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Parametric Methods for Spatial Signal Processing in 
the Presence of Unknown Colored Noise Fields 

J.  PIERRE LE CADRE 

Absfract-This paper is devoted t o  the estimation o f  noise correla- 
tions along an  ar ray  of sensors. The only hypothesis which is needed 
here i s  the adequacy of the ARMA model to noise description. Fur- 
thermore, the only available data are the sensor outputs. The a i m  o f  
the methods which w i l l  be presented is thus to estimate a noise model 
f r o m  the sensor outputs in the presence o f  signal sources. 

The eigenstructure methods developed thus fa r  require that the ad- 
dit ive noise be spatially white (uncorrelated between sensors) o r  that 
the noise correlat ion m a t r i x  be known to w i th in  a constant multiple. 
However, in most pract ical  situations, this fundamental hypothesis is 
not verified, leading t o  important degradations o f  spatial processing in 
terms o f  bias, spurious peaks, angular resolution, and nondetection o f  
small sources. 

The additive noise received by the array is, in fact, the sum o f  am- 
bient sea noise, Row noise, and traffic noise. I t  may be correlated along 
an  important p a r t  o f  the array;  thus, an  ARMA modeling (involving 
only a small number o f  parameters) is well suited. Furthermore, the 
small number o f  AR model parameters (which are needed t o  describe 
the correlat ion sequence) is a great advantage fo r  opt imizat ion o f  func- 
tionals. 

In this paper, two types o f  methods for the estimation o f  noise pa- 
rameters are presented. The first is related t o  the calculation o f  the 
l ikel ihood of whitened observations (by means o f  ARMA model ing o f  
noise) and the second is related t o  Pisarenko’s method applied t o  whi t -  
ened observations. B o t h  methods are obtained by opt imizat ion o f  a c r i -  
ter ion and are iterative. Obviously, noise estimates may be used fo r  
sensor outputs whitening and i t  is then a means t o  improve ar ray  pro- 
cessing performances. The two methods per fo rm well, bo th  on  simu- 
lated and real  data. However, the first method seems more at t ract ive 
than the second (simpler and more robust). 

I. INTRODUCTION 
HIS paper deals with the estimation of noise correla- T tions along an array of sensors. The following basic 

assumption is used in this paper: noise may be described 
by a (spatial) parametric model. 

The aim of this paper is not to add a supplementary 
method for spectral (spatial) analysis; it is to present fea- 
sible methods for estimation of noise correlations in the 
presence of point sources (ships, etc.). Direct ARMA 
modeling of sensor outputs (sources plus noise) is a way 
to consider noise with arbitrary correlations, but it is not 
well suited to array processing, the main difficulty being 
due to high-order modeling (which is necessary for a great 
number of sources). The separation of the space of ob- 
servations (sensor outputs) into two subspaces (i.e., noise 
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and sources subspaces) is a better way for noise correla- 
tion estimation. The main advantage of these approaches 
relies upon the low-order model of noise. 

The adequacy of an AR(MA) modeling of noise is, ob- 
viously, a crucial point and will be considered later. It is 
also important to consider the improvements obtained by 
means of the noise correlation estimated. 

The eigenstructure methods developed so far [ l ] ,  [2] 
require that the additive noise be spatially white (uncor- 
related between sensors) or that the noise correlation ma- 
trix be known to within a constant multiple. However, in 
most practical situations, the additive sensors noise is 
nonwhite and its correlations are unknown. If we persist 
to use standard methods, assuming that the sensor noise 
is white when in fact it is not so, then one notes important 
degradations in terms of bias, angular resolution, and es- 
pecially spurious peaks, nondetection of weak sources. In 
fact, the main difference between point sources (isolated) 
and noise is their respective coherence. Sources are as- 
sumed to be perfectly coherent along the array, con- 
versely to noise (even with imponant correlations). That 
means that source poles are on the unit circle, conversely 
to noise poles which are strictly inside the unit circle. 

In this paper, we present principally two types of meth- 
ods for the estimation of noise parameters (estimation of 
the ARMA coefficients). The first is related to the calcu- 
lation of the likelihood of whitened observations (by 
means of ARMA noise modeling), the Gohberg formula 
[3], [4], and the perturbations of eigenvalues will be the 
keys of the method. This method does not use plane wave 
hypothesis unlike the second method. The second method 
relies upon the definition of a functional named whiteness 
functional which enjoys interesting properties. Both 
methods are obtained by optimization of a criterion and 
are iterative. 

Obviously, the estimates of noise parameters may be 
used to whiten the observations (sensor outputs); efficient 
methods for that purpose are presented. It is then a means 
to improve array processing performances and to judge 
the proposed methods. 

After a presentation of these two methods, some com- 
parisons are presented for simulated data. We shall try to 
explain the results as also to justify the peremptory asser- 
tions of this Introduction. We shall consider especially the 
robustness of the proposed methods. 

(Norurions: Capital italic letters will denote matrices, 
while capital bold italic letters will denote vectors.) 
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11. MAXIMUM LIKELIHOOD METHOD sider that S is any rank q matrix and is described by its 
A .  Introduction and Formulation of the Problem 

Let X be a stationary, n,s-dimensional random vector ( n,s 
= number of sensors) constituted by the narrow-band 

eigensystem [ 11. A remaLkable (and classical) fact is-that 
the log likelihood may be simply expressed as a functional 
of the eigenvalues of R ,  more precisely, 

outputs (e.g. ,  after DFT) of an array sampling a homo- 
geneous random field. Denote the covariance matrix of X 

supf(Xl ,  . . . , xN/(x, s ) )  

R = E ( X .  X*) 
= N * 1 - n ,  log T - n, - log det R + log A, 

r = q + l  

x' = (XI ,  * . . 3 X l h  1 ( 1 )  - 

where the superscript * denotes transposition and con-ju- 
gation, E meaning mathematical expectation. 

Then 

R = S + B  

where S and B are the covariance matrices of sources and 
noise, respectively (sources and noise are assumed to be 
statistically independent). 

The problem is to obtain an (accurate) estimation of the 
covariance matrix B (it is a crossnspectral matrix) from 
the only available statistics (i .e. ,  R ) .  

The method relies upon three facts. 
F1) The likelihood functional may be expressed as a 

functional of the eigenvalues of the whitened covariance 
matrix (of the outputs). 

F2) The inverse BPI of the noise covariance matrix ad- 
mits an explicit formulation in terms of the AR(MA) coef- 
ficients of the noise model. 

F3) The derivatives of the likelihood functional may 
be easily calculated using F1) and F2) and classical re- 
sults for perturbations of eigenvalues. 

Therefore, maximizing the likelihood amounts to max- 
imizing the (negative) functional: 

- ( n ,  - q )  l o g a r ( q )  + cst (5a) 
where 

11, 
I 

a r ( q )  = - c A, arithmetic mean 

i, L * * 2 ins eigenvalues of R 

cst = -log det fi - n, * ( 1  + log T ) .  

n,  - q I = ~ + I  

(5b) 

Consider, now the case of an unknown correlated noise: 
then 

L,(B, S )  = -log det R - tr ( R - '  . k )  

B. Calculation of the Likelihood Functional ( R  = S + X B;  X scalar). ( 6 )  
Consider, first, the white noise case (i.e., B = A Id, 

X > 0 ,  Id meaning the identity matrix); assume further- 
more that the source's number is q. 

* , XN } be a sequence of N independent 
complex Gaussian vectors (snapshot vectors) with covari- 
ance matrix R;  then the conditional density of this se- 
quence is act covariances: 

Now B being a positive matrix (for the sequel, positive 
will mean positive definite [6]), it admits a Cholesky de- 
composition in triangular factors; let 

( 7 )  
Let { Xi ,  * B = L L*. 

