor 
elementary functions. Three examples of such empirical 
studies by J .  Jones and L. Palmer (personal communica- 
tion) are presented in Fig. 5 .  The top row shows the em- 
pirical 2-D receptive field profiles measured with small 

spots of light spanning a ( 16 X 16) position grid, plotted 
as the excitatory or inhibitory effect of the stimulus on the 
neuron’s firing rate. The middle row shows the best-fit- 
ting 2-D Gabor elementary function for each cell; and the 
bottom row shows the residual error of the fit. Extensive 
discussions of the experimental and analytic methods are 
provided in [9]. 

Clearly, the parameters in the 2-D Gabor family of el- 
ementary functions directly capture the chief neurophy- 
siological properties of localization in visual space (xo, 
yo ), spatial dimensions ( a ,  0 ), preferred orientation and 
spatial frequency (captured by converting the Cartesian 
(uo, U , )  parameters into polar coordinates), and the tun- 
ing bandwidths for orientation and spatial frequency (de- 
termined jointly by uo, U , ,  a, and 0). To this extent, be- 
cause the neural receptive field profiles G(x, y )  are 
localized both in ( x ,  y )  visual space and in (U, U )  2-D 
spectral coordinates, we can describe the biological early 
visual cortical analysis of image structure as forming a 
conjoint spatiaUspatia1 frequency signal representation 
with optimized joint resolution, subject to the 4-D uncer- 
tainty principle of (12). Roughly speaking, such a repre- 
sentation facilitates the extraction of local 2-D spectral 
information (texture, scale, axes of modulation) without 
sacrificing concurrent extraction of information about 
2-D location and metrical relationships. For example, the 
textural structure of a given image region can be separated 
into its identifying 2-D spectral constituents, while in the 
same representation, the global spatial structure of the im- 
age can be separated into the distinct regions in which a 
given 2-D spectral structure appears. This scheme of im- 
age representation might be considered analogous to a 
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speech spectrogram, generalized to four dimensions; sep- 
arate signal components having conjoint support in one 
domain can be given disjoint support in the other domain, 
a strategy of proven utility in statistical pattern recogni- 
tion [ 191. Further discussion about conjoint 2-D/2-D an- 
isotropic filter representations and neurobiological mech- 
anisms may be found in [lo], [ 151, and [ 181. 

IV. COMPLETE DISCRETE 2-D GABOR TRANSFORMS 
For machine vision, the utility of representing image 

structure in terms of 2-D Gabor elementary functions is 
complicated by the fact that they do not constitute an or- 
thogonal basis. The inner.product of two members of the 
set specified by (lo), in the same location (xo,  y o )  but 
parameterized differently by i and j ,  is nonzero: 

( G k  Y ) ;  G,(x, Y > )  

One solution to this problem, developed by Bastiaans 181, 
is to introduce an auxiliary biorthogonal function y [ x ,  y ]  
which allows one to find the correct coefficients by the 
usual inner product rule for projecting the signal onto the 
elementary functions. Thus, in the discrete case, if the 
elementary functions { G i [ x ,  y ]  } form a complete but 
nonorthogonal set on which the image I [ x ,  y ]  can be ex- 
actly represented as 

n 

then it may be possible under specific restrictions on 
{ GI [ x ,  y ]  } to find an auxiliary function y [ x ,  y ]  such that 
the desired coefficients { a ,  } can be found directly by the 
rule 

a, = c Y b  - X I ?  Y - YJ 
1.Y 

* exp [ -2ri(u,x + u , y ) ]  I [ x ,  y ] .  (15) 

Thus, Bastiaans’ auxiliary function y[x, y ]  is biortho- 
gonal to the (invariant) Gaussian window of the chosen 
elementary functions { G, [ x ,  y ]  }, and it is derived by de- 
manding that the Kronecker delta inner product rule for 
orthogonal basis functions be satisfied. Although Bas- 
tiaans’ 1-D solution can be readily generalized to the 2-D 
case as a Cartesian product, it is expressed only as an 
infinite series [ 8 ] ,  and so in practice an approximation 
must be found. More importantly, its derivation depends 
upon certain severe restrictions on the elementary func- 
tions { GI [ x ,  y ]  }; in particular, they must all share the 
same windowing function. This entails that the spatial fre- 
quency bandwidths (in octave terms) and orientation 
bandwidths of the elementary functions will both be in- 
versely proportional to their center frequencies. We would 
prefer to relax this requirement, in part because the bio- 
logical 2-D receptive field profiles tend to have a roughly 
invariant template shape across scales as illustrated by the 

Fig. 6 .  Five examples of 2-D Gabor elementary functions displayed as lu-  
minance primitives. These biologically modeled “wavelets” can all be 
generated from a single complex member by dilations, rotations, and 
translations, as specified by (22). 

luminance profiles in Fig. 6, lending them constant log- 
polar bandwidths, rather than having a window of con- 
stant size which would entail constant linear bandwidths. 
A further motivation for averting the requirements of the 
Bastiaans’ biorthogonal approach is that we would also 
like to be able to find optimal conjoint coefficients { a, } 
even when the elementary functions do not form a com- 
plete set, as arises from irregular sampling rules. In these 
cases, the auxiliary y [ x ,  y ]  biorthogonal function ap- 
proach to obtaining the coefficients is not helpful, but the 
approach based on the neural network architecture illus- 
trated in Fig. 3 is. 