Consider, furthermore, the whitened matrix of the ex- 

f ( x , ,  * * 9 XN/h, S )  R,, = L-l R . L-I* = L-I S L- '*  + XId (8a) 

also as the whitened source's matrix: 

SI, = L-' . s . L-1". (8b) 
exp ( - N  tr (I? . R - I ) )  

1 --.-. 
(det R ) N  T N . r ~ ,  

- 

where Then 

R = S + XId 

S being the unknown covariance matrix 
(tr ( A B )  = tr ( B  * A ) )  

= tr (R;' . a,,.) ( sa )  
of sources of rank q < n,y. ( 3 )  and 

log det R = log det [ L  . (R,,.) * L*]  

= log det B + log det R)!,. 

We are now seeking the value of h and the matrix S 
which maximize the likelihood. Forgetting the special 
structure of matrix S (plane wave hypothesis), we con- (9b) 
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Hence. 

L,(B, S )  = L , , ( q )  - log det B ( l o a )  

with 

L, , (q )  = -log det R,, - tr ( R ; ’  . R , , ) .  ( l o b )  

Now 

rank (SI,) = rank ( S )  i R,, = SI, -t X . Id 

and the maximization of L4( B ,  S ) amounts to maximi- 
zation of L,, ( q )  relative to the source’s subspace. This is 
the classical problem and the result is given by ( 5 ) ;  there- 
fore, 

sup L ~ ~ ( q )  = - ( n ,  - 4 )  * log ( a r u ( q ) )  + ( n ~  - 4 )  
S 

. log (ge,, ( q ) )  - log det k,, + cst 

with 

ar,, ( q )  and ge,, ( 4 )  arithmetic and geometric means of 

the ( n ,  - 4 )  lowest eigenvalues of R,, 

(cst = -n,(Iog 7r + I ) ) .  ( 1 1 )  

Using ( I O )  and ( 1  I ) ,  one obtains 

sup L , ( B ,  S )  = -log det B - ( n ,  - q )  log ur , , (q)  
S A  

+ ( n i  - 4 )  log gei , (q)  

- log det R,, + csf, 
but 

log det R,, = log det (L- l  . R . L - ’ * )  

= log det R - log det B,  

yielding finally 

sup L,(B, S )  = - (n \  - 4 )  . log ar , , (q)  + ( 1 1 ,  - 4 )  
S h  

. logge,,(q) - log det l? + cst. ( 1 2 )  

The two last terms of L, do not depend upon B and S ;  
therefore, we shall consider for the sequel the following 
expression of the likelihood functional conditionally to { q 
sources, noise matrix B } : 

L , ( B )  = - ( t l i  - 4 )  log ari , (q)  + (ni  - 4 )  log geii(4). 

( 1 3 )  

The logarithm function being concave, the function L, 
is negative; furthermore, the inequality of arithmetic and 
geometric means (of positive numbers) implies that the 
nullity of L ,  is equivalent to the equality of the ( n ,  - 4 )  
lowest eigenvalues. With that meaning, L,, may be con- 
sidered as ! “measure” of proximity of the lowest eigen- 
values of R, .  

Now the problem takes the following form: 
Maximizutiori of L, ( B )  ( fo r  a given 4)  relative to pa- 

rameters dejining B .  
A simple and effective way to solve it will be exposed 

in the next sections; it relies heavily on the parameteri- 
zation presented below. 

C. Noise Parameterization-Application 
Consider first an autoregressive modeling of noise that 

means that noise received on a sensor can be “predicted” 
from noise received on other sensors. This hypothesis 
seems realistic for a linear array and we shall see in 
Section IV-C that all physical noise may be described by 
an AR(MA) model. Then the inverse of the covariance 
matrix of noise has an explicit formulation ( i n  terms of 
real AR coefficients a ; )  given by a formula attributed to 
Gohberg [3]: 

B - ’  = 1 ( A  I A‘, - A ,  . AI,) (14a) 
g2 

where A ,  and A, are two triangular ( 1 2 ,  X n ,  ) Toeplitz 
matrices given by 

I- 1 

A3 = 

0 

. (14b) 

This formula is valid for any real stationary autoregres- 
sive noise of order p and coefficients { a ,  ):= ,; 0’ is the 
input noise power. Stress that this formula is exact; it can 
be obtained by statistical considerations (Appendix A). 
but is essentially algebraic [7]. A matricial translation of 
(14) will be useful; for that purpose, define the matrices 
Z’ as 

(Note that Z‘ + I = ( Z ’ )  * Z ;  Zo = Id .) 
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Then, A I  and A, may be written in matrix form as D. Maximization of the Likelihood Functional (Real) AR 
Case 

In the general case, iterative methods are needed for 
maximization of L,; the convergence of these methods will 
be studied in Appendix B. 

a, * Z' (by convention aO = 1 ) 
( 16) 

A general form of a gradient algorithm is given by 

B-l  may be written as a quadratic form relative to the 
coefficients { a i }  by (14) and (16). Note that B-l defined 
by (14) is centrosymmetric [7] and its inverse (i .e. ,  B )  is 
a Toeplitz matrix [7]. 

The matrix A3 can be considered as a corrective term. 
This formula is extended to the complex case in Appendix 
A. 

To our knowledge, there is no explicit formulation of 
B - '  for the MA modeling; however, a simple expression 
of B is given by [8] 

/ P  \ / P  

Ak+l = Ak - Pk * Gk 

AI, = (a:, a t ,  * * , a$)  being the estimated 

parameters at the kth iteration. (19) 
(U: has no theoretical necessity since the likelihood func- 
tional is invariant under scale change, but it may be pref- 
erable to include it, for practical applications, in the gra- 
dient algorithm.) 

Gk is the gradient vector at the kth iteration, while pk is 
the step size of the algorithm. Ak being given, ( Bk)-l is 
obtained by (14), (15), i .e.,  

Bkl = (a:)-' . [A'; . (A!)'  - Ai . ( A : ) ' ]  
when { bi} f zo  are the MA coefficients and { Y i }  are rect- 
angular ( n,y x 2n,) matrices defined by 

with 

1 i f k - j = i  

0 else. 
&( j ,  k )  = 

The parametrization of B for ARMA modeling is ob- 
tained by combination of (14) and (17), i .e.,  

where R A R  is the extended 
process, i .e.,  

X 2 4 )  matrix of the AR 

R A R  = O* * ( A ,  9 A', - A ,  * A i ) - '  

with 

= C a i .  Z' 
i = O  

P 
A'; = C a: . z'. (20)  

i = O  

The problems consist now in the calculation of the gra- 
dient vector Gk whose i th component is 

( L (  q ,  k )  is the log-likelihood functional conditional to the 
q sources hypothesis and to Bk).  

Calculation of Gk amounts to calculation of partial de- 
rivatives (a /aa i )Xy  (A? are eigenvalues of R , , , . k ) .  How- 
ever, some intermediate steps are needed; we shall con- 
sider, for the first time, the case of simple eigenvalues. 

R are Lemma I :  The eigenvalues of R,,..k and BFl 
( 18b) identical. 

Indeed, 

(Z'  defined as in (15) but in dimension 2 4 ) .  
The previous models assume that the receiver-gener- 

ated component of the noise is of equal power in each 
sensor. If this assumption does not hold, a better model 
for the noise received on sensor m would be 

det ( B i l  R - X l d )  

= det (Lk * L: 2 - X l d )  ( L k  L,* = B k l )  

= det (L: - R Lk - X l d )  

x,,, + a1 * Xn-1 + up . X , n - p  = P,,, * W,,! = det (& - h l d ) .  (22)  

w,,, being a sequence of independent white noise. 

The parameter 0, is an additional parameter which we 
would have to optimize with respect to. 

Numerous parametrizations of noise covariance matri- 
ces may be used, but those which are considered have the 
greatest advantage to define a parametrization of B or even 
B-l with a small number of parameters. 

We shall now consider the maximization of the likeli- 
hood functional (13) in the case of a real AR model of 
noise. 

R being a positive matrix (covariance matrice), it can 
be decomposed in triangular factors; let R = T T* ,  lead- 
ing to the following result. 

Lemma 2: The eigenvalues of R,,,,k and T* - Bk'  T 
are identical. 

Indeed, 

det (Bk l  * R - X l d )  = det (Bk l  T * T* - X l d )  

= det ( T *  Bkl T - Xld) .  

(23  1 
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It can be deduced from Lemmas 1 and 2 that calculation 
of partial derivatives ( a / a a i )  A, amounts to calculation of 
partial derivatives ( a / a a i )  pj , { pj } being the eigenvalues 
of the Hermitian matrix T* Bk-l T. 

This result has a great practical importance since Bkl is 
an explicit function of the AR coefficients. 

Recall, furthermore, a classical result for the calcula- 
tion of partial derivatives of a simple eigenvalue of a Her- 
mitian matrix A depending (differentiably) upon a set of 
parameters [9]: 

eigenvector associated to Ai; 

Calculation of vector Gk is deduced from the preceding 

Step 1: Calculation of partial derivatives A:( 0 I i I 
results and its steps are presented below. 

p )  of Bkl relative to parameters { a i } ,  i .e.,  

. (A$ - A; . (z""-')r] 
fo r1  I i I p  

A: = -2(uk)-'  * Bkl 

(A! defined by (25) is symmetric). (25) 
Step 2: Calculation of derivative matrices A:k: 

0 I i I P .  (26) 
Step 3: Calculatio? of partial derivatives of the (sim- 

ple) eigenvalues of Rw,,: 

(27) 
a 

aai - A; = (U:)* . ( A : k )  ( u j k ) * ,  

qk being an eigenvector associated to the eigenvalue A; 
of T* . BFl * T. 

Step 4: Calculation of the gradient vector G,, defined 
by its components G k (  i ): 

ns a . c -A; 
J = 9 + l  aai 

where 
n, 

(28) 
1 k ar  ( 4 )  = - C A;. 

n, - 4 j = q + l  

Calculation of the gradient vector Gk is defined by for- 
mulas (25), (26), (27), (28) in the (real) AR case. Cal- 
culation of Gk requires knowledge of the eigensystem 
{A;, U!} of T* - Bkl T. These eigenvalues and eigen- 
vectors may be exactly computed (by standard algo- 
rithms) or estimated by use of formulas (27) and (30) for 
the sake of computation time. 

It is important, however, to compute a satisfying step 
size (denoted p ) for the gradient algorithm in order to 
ensure convergence. This will be achieved by use of a 
first (or higher)-order approximation to the change in ei- 
genvalues of the whitened matrix. 

More precisely, let A; be the vector of partial deriva- 
tives of A;, i.e., 

Then a first-order approximation of A; ( p ), j th eigenvalue 
of the whitened matrix R w , k  or [Bk(  p ) ] - '  * R with 

B , I ( p )  = ( U T I  [ A ' ; ( P )  * ( A ' ; O f  - A h 4  

and 

A t ( p )  = 5 (ai  - p . G k ( i ) )  * Z' 
i = O  

is given by 

$ ( p )  2 A; - pGL * A;. (30)  
Then the approximation of A;( p )  defined by (27), ( 2 8 ) ,  

and (30) is substituted in the likelihood functional L, (13),  
and by means of a unidimensional method, an approxi- 
mated p is determined. 

A second-order approximation can be easily calculated 
[ 101. However, in all practical situations, a first-order ap- 
proximation seems to be sufficient in order to ensure con- 
vergence of the algorithm. Furthermore, a higher order 
approximation is more expensive in computation time. 

E. Some Extensions 
1)  Parametrization by Rejection Coeficients: The 

parametrization of the noise matrix B may be advanta- 
geously expressed in terms of reflection coefficients. 
Using it this way, the stability of the AR model is easily 
ensured. 

More precisely, using the formalism of [ 1 1 1 ,  the Lev- 
inson recursion may be written in matrix form: 

A , + ,  = (Idp+2 - kp * J b A p  (31a) 
where A is the ( p + 2 X p + 1 ) matrix defined by 

A = (i I). (31b) 

( J  is the reflection matrix [ l  I ] ,  J 2  = Id. ) 
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A,, is now the vector of AR coefficients of the noise 
model (14), i .e.,  

A; = ( 1 ,  a l ,  * * . , up). (32) 
Using (32), it is then possible to express A,, + I as an 

, explicit function of reflection coefficients (1 ,  k , ,  * . 
k, , ) ,  leading to 

Ap+l  = ( I d  - kp . J )  * A * ( I d  - 5-1 * J )  

* A * * * ( Z d - k l . J ) * A *  1 .  (33) 

It is now possible to express the partial derivatives of 
the log-likelihood functional with respect to reflection 
coefficients; more precisely, 

a P a  a 
-L ,  = C -L; -a,. 
aki j =  I daj aki (34) 

Now aL,/aa, have already been calculated (Section II-D) 
and aa,/aki is straightforwardly deduced from (33); 
therefore, the partial derivatives ( a / a k i )  L, are calculated 
by use of (32), (33), (34), and Section II-D. The test of 
stability [for the polynomial A ( z ) ]  now reduces to the 
conditions (0 5 I ki I < 1 ). 

2) AR(MA) Case: The MA model leads us to replace 
the matrix A f  defined in (25) by the matrix 6; defined by 

while the ARMA case is obtained by derivation of (18a). 
(The MA model is assumed to be minimum phase [ 121 .) 

3)  Multiple Eigenvalues: In the case of multiple eigen- 
values, the formula (27) of the eigenvalues’ partial deriv- 
atives no longer holds. In this case, the eigenvalues of the 
perturbed matrix R + 6R are, up to the first order, the 
eigenvalues of the matrix [ 131 

A = U* * ( R  + 6R)  * U 

( U  is the matrix of an eigenvector basis associated to the 
multiple eigenvalue), leading us to replace (27) by the 
computation of eigenvalues of the matrix 

U* . Aik . U. 

The other steps of the algorithm are identical. 
4) Complex Case: The nonsymmetry of the noise field 

with respect to the array broadside results in complex 
AR(MA) coefficients for the noise model. The procedure 
in the complex case is quite similar to the previous one 
(see Appendix A). 

F. Convergence Analysis 
We are now dealing with the convergence of the gra- 

dient algorithm defined in Section II-D. 
Consider, for instance, a given AR model (second or- 

der); its covariance matrix may be calculated by (14); it 
is then possible to compute the functional L,,,,,, ( q )  de- 

fined by (13) where the eigenvalues X i  are the eigenvalues 
of the matrix B;!,? R.  

L,,,,, ( q )  is the exact log-likelihood functional condi- 
tional to { a l ,  a2 } .  

Fig. 1 presents the shape of the surface described by 
-L,,,,2 on the stability domain (corresponding to AR pa- 
rameters). There are three sources. The maximum of the 
functional is reached for the exact values of AR parame- 
ters ( i .e. ,  a: and a;) ,  but the functional is not concave on 
the whole domain. 

The functional is not concave (for AR modeling). but 
it enjoys the following properties (regardless of estima- 
tion problems of R and assuming an appropriate noise 
model ) . 

Property 1: The log-likelihood functional defined by 
(13) is negative; it is null if and only if the noise model 
is perfectly estimated. 

This is a simple consequence of the properties of arith- 
metic and geometric means [14]; the nullity of the func- 
tional is equivalent to the equality of the ( n ,  - 4 )  lowest 
eigenvalues of R,,. (or B-l . R ) .  Assume now ( n ,  - q )  
superior to p (AR order); then it can be easily proved (by 
consideration of the Jacobian of the function relating { ai } 
to eigenvalues of B - I )  that B = Bo. 