Before applying the network to the general (nonortho- 
gonal and noncomplete) case, we first demonstrate its 
ability to accomplish the same goal as the Bastiaans 
method for regular sampling with invariant window func- 
tion (the nonorthogonal yet complete case). Here the 2-D 
Gabor elementary functions are parameterized for an in- 
variant Gaussian window which is positioned on (fully 
overlapping) Cartesian lattice locations 

{ X m t Y n }  = { m M ,  n N }  (16) 

for integers (m, n) and corresponding lattice cell dimen- 
sions M ,  N .  The complex exponentials which modulate 
these overlapping Gaussians are accordingly parameter- 
ized for a Cartesian lattice of 2-D spatial frequencies { u r ,  
U ,  } appropriate to the M ,  N spatial lattice: 

{ ur, u s }  = i‘ ‘1 
M ’ N  

for integer increments of ( r ,  s) spanning { - ( M  - 1 /2 ) ,  
( M  - 1 / 2 ) }  and { - ( N  - 1/2) ,  ( N  - 1 /2 ) } ,  respec- 
tively. Thus, for the neural network shown in Fig. 3, we 
use for the fixed weighting functions of the first and third 
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layers the 2-D Gabor elementary functions 

G m n r s [ x ,  Y ]  = exp ( - r a 2 [ ( x  - mM)Z + ( y  - n N ) Z ] )  

and allow the network to converge to its stable state, when 
(9) is satisfied, at which point we may read out the desired 
coefficients amnrs from the adjustable weights of the mid- 
dle layer. 

These obtained coefficients amnrs constitute a complete 
2-D Gabor transform of the input image. Each coefficient 
is complex, but because the input image is real, there is 
conjugate symmetry among the coefficients: over both pa- 
rameters r and s, the real part of amnrs has even symmetry 
and its imaginary part has odd symmetry. Fig. 7 displays 
the nonredundant halves of the complete set of real and 
imaginary coefficients amnrs as a (256 x 256) image, giv- 
ing a complete 2-D Gabor transform of the Lena picture. 
It is noteworthy that the fundamental uncertainty principle 
expressed in (12) is implicit in the space/spectral sam- 
pling rules expressed in (16) and (17). The larger the size 
of each spatial lattice cell M or N ,  which means the fewer 
the number of spatial sampling positions, the larger is the 
number of spatial frequency components required in each 
patch in the corresponding dimension, as expressed above 
by the ranges of the indexes r and s. Thus, the product of 
the ranges of the four indexes m, n ,  r ,  s is a constant, and 
in the complete case, is equal to the number of pixels in 
the image. 

The (m, n)  lattice that was used in constructing the com- 
plete 2-D Gabor transform shown in Fig. 7 is apparent by 
the periodic clusters of points, which correspond to the 
centers of the overlapping Gaussian envelopes. Although 
the size of each ( M  X N )  lattice cell here was ( 16 X 16) 
pixels, each of the overlapping elementary functions in 
this transform is fully supported on (32 X 32) pixels, 
with Gaussian space constant ( 1 /a &) equal to +9 pix- 
els at the l / e  points; thus, the value at which the over- 
lapping Gaussians are finally truncated and equated to zero 
is 0.05. Although the value of the Gaussian scale constant 
a in (1 8) is arbitrary from the standpoint of completeness 
and only affects the amount of effective overlap of the 
2-D elementary functions across neighboring m, n lattice 
locations, it does determine the required support size 
(number of pixels) of each elementary function so that the 
truncation of the Gaussian tails is negligible. Since the 
degree of effective overlap of the Gaussians is a free pa- 
rameter, as was the particular tradeoff between the m, n 
spatial sampling density and the number of r ,  s spatial 
frequency components per patch, these can be manipu- 
lated in a signal-dependent fashion without affecting the 
completeness of the representation. These are signal-de- 
pendent flexibilities of the present neural network ap- 
proach, which are not possible in the biorthogonalizing 
approach that requires uniform sampling rules and an in- 
variant Gaussian window throughout the image. 

Within each of the (m, n)  lattice cells apparent in Fig. 