Property 2: The gradient vector of the log-likelihood 
functional is null if and only if A is equal to A. (exact 
values of the coefficients). 

The rather technical proof of Property 2 is skipped in 
Appendix B; from Properties 1 and 2,  it is then possible 
to establish convergence of the gradient algorithm in  the 
asymptotic case. Obviously, the estimation of R leads to 
statistical results. 

In all the exposures, some parameters have been fixed; 
there are q (number of sources) and p (AR order). In prac- 
tical situations, they are not known; we shall examine now 
the consequences of a misadjustment of these parameters. 

1)  Number of Sources ( 4 ) :  By use of Property 1, it is 
possible to overdetermine the source’s number as long as 
p (AR model) remains inferior to (n,, - 4 )  without deg- 
radation in the asymptotic case. If R is estimated (practi- 
cal case !), then the source number overdetermination will 
lead to slightly inferior performances of the method (rati- 
dom eigenvalues ), but the degradation is quite acceptable 
(see Fig. 2). We now have to face a fundamental problem: 
what is the good “strategy” for the choice of q? The an- 
swer is not evident. 

The “classical” information criteria (Akaike, Rissa- 
nen, etc. [15]-[17]) do not provide a satisfying source 
number estimate because they use eigenvalues of R and 
do not separate sources and (highly) correlated noise. For 
instance, the estimated source number is equal to the 
number of sensors for most of the simulations presented 
in Section IV. In order to remedy this problem, some so- 
lutions are presented below. 

a)  Source Number Overdetermination: It is possible 
to try consecutive values of q and to choose the value of 
q maximizing the log-likelihood functional. 

b) Mod$cutions of Injormmtion Criteriu: The infor- 
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Fig. I .  Shape of the log-likelihood functional for three sources. 

40 YUSIC(DB) 

0 30 60 90 120 150 180 
Baarlng 

Fig. 2.  Maximum likelihood method. Comparison between MUSIC 
method before whitening and after whitening. 

mation theoretic criteria are based upon log-likelihood 
calculation (which is achieved by means of the presented 
gradient algorithm) and to its statistical behavior [8]. Its 
statistical behavior is characterized by the number of 
“free” parameters (121; the inclusion of an AR noise 
model leads to add supplementary free parameters, but the 
spirit of the method is similar [19]; these approaches give 
satisfying results on simulated data. 

More precisely, if the criterion of Rissanen [15], [16] 
is used, the following function is considered: 

where 

N is the number of independent samples 

p is the source number 

q is the noise model order. 

L (  p ,  q )  is the likelihood functional conditional to the 
hypotheses: p sources and noise model order q.  Ob- 
viously, L ( p ,  q )  has no explicit formulation in the gen- 
eral case and must be calculated by use of the method 
presented in Section 11-D. 

The results of a simulation are now presented; the pa- 
rameters of the simulation are the following: 

n, = 32, source number = 3 ,  noise model order = 2. 

Source bearing and corresponding powers: 

Bearings: 40 deg 50 deg 150 deg 

Powers: 0.3 0.4 0.2 
Noise model: 

a,, = 1.00 a ,  = -0.9. 

The data are simulated by the method of Section IV-A, 
after which a covariance matrix is obtained. Table I pre- 
sents the value of the MDL function for one trial (300 
snapshots). 

The minimum of the function MDL ( p ,  q )  is attained 
at the exact values of p and q;  however, this minimum is 
not very sharp (in order). The above simulations have been 
repeated; then for ten trials (300 snapshots), 9 successes 
are obtained (estimation of the exact values of p and q ) .  
The results of this method for estimation of the parame- 
ters p and q are rather satisfying; however, its computa- 
tion cost can be rather important. Therefore, a separated 
estimation of p and q can be an interesting way as in c) 
and d ) .  

c) Statistical Properties of the Eigenvalues of a 
“Corner” of Matrix R (MA Case): This original ap- 
proach has been recently presented by Fuchs [I31 and 
gives an accurate estimate of the sources number in the 
presence of correlated noise. 

d )  Use of a State-Space Approach for  Sensor Outputs 
Modeling (ARMA Case): By use of an information crite- 
rion like the predictive efficiency criterion presented by 
Arun and Kung [20], it is possible to obtain a satisfying 
estimate of the source’s number without a priori infor- 
mation about the noise model. This application of Arun 
and Kung’s method is presented and detailed in [21]. 

2) Noise Order Model: In the asymptotic case, noise 
model overdetermination leads to very slight degradations 
of the results (in terms of noise spatial density) as shown 
by Fig. 9 and by the proof of Property 2. 

For all simulated data, it seems possible to overdeter- 
mine the noise model order without dramatic effects (see 
Fig. 9). The robustness of the method to misadjustments 
of these parameters is a crucial point; otherwise, the prac- 
tical interest of the method should be very doubtful. 

Obviously, the parameters p and q may be estimated 
simultaneously as shown previously, but a separate esti- 
mation of the order p seems rather difficult. 

Another point to consider is the stability (with respect 
to the unit circle) of the AR model obtained by maximi- 
zation of the functional. It is possible to compute the roots 
of A, ( 2 )  (polynomial associated to A L )  and to adjust con- 
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TABLE I where 

I/ 
II is the projector matrix, II = V . V* 

1 1  is the Euclidian norm [6] Noise Source Number 
Model 
Order I 2 3 4 5 

1 2 1.688 13.851 3.786 4.764 5.782 
2 25.378 16.644 3.686 4.745 5,776 V(n, x q )  is the matrix constituted by the greatest 
3 25.591 16.953 3.710 4.761 5.793 
4 25.697 16.891 3.713 4.768 5.799 eigenvectors of R,,.. (36b) 

sequently the step size of the gradient method, but the 
parametrization by reflection coefficients [Section II-E-l)] 
is the best suited approach. In practical situations, how- 
ever, if the noise poles approach the unit circle, then the 
noise covariance matrix tends towards singularity, and 
therefore, the functional tends towards - m .  When the 
step size is not too important, this fact avoids stability 
problems. 

G. Estimation of Source Parameters 
After runs of the preceding algorithm, an estimation of 

the AR coefficients is obtained. Let A‘ = ( 1 ,  ci,, 
. . .  , h,,) be this estimation. 

The problem is now to translate this estimation in terms 
of spatial processing, and more precisely, to obtain source 
bearing estimates also as their powers at a given fre- 
quency. This last point has a great practical importance 
because power spectral density estimation is also a good 
means to make a distinction between true sources (posi- 
tive powers) and false sources (negative powers). Fur- 
thermore, the derivation of source powers estimation will 
be a fundamental tool for the minimization of the white- 
ness functional (see Section 111). 

The whitened matrix RlV given by 

RI,. = L . R . L* 

[ B  given by ( 14)] (35) 
is considered for source bearing estimation. Note that RI, 
defined by (35) is not generally a Toeplitz matrix (even if 
R is Toeplitz); it is possible to remedy this problem by 
use of the whitening filter (48). 

Using formula (35), the steering vectors De (corre- 
sponding to bearing 0 )  become whitened vectors, i.e., 
L . De by use of classical results 1221. 

The MUSIC method for bearing estimation consists of 
calculation of the sine of the steering vector L De on the 
source subspace ( i .e . ,  the subspace spanned by the 
“greatest” eigenvectors of R I , ) ,  i .e. ,  [23], 

We are now facing the problem of estimation of source 
powers. The MUSIC method 1231 is also a means to es- 
timate source powers (by eigendecomposition of the ma- 
trix R,. and identification), but that method seems very 
sensitive to noise estimation and has given unsatisfying 
results on our simulations. Another method based upon 
Pisarenko’s method [24] has been considered. 

be the estimated 
source bearings. Consider now the dyadic (n ,  x n , )  as- 
sociated matrices, i .e. ,  

More precisely, let { 8,, . , 8, 

Then for each of these source matrices. pick the sub- 
matrices 

where 

& is the Ith row, kth column element of the matrix 

fo r i  = 1,  2, 
All the submatrices Ss,,, are Toeplitz, but non-Hermi- 

tian. Then the whitened covariances of sources are given 
by (41) 

, s a n d I =  I , . . .  , n., - p .  

s , ’ ( ~ ; , I )  = A* &,,, * A s,,(8,, I ) .  (38) 

Note that the covariances of sources s,, (a,, I )  corre- 
spond to source covariances after whitening by the in- 
verse filter A as detailed in formulas (4 la) and (41b). 

Covariances of whitened array outputs i,, ( I  ) are de- 
fined by the same method (38) using a Toeplitz estimate 
of the covariance matrix of the outputs. Such an estimate 
can be obtained by averaging along the diagonal [ 121 and 
amounts to an orthogonal projection on the Toeplitz sub- 
space 1191. It is now possible to use the Pisarenko‘s 
method for source power estimation. Assuming spatial 
whiteness of the additive noise (after whitening), the es- 
timated powers { B,, . * , 4, } of sources are the solution 
of the following overdetermined linear system. 

Covariances of whitened outputs i,, ( l )  are defined by 
the same method (38); then Pisarenko’s method can be 
applied. The estimated powers { q l ,  . . , q(,} of sources 
are the solution of the following overdetermined linear 

(36a) 
- - IIL . Dell2 

(((W * L * D$ 
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system: Then, in the white noise case, J is null. If the noise is 
correlated, this conclusion is false, but is it possible to 
use whitened data? 

Consider now the case of AR noise modeling. Let A be 
the vector of coefficients of this model [ i.e., A‘ = ( 1. a , ,  
. . .  , a,,)] and [ A ( z p ’ ) ] - ’  the associated filter. The 
whitening filter is thus A ( z -  I ) and the covariances of 
whitened data (by use of this filter) can be written as 

Note that the above procedure corresponds to uncorre- (ao  = 1). 
lated sources (the source matrix is S = 
D z )  and is (theoretically) independent of the noise level 

I qf Do, Therefore, 

since it uses covariances i,,,( 1 ) with 1 2 1 .  .,,,(I) = A* * RI * A (41a) 
The corresponding results are presented in Section IV. where RI is the ( p  + + ) matrix given by 

Let us now examine another approach. 

111. PLANE WAVE HYPOTHESIS, WHITENESS 
FUNCTIONAL 

A .  Introduction 
Converse to the preceding approach, special structures 

of source vectors (plane wave hypothesis) will be consid- 
ered; thus, the problem will be restricted to the case of a 
linear array with equispaced sensors. The likelihood ap- 
proach does not use the plane wave hypothesis or the spa- 
tial stationarity; it is maximized only relatively to noise 
parameters (for the sake of simplicity, i t  is, however, an 
advantage !). 

Taking into account the plane wave hypothesis leads us 
to define a functional depending upon both source and 
noise parameters. Converse to the preceding approach, the 
source and noise parameters will play symmetric roles. 

This method is based on application of Pisarenko’s 
method for harmonic retrieval [24] and, more precisely, 
on the analysis of its perturbations with respect to noise 
parameters. That leads us to define a functional involving 
differences between extradiagonal terms of a whitened 
matrix and extradiagonal terms of the covariance matrix 
of sources. These functionals will be minimized by means 
of an iterative (gradient) algorithm relative to both noise 
and source parameters. The method is mainly devoted to 
the case of AR noise modeling (simplicity of the whiten- 
ing filter !). Notations and definitions are identical to those 

( R I  is Toeplitz but non-Hermitian). 
Define now the functional (conditionally to A )  

L 

(42)  
2 

J J A )  = c ) r 1 4 )  - r.,U)I 
I =  1 

[ rW( 1 ) defined by (41), r, (1  ) exact covariance of sources 
after the mapping A (4 l)] . 

Then, when A is equal to A. (A,,: exact model), one 
has 

( e  ( t )  is the white noise input of the AR model ). 
Therefore, 

Jl,.(Ao) = 0. (44)  
used in Section 11. 

After a general presentation of the whiteness func- 
tional, its properties and a gradient method (for its min- 

For practical applications, one uses the whiteness f i nc -  
tional defined by 

1. imization)-will be presented. This last part needs many 2 
intermediate steps and is rather technical. J d A )  = I =  c I Irlc.(l) - i$)l . (45 1 
B.  The Whiteness Functional 

Assume that R is a Toeplitz covariance matrix and that 
the source parameters (p.s.d. and bearings) are perfectly 
known and define the functional J by [25] 

iw( 1 ) being defined by (41) (using RI available data in- 
stead of RI),  i, ( I  ) is estimated by means of Pisarenko’s 
method (or another high-resolution (HR) method [23]) ap- 
plied to whitened data, i .e.,  

1. n 

J = c ( r ( l )  - r , ( I ) ( ’  ( L  > 1 ) .  (40) P X ( l )  = 2 Qf * exp ( - j ~ l f , )  j’ = -1  (46)  
I =  I I = ,  
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with r L is usually chosen equal to n, - p - 1. 

We are now coping with the minimization of the func- 
tional defined by (45) and (46). The minimization is de- 
fined in terms of A R  coefficients vector A only, but is 
relative to the terms i,, ( I ) and is ( I  ) ( A ) ;  this fact implies 
the estimation of source parameters at each iterate of the 
gradient algorithm. The general procedure is summarized 
below. 

n = number of sources (estimated by HR method) 

4, a n d i  are, respectively, power and spatial 

frequency of the ith sources obtained by HR 

method (see Section 11-G) applied to the 

whitened matrix (for a given vector A )  R,, 

It 0 (Starting Parameters): 

Ab = (1 ,  0,  * * * , 0)  

4: andf: obtained by spatial analysis (HR) of R 

i , , ( l )  = ? ( I )  

( R :  Toeplitz matrix, orthogonal projection on the Toe- 
plitz subspace [26] ). 

It k:  

A; = ( I ,  U ; ,  , a,”) 

4: andf: obtained by spatial analysis of R: 

? [ ( I )  = A t  * R, * Ak. 

(The sources number may be corrected at each iteration.) 
It k -, It k + 1: Calculation of the gradient vector 

G,(A , ) .  Then 

A k + l  A!, - p!, * G.l(AL) 

( P k :  gradient’s step size). (47) 
Section 111-D will describe calculation of the gradient 

vector G J ( A k ) .  In fact, the coherence of the above defi- 
nitions requires invariance (by whitening) properties 
which will now be presented. 

C. Whitening Invariance Properties 

form, i.e.,  
Formula (41) defining r,, (1  ) may be written in matrix 

R,, = A * R * A* 

where R ( n ,  x n, ) is the Toeplitz covariance matrix of the 
outputs, and A is a rectangular ( L  X n,) matrix ( L  I n ,  
- p )  defined by 

The matrix R,,, defined by (48) is a Toeplitz positive 
matrix ( R  positive) and R,,.( 1 ,  1 ) = r,,, ( 1 ). 

This matricial translation of (41) allows us to study the 
effect of whitening on the covariance matrix of a source. 

We shall consider now the effect of whitening [formula 
(48)] on a plane wave whose associated steering vector 
[ l ]  is denoted D,: 

Di = (1, exp ( j a ) ,  * , exp j ( n ,  - ] ) a ) ,  

j 2  = -1. 