Fig. 7. Complete 2-D Gabor transform of Lena computed by the network 
of Fig. 3.  The amplitude coefficients { a m , n , r , r }  are quantized to 8-bits 
and plotted as pixel values (gray being zero), with the spatial center 
positions m, n of the overlapping elementary functions constituting the 
global ( 16 X 16) lattice centers, and with their 2-D spectral parameters 
r ,  s mapped out within each of these local lattice regions. Coefficient 
histogram shown in Fig. 2; complete reconstruction of Lena from this 
transform shown in Fig. 8. 

7 are embedded the coefficient values amnrs as ( r ,  s) span 
their ranges. Thus, the conjoint character of the 2-D 
Gabor transform is made clear by the way in which local 
spectral variables ( r ,  s) are embedded within the global 
spatial image variables ( m ,  n ), for representing the image 
as the set of coefficients amnrs on the overlapping, non- 
orthogonal, elementary functions G,,, [x, y] .  

Finally, the completeness of the representation found 
by the neural network is demonstrated in Fig. 8, which 
shows the exact reconstruction of the Lena picture from 
the 2-D Gabor transform of Fig. 7. Each of the transform 
coefficients was quantized to 8 bits (as in the original pixel 
image), and the reconstructed picture in Fig. 8 was simply 
created by the sum of all of the 2-D Gabor elementary 
functions weighted by their coefficients: 

The dark points specify the (m, n) lattice locations, and 
the mean-squared-error of the recovered image is close to 
zero. Recalling the original entropy comparisons of Figs. 
1 and 2, it is striking that all of the image structure seen 
in Fig. 8 was recovered from the seemingly very impov- 
erished image in Fig. 7, whose histogram has an entropy 
of only 2.55 bits. Indeed, with the complete 2-D Gabor 
transform of Fig. 7 quantized to 8 bits, so that each coef- 
ficient becomes an integer between -127 and +128, 
about 75 percent of all the coefficients fall within 3 bins 
of zero. (See Fig. 2.) This means that nearly all the image 
structure that was recovered in Fig. 8 was contained in 
just a small subset of the complete 2-D Gabor transform 
coefficients. For this reason, dramatic factors of data 
compression are possible by representing images in terms 
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Fig. 8. Reconstruction of the Lena picture from the complete 2-D Gabor 
transform displayed in Fig. 7, at only 2.55 bits/pixel. Dark points rep- 
resent lattice centers for the overlapping 2-D Gabor elementary func- 
tions. 

of these nonorthogonal elementaiy functions, whose coef- 
ficients can be found by the neural network. 

V.  IMAGE REPRESENTATION IN SELF-SIMILAR 2-D 
GABOR “WAVELET” SETS 

By eliminating degrees of freedom in the family of 
2-D Gabor elementary functions so that they all are dila- 
tions, rotations, and translations of each other, with the 
spectral parameters of the set distributed in a 2-D log- 
polar lattice, it is possible to represent images on a sparse 
self-similar family of primitives with advantageous re- 
ductions in complexity. In this more biologically inspired 
scheme as was illustrated in Fig. 6 ,  the different 2-D Ga- 
bor elementary functions G,,, [x, y ]  have sizes distrib- 
uted in octave steps (and hence, preferred frequencies also 
changing in octave steps). In (lo), this corresponds to set- 
ting CY and /3 proportional to U, and U , ,  thus eliminating 
two degrees of freedom which correspond to orientation 
bandwidth and spatial frequency bandwidth. (See [ 10, 
Fig. 21 for clarification.) The orientations of the elemen- 
tary functions, given by 

e, = tan-’ (:), 
are chosen from a fixed set of angles (e .g . ,  six distinct 
orientations differing in 30” steps). The spectral charac- 
teristics of one such set of log-polar parameterized 2-D 
Gabor elementary functions are illustrated in Fig. 9. All 
the elementary functions in this example have spectral en- 
velopes with a 2 : 1 aspect ratio ( a  reflection of their 30” 
orientation bandwidth and 1.5-octave spatial frequency 
bandwidth ), with center frequencies distributed on a log- 
polar radial octave grid (the defining 2-D spectra sam- 
pling rule), and with self-similarity across all scales, re- 
flecting the invariant shape of the image-domain tem- 
plates. 

Fig. 9. 2-D Fourier transforms of the Gabor elementary functions em- 
ployed in one log-polar radial octave “wavelet” scheme. Following 
physiological data 191, [ IO],  these primitives have logarithmically dis- 
persed center frequencies, + 15” orientation bandwidths, 1.5 octave spa- 
tial frequency bandwidths, and hence a constant template shape and a 
2 : 1 bandwidth aspect ratio. 