Then by use of (48), the covariance matrix of the source 
after whitening is given by 

R,.(8) = A * DO . D$ . A*.  (49) 
R,,.(8) is therefore a rank 1 Toeplitz matrix, and fur- 

thermore, 

1 1  + a l e j a  + + aPeJ‘”-)“ 

or 

A D, = ( 1  + a l e J a  + + a p e J ( P - I ) a  ) . D;, 

( 5 0 )  
Di being the ( L  X 1)  vector obtained by selection of the 
L first components of the vector D, itself. Finally, the 
covariance matrix of a source (after whitening) may be 
written as 

R,, .(B) = q ( e )  e D; . D;* 

+ a P e J ( P -  1 )a(,) 2 q ( 8 )  = 11 + aleJa(’)  + * - I ’  

(51 1 
with 

These results lead to Property 3. 
Property 3: The whitening procedure defined by (48) 

enjoys the following properties. 
a) Let R be a Toeplitz covariance matrix; then R,,. = 

A R - A* is a Toeplitz matrix. 
b) The procedure transforms a steering vector into 

another steering vector of (dimension L ) corresponding 
to the same bearing. 

These properties are, in fact, fundamental because they 
justify the whiteness functional definition; furthermore, 
they also constitute a justification of the method of cal- 
culation of the gradient defined in Section 111-D. 

In practical situations, exact source bearings are un- 
known; Property 3 states only that these bearings are in- 
variant under the whitening procedure. In order to esti- 
mate these bearings, a high-resolution method is used. 
Obviously, in the general case, this method does not give 
the exact source bearings. But, using the whiteness func- 
tional, we hope to define an iterative method minimizing 
the differences between extradiagonal terms of the whit- 
ened matrix and the corresponding terms of the source 
matrix. 
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D. Calculatioti of the Gradient Vector (of Whiteness 
Functional) 

The index k (of iterate number) are omitted in that sub- 
section. The gradient vector is deduced from (45) and 
(48), i .e. ,  

G,(A)  = 2 Re c ( R I A  - G r , ( l ) )  

* (A* . RT . A - F s ( l ) ) ] .  

I /:, 
( 5 2 )  

Gr, ( I  ) is the gradient vector of r,( 1, A )  relative to A .  It 
is the delicate part of the algorithm. It is defined by 

, I  

Gr,(1) = Gq,(A)  exp ( - j r l f , )  - j r l  
, = I  

,I 

. C 4, exp (-jrIj’,) G ~ ’ , ( A ) .  ( 5 3 )  

The calculation of Gr, ( I ) amounts to calculating the 
gradient vectors Gf,  ( A )  and G4, ( A ) ;  this will be achieved 
in some steps. The first step consists of the calculation of 
partial derivatives of eigenvectors of R,, . Derivatives of 
source parameters are then calculated in a second step by 
means of analysis of perturbations of a high-resolution 
method. 

Step ]-Partial Derivatives of Eigenvectors of R,,: 
Denote by RA the ( L  + 1 X L + 1 )  Toeplitz matrix de- 
fined by 

, = I  

R A ( i ,  j )  = t A ( i  - j )  

with 
? A ( / )  = A* * RI . A 

(the matrix RA should be denoted R , , , A )  and 

{ U l ,  - - .  , uL+I;xl I * * *  2 A,. , )  

an eigensystem of RA. (54) 
Then a classical result of linear algebra [9] gives the 

partial derivatives of eigenvectors UL, i.e., 

a 
aa, 

q* . (aRA/aa l )  . uL] 
- U, = L;l [ 

* ‘ J  
J = l  AL - A, 
J * L  

( n + l < k < L + l ) .  ( 5 5 )  
(Formula (55 )  is valid only for simple eigenvalues.) 

defined by its first row as 
The matrix aR,/aa, is a Toeplitz matrix which may be 

a A  
aa, 
-RA(m,  1)  = ET R,,,-, * A + A *  * RI,,-, * E, 

with 
1 i f I = i  

0 else. 
E I ( 1 )  = 

Step 2-Derivatives of Source Bearings (with Respect 
to the ( a ,  1): The ith source is characterized by its d.s.p. 

4, and its estimated spatial frequency j’,; the problem con- 
sists of calculation of their partial derivatives with respect 
to the parameters { a, } . 

In order to solve it, recall that estimated source bear- 
ings (e.g., for the MUSIC method) minimize the projec- 
tion of vector D; on the noise subspace. 

Let ll be the projector on the noise subspace: 

n = u * u *  
with 

U = ( U , , + , ,  * * * , U,) (“lowest” eigenvectors of R,,). 

Then the projection of D; on the noise subspace is 

n(e) = D;* n e D;. ( 5 7 )  

If we consider only one eigenvector (the ‘‘lowest,’’ 
Pisarenko [24]), one obtains then, denoting 

Z: = (1 ,  f,, * * , 2,“) 

with f, = exp ( -jrf,), j 2  = - 1  

and 

) 2: = (0, z, ,  * * . , L . elL-1 

(the derivative vector of Zl  relative to f,, Z, = OB,) an 
expression of partial derivatives of the spatial frequencies 
w * r AR coefficients, i.e., 

n * 2 ; = 0  a 
aa, 

. _ .  

or, by factorization, 

1 f .  = -1. 

aa, I Im { ( U *  Z/)  * (Z? * U )  1 
( 5 8 )  

The partial derivatives of eigenJectors being calculated 
by ( 5 9 ,  the spatial frequencies f ;  being estimated by an 
HR method, formula (58) allows us to calculate the partial 
derivatives ( a / a a I > f i .  Formula (58) is obtained by dif- 
ferentiation of Il ( e )  as given by (57). If we consider the 
projection on the whole noise subspace, then the deriva- 
tive of the projector II is given by 

The difficulty is now related to the calculation of partial 
derivatives of the projector Il (raking into account or- 
thogonality of eigenvectors). Following [27], a second- 
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order expansion of II is given by The gradient vector G,(GI = ( ( a / a a / ) q , ,  . . , 
(a /aa ,  ) q , ) )  is deduced from (64) by differentiation, i.e., 

II, = ( U ,  + 6U + h 2 U )  (Id - II6U 11 ') a * F - I )  * J + F-'  . ( & J )  - ( U ;  + 6U* + 62u*) 
with 

U; = (Ui ) ,  + (SU;) + (S'Uj) 

( U ,  + 6U + 62U)* ( U ,  + 6U + 6'U) 

= Id + I(6U1I2 (60 )  

from which a first-order expansion of II, is obtained: 

Hence, 

yielding ( a /aa, ) fi; let 
I 

* C  a A  -1 
-f = 
aa, ' ( L  - n ) n  m = n + ~  

Im { ( U :  2;) * (2: * urn)} 
(62 )  

It is obviously possible to use a second-order expansion 
of II,, but for our application, the first derivative gives 
satisfying results. 

Step 3-Derivatives of Source Powers: Let F be the ( L  
x q )  matrix constituted by elementary theoretical covar- 
iances of estimated sources, i.e., 

with 

s ( a k ,  I )  = -sin ( n l f k ) .  

Furthermore, let J be the ( L  X q )  vector constituted by 

, t A ( L ) )  rA(k) defined by (48) 

imaginary parts of whitened output covariances, i.e., 

J' = Im ( tA  ( l ) ,  . 

and 

Q(Q' = ( q l ,  : , q,) be the vector of source powers. 

(63) 
Then this vector Q would be the solution of the follow- 

ing linear system [24] (in the white noise case): 

F - Q = J .  (64) 

where 

a 
aa1 
- F is deduced from (62), (55 )  

a 
aa1 
- J is given by (56) 

F-' = pseudoinverse matrix of F. (65)  

The vectors GQi ( A )  are deduced from vectors GI ( 1 = 

Calculation of vectors G f I ( A )  and G q , ( A )  is now 
achieved; it remains to calculate a suited step size for the 
gradient method; this is achieved by means of a first- or 
second-order expansion of the functional. 

Step 4 (Source Parameters Updating): After calcula- 
tion of gradient vector G J ( A k )  and estimation of a step 
size, it is necessary to use the new estimation of noise 
parameters in order to update the source parameters (by 
means of the HR method). It may be very convenient to 
eliminate spurious peaks (having a negative estimated 
p.s.d.). 

1 , 2 ,  , P I .  

E. Practical Utilization 

* , 0); L may 
be chosen equal to n, - 1 - p .  The parameters ( p ,  q )  
are generally overdetermined. They can be adjusted by 
consideration of the whiteness functional (see Section 

The method starts with Ab = ( 1 ,  0, - 

II-F). 

IV. SIMULATION RESULTS 
These two methods have been tested on simulated sig- 

nals. In the case of simulated signals, the degradations of 
high-resolution methods by noise correlations may be eas- 
ily explained and performances easily quantified. 

A .  Simulation Method 

presented are the following: 
The general aims of the simulation results that will be 

1) accuracy of noise correlations estimates 
2) improvements of high-resolution methods (using 

3) statistical behavior of these methods 
4) explanation of results 
5) robustness of the method. 
For a given noise matrix B and q uncorrelated sources 

(bearings Bi, psd: L$), the random vectors X are simulated 
as follows: 

these estimates) 

4 

x = C ajDo, + T B 
i =  1 
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where 

Dfl, is a steering vector [2] associated to bearing 8, 

a,: complex Gaussian circular variable N (  0, U,') 

B: complex Gaussian vector N (  0, I d )  i Bo = T . T*. (66) 

Then a covariance matrix R is estimated by means of a 
periodogram method [3 11 (the parameter BT correspo5ds 
to the number of snapshots used for estimation of R ) .  
After run: of algorithms, an estimation of B is obtained 
(named B )  corresponding to estimates of noise parame- 
ters ( d l ,  * . 9 

Several procedures are used in order to study the ac- 
curacy of noise parameter e:timates. 

1) Computation of cos ( B ,  Bo): 

(67) 
tr ( B  * Bo) 

[tr ( B ~  B,) tr ( B  - B ) J " ~ '  
cos ( B ,  Bo)  = 

A cosine near 1 means that B and Bo are "almost" col- 

2) Spatial Density of Noise: We associate to an ARMA 
linear, which is the aim of the method. 

noise model its spatial density given by [I21 

B ( z )  B*( z - l )  
A ( z )  * A * ( z - ' )  

S(z) = 

with 
B ( z )  = bo + bl . z + * * * + bf . z p  

A ( z )  = a, + bl * z + + a, * z4 

and 

z = exp ( - 2 j a d / A  cos e), j 2  = -1 (68) 

( A :  wavelength, 8: direction of arrival, d:  intersensors 
distance usually for the simulations d = A/2). 

It is then possible to compare the exact spatial density 
of noise to its estimate. Furthermore, it is a good means 
for explanation of degradations of HR methods (spurious 
peaks, nondetection of weak sources, etc.). The value of 
FC, corresponds to the value of the initial likelihood 
functional (i.e., white noise assumption), whereas FC, 
corresponds to the final value of this functional. 

3) HR Methods Behind Whitening: The whitening is 
defined by (35) or (48). We consider also the results for 
the psd (of source) estimation (0" corresponds to the array 
axis, i.e., endfire direction). 

B. Simulation Results 
We shall now present the results obtained by maximi- 

zation of the likelihood functional (Section 11) for noise 
correlation estimation. The array is constituted by equally 
spaced sensors (on a line), the bearing 0" corresponds to 
the array axis (idem for real data), the parameter BT cor- 
responds to the number of independent snapshots. 

The first result (Fig. 2) corresponds to an AR modeling; 

the simulation data are given in the caption of Fig. 2. 
Note that the dimension of sources subspace is assumed 
to be 5 (i .e. ,  q = 5 ) ,  whereas the results are quite satis- 
fying. 

The broken line corresponds to results of the MUSIC 
method without whitening ( k  is a Toeplitz matrix), 
whereas the solid line corresponds to results after whit- 
ening. In this case, the two sources at bearings 35" and 
45" are not separated, whereas the weak source is not de- 
tected by the MUSIC method (without whitening). Con- 
versely, the whitening obtained by noise coefficient esti- 
mates yields the resolution of the two strong sources and 
the detection of the weak source. These good results may 
be easily explained by the value of cos ( 8 ,  Bo)  ( =0.998). 

Fig. 3 represents the noise spatial density associated to 
the model. Obviously, its peak (at 90") induces the spu- 
rious peaks (at the vicinity of 90") and the nondetection 
of the weak source (1 10') for the unwhitened data. The 
broken line (exact noise density) and the solid line (esti- 
mated noise density) are perfectly merged. 

Fig. 4 presents the noise correlation shapes along the 
array; they decrease slowly as a function of the intersen- 
sor's distance. The simulated noise can be considered as 
highly correlated. 

Fig. 5 illustrates the statistical stability of the method 
for ten trials of the same simulation. The mean of cos ( B ,  
Bo) is just near one; the results are quite satisfying. 

The second result (Fig. 6) corresponds to an MA noise 
model. The dimension of source subspace is assumed to 
be five. Then the whitening removes the spurious peaks 
and allows us to detect the weak source (bearing 1 lo"). 

Fig. 7 presents the exact spatial noise density (broken 
line); it explains the poor results of the MUSIC method 
without whitening (Fig. 6). The estimated spatial noise 
density (solid line) is quite acceptable, whereas Fig. 8 
illustrates the statistical stability of the method. 

Fig. 9 illustrates two important points. The exact AR 
noise model is an order two model (1 ,  -0.4, 0.8); now 
we assume (in maximization of the likelihood functional) 
an order three AR model. The results are unaffected by 
this overdetermination of the noise model. Furthermore, 
the vertical lines represent the estimated source powers, 
the dashed lines correspond to results before whitening, 
whereas solid lines correspond to results after whitening 
[as defined by (38) and (39)]. One can see that estimated 
source psd's are greater for spurious peaks before whit- 
ening; on the other hand, after whitening, the estimated 
powers of sources correspond to simulation data. Note that 
the estimated powers (after whitening) corresponding to 
small local maxima are negative. 

Fig. 10 illustrates the (direct) extension of the likeli- 
hood method to the complex AR noise model. In this case, 
the spatial noise density is nonsymmetric relative to the 
array's broadside. As previously, the broken line corre- 
sponds to exact noise density, whereas the solid line cor- 
responds to its estimate. The results are quite satisfying. 

For all the simulations, the number of iterations of the 
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Fig. 3 .  Noise correlations of the noise model of Fig. 2 .  

304 ::I,, , , ,A[, , , , , , 
0 

30 sb 90 120 150 180 

Bearing 

Fig. 4. Comparison between the exact spatial noise density and its esti- 
mate. 

GCHBERG A R  model (real) order 2 Sources 
Simulated noise 1 00 - 1  00 0 20 
16 ~ e n x x s  BT = 300 3+2 sources 7 t r a l s  
Mean Cos(5 So) = 1 00 Sd Cos(B.Bo) = 0 01 

MUSIC wi thout  whitening (LOG) MUSIC wi th  wh tening (LOG) 

. . . . ~ .  . . . . . . .~ 
0 30 60 90 120 150 180 0 30 60 9 0  120 150 180 

Bearing Bearing 

Fig. 5 .  Maximum likelihood method. Simulation parameters of Fig. 2 .  
Statistical behavior of the method. 

gradient method until convergence is between 10 and 20 
(with a "first-order'' determination of the step size). 