In certain of these respects, this set of elementary func- 
tions resembles the ‘‘wavelet” expansions developed re- 
cently by Meyer, Daubechies, Grossmann, Morlet, and 
Mallat (see [20]-[25]) for analyzing 1-D signals into a 
self-similar family of wavelets, all of which can be gen- 
erated by dilations and shifts of a single basic wavelet. 
Families of wavelets have been recently developed which 
have strictly compact support and which constitute com- 
plete orthonormal bases for L 2 ( R )  functions ([20]). All 
wavelet schemes, including the present nonorthogonal 
one, are parameterized by a geometric scale parameter m 
and position parameter n which relate members of the 
family to each other: 

\k,,(x) = 2-”’*\k(2-”x - n ) .  (21) 
Generalizing to two dimensions and incorporating dis- 
crete rotations 0 into the generating function (2 1) together 
with shifts p ,  q and dilations m,  the present 2-D Gabor 
“wavelet” set can be generated from any given member 
by 

*mpqo(x, Y )  = 2-“*(x’, Y ’ )  (22) 
where 

X ’  = 2-,[x COS ( e )  + y sin ( e ) ]  - p (23) 

y ’  = 2-”[ -x sin ( e )  + y cos ( e ) ]  - q.  (24) 

By using the network of Fig. 3 to find optimal coeffi- 
cients on this self-similar multiresolution wavelet scheme 
in which 2-D Gabor elementary functions serve as the 
\kmpqe(x,  y ) ,  significant further factors of code compres- 
sion may be achieved as illustrated in Fig. 10. Each col- 
umn of Fig. 10 corresponds to a different choice for the 
number of distinct orientations in the wavelet set, and the 
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Fig. 10. Image compression achieved by the 2-D Gabor “wavelet” trans- 
form. Columns: different numbers of distinct wavelet orientations, rang- 
ing from six to two. Rows: different quantization depths for each Gabor 
coefficient, ranging from 8 bits to 5 bits. Overall bit/pixel rates as in- 
dicated. 

different rows reflect different degrees of quantization of 
the computed coefficients ranging from 8 bits to 5 bits per 
coefficient, with the coarsest level always having 2 bits 
higher quantization accuracy than the finest level. There 
are 6 distinct values of the scale parameter m of (22)-(24) 
employed in each decomposition scheme, producing a 
five-octave range of resolution scales in one-octave steps. 
Thus, for example, the image in Fig. 10, marked “3 ori- 
entations, 1.03 bit/pixel” was reconstructed from 2-D 
Gabor wavelets present in 3 orientations (changing in 60” 
steps), 2 quadrature phases, and a total of 2610 positions 
spanning 5 levels of resolution with variable quantization 
depth. It is remarkable that rather high image quality is 
achieved here at only 1 bit/pixel using the coefficients 
found by the network, even though as few as 3 distinct 
orientations are represented by the elementary function 
wavelets. 

VI. IMAGE SEGMENTATION 
Finally, by examining the distributions of the 2-D Ga- 

bor coefficients found by the network in different image 
regions, it is possible to achieve image segmentation on 
the basis of spectral signature [26] as demonstrated in Fig. 
11. Here the input image to the network (top left panel) 
is texture consisting of a collage of anisotropically filtered 
white noise fields, with the noise in different regions of 
the image having different 2-D bandpass principal orien- 

Fig. 11. Image segmentation of anisotropic white noise texture collage 
(upper left), by the dipole clustering of coefficients in the complete 2-D 
Gabor transform displayed in  Fig. 12. 

tations. The complete 2-D Gabor transform of this texture 
image is displayed in Fig. 12. Close inspection of the 
transform reveals that associated with each local image 
region, the 2-D Gabor coefficients amnrs have significant 
amplitudes that tend to form dipoles of distinct orienta- 
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Fig. 12. Complete 2-D Gabor transform of the anisotropic white noise 
mondrian displayed in Fig. 11. Different local spectral dipoles are ap- 
parent in regions of the transform corresponding to regions of the image 
described by different anisotropic texture moments. 

tions. These orientations correspond to the predominant 
anisotropic texture moment in that region of the image. 
On this basis, the original textured image was segmented 
into distinct regions characterized by a certain spectral 
signature, as demonstrated in the other three panels. Since 
the 2-D Gabor coefficients which the network generated 
as shown in Fig. 12 constitute a conjoint space-spectral 
representation, spectral information remains localized in 
the image; hence, it can be associated with particular re- 
gions of the image having a given textural signature. Many 
studies [26]-[33] have confirmed the utility of deriving 
such regional spectral measures for various signal pro- 
cessing applications. We have seen that the neural net- 
work of Fig. 3 for computing the transform coefficients 
on nonorthogonal 2-D Gabor elementary functions can 
also be used for texture-based image segmentations. 
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