The third type of result concerns the whiteness func- 
tional (Section 111). Three sources are simulated; the sim- 
ulated noise corresponds to a physical model (surface 
noise model [28]). The whitening obtained by means of 
estimated AR coefficients permits us to separate the two 

MUSIC(DE) 

30 

I, 

0 30 60 90 120 150 180 
Bearing 

Fig. 6 .  Maximum likelihood method. MA noise model. Comparison be- 
tween MUSIC method before whitening and after. 

c -- 

"*., ,,, 

Fig. 7 .  Comparison between the exact noise den\ity and its estimate 

GCGBERG MA model (real) order 2 Sodrces 
Slmuloted n o ~ s e  ' 00 -0 40 0 80 
16 sensors ET = 300 3+2 s o ~ r c e s  7 t r a l s  
Mean Cos(B,Bo) = 1 00 Sd Cos(B.Bo) = 0 CO 

MUSIC u . t h a u t  wh i ten ,ng  (LOG) MUSIC w i t h  wh i ten  ng ( L O G )  

A n 
A 
-o-LJLJ 

M 
~- 

0 30 60 90 120 150 180 0 30 60 90 120 150 180 
Bearing Bearing 

Fig. 8. Statistical behavior of the likelihood method 
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GOHBERG AR model (real) order 2 
Simulated " O W  1 00 -0 40 o 80 Before whitening - 
16 sensors BT = 300 3+2 sources After whltenlng - 
FCw = 3 3 9  FCe = 003 

I 

I - - - - -_____-___-  

1 -  MUSIC (LOG) 

Source Powers 
24 v i  

I 
I I 
I I 
I I 
I I 
I I 

Fig. 9. Overdetermination of the noise model. 

- -- ~ __- - -  

BEARING 

Fig. I O  Estimation of a complex AR noise model 

strong sources (at bearings 35 O and 45 ") and to eliminate 
the spurious peaks (Fig. 11). The statistical stability of 
the method is illustrated by Fig. 11. 

C.  Conclusions 
The simulation results have shown the good perfor- 

mance of the two methods. Overall, the methods appear 
to be robust with respect to source number and noise 
model overdetermination. These two points have a fun- 
damental practical importance. 

The statistical behavior of these methods remains to be 
theoretically investigated in terms of spatial processing 
(bias in bearing estimation, angular resolution, etc.), but 
it appears to be a very difficult task in the general case. 

The practical interest of these methods relies upon the 
ability of an AR(MA) noise model to describe physical 
noise by a high-order AR(MA) model; but a low-order 
model seems to be sufficient for most of the cases. This 

MUSIC without whithening 

A I  Ar-A 

A 

I 

M 
MUSIC wilh whitening 

A 
A 

o-80 Beam* 

R T  iw 3 ~ 2$o"rrrr 

AF: red88 L " d , ~ C , O " , l  a,, 1 a ,  - 0 5  8 :  = 0 3  

wan cor ,  8 ,  B o ,  1 sa CO, I U 8.1 0 00 

Fig. 11. Whiteness functional method. Statistical behavior of the method. 

conclusion is valid for all the physical noise models [29], 
[30]. An AR(MA) noise model seems to be a good means 
for modeling any true noise [19]. 

D. Results for  Real Data 
We consider now the outputs of a linear array. This 

linear array is constituted by equispaced sensors (at half 
a wavelength for the upper frequency of the band). In or- 
der to obtain a noise model, we proceed as follows. 

1) Compute the Fourier transforms of the outputs: 

X' $' X( f ). 

2) The cross-spectral matrices of the outputs are esti- 
mated by means of the averaged periodogram method 
[31], i .e.,  

l N  k ( f ) = N .  ,E * X , ( f ) * X , * ( f ) ,  N = 3 0 0 .  
I =  I 

3) The source number is estimated (by use of fi). Gen- 

4) Runs of the algorithm (likelihood functional), start- 
erally, it is overdetermined. 

ing with 

Ab = ( 1 ,  0, * * .  , 0). 

Estimation of the model order p .  
A noise model A' = (hl, . . . , ci,,) is obtained for each 

matrix R (AR (3) for Fig. 12). 
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Fig. 12. Real data, linear towed array. Spatial noise density and associated 
noise correlations. Maximum likelihood methods. 

5 )  The noise correlation as well as its spatial density 

The results are presented as follows. 
1) Spatial Noise Density: Bearings are plotted on the 

x axis, spatial densities on the y axis, whereas the con- 
secutive estimations are presented in depth (0’ corre- 
sponds to the array axis). 

2) Spatial Noise Correlations: The noise correlations 
are deduced from A by (14) (they constitute the first row 
of B which is Toeplitz). The values of correlations are 
plotted on the y axis (the number 1 corresponds to auto- 
correlation, 2 to correlation between sensors spaced by 
the elementary intersensor spacing). The consecutive re- 
sults are presented in depth. 

Fig. 12 presents the results obtained for the lowest fre- 
quency of the spectral band; the intersensors spacing cor- 
respond to X/4 for that frequency. The coefficients of the 
AR noise model have been chosen real (the imaginary part 
seems to be negligible). The algorithm converges fast (at 
most ten iterations); the lowest eigenvalues of the whit- 
ened matrix R),.  are well clustered. 

The noise appears to be strongly spatially colored. 
However, the correlations decrease fast (with respect to 
sensor spacing). The statistical stability of these estimates 
is rather acceptable. Obviously, the noise model estima- 

are deduced from A by (14). 

tion allows us to improve the results of spatial processing. 
Improvements may be significant if the noise is highly 
spatially colored. Generally, the noise correlations de- 
crease when the frequency increases (for a given sensor 
spacing); these results are detailed in [ 191. 

V .  CONCLUSION 
Two methods for estimation of noise correlations along 

an array of sensors have been presented. Both rely upon 
a parametric (ARMA) noise modeling. This modeling has 
the great advantage of describing the noise correlations 
by a small number of parameters and providing a satis- 
fying modeling of a great variety of physical noises. 

The likelihood method presents the great advantage of 
needing maximization with respect to noise parameters 
only. Results are quite satisfying, even with high and 
long correlations of the noise. An efficient numerical 
method for maximization has been presented; the conver- 
gence of the algorithm has been proven. Furthermore, the 
method appears to be robust with respect to the choice of 
parameters. 

The whiteness functional method uses fundamentally 
the “plane wave” hypothesis. An efficient method for 
minimization of it has been developed; however, it is a 
little more complex than the previous algorithm. 

Both methods are quite feasible and can be used in a 
great variety of situations. By providing a suitable algo- 
rithm, this paper has demonstrated the concrete possibil- 
ity of separating the sensor outputs of a stationary random 
field in two parts (a noise part and a source part) by use 
of the classical hypothesis about the propagation of waves 
(plane wave or coherence properties). 

APPENDIX A 
We are now coping with the Gohberg formula. A great 

variety of presentations of this fundamental formula is 
available; among these are statistical methods [2], [32], a 
consequence of the Trench formula [33], and of the Dar- 
boux formula [3]. 

For our sake, we prefer to present a “statistical” proof. 
In fact, Gohberg’s formula relies upon a remarkable ma- 
tricial property. Using the notations of Johnson [2], an 
AR model is considered: 

x,, + a l  + - + aM-1 . X , - M + I  = wm (‘41) 

( w,)~:  input white noise, variance 1 ). 
, x,], R,, the covariance matrix 

of X,, and p (X,), the density of the Gaussian vector X,; 
then 

Define X k  = [x, ,  

P(XA4) = P(X,- I ?  x,). 

Now 

x, = (%) 
= (m) + 
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R i '  = (*) * 

whence 

RM = (*) 

p) * (*) 

But the remarkable 
for automaticians): 

(A21 
fact is the following (well known 

with 

9 aM-1, - 1). ('44) A" = ( a , ,  - * * 

Now, the quadratic form X ;  * R i l  * XM may be written 
as a sum of two quadratic forms, i.e., 

. xM + x; * (A' * A ' * ) ~ M  

and therefore 

R,' = (x) + A' A'*. (A5) 

But RM being Toeplitz, R,' is centrosymmetric [3], and 
therefore 

R i l ( i , j )  = R i l ( M  - j ,  M - i). (A6) 
By use of (A5), the last column of R i l  is the last column 
of A' A'*; that column is also [by (A6)] the first row of 
RL'. By induction, it is now possible to deduce an explicit 
expression of R,' (with respect to AR parameters) for 
which Gohberg's formula (14) is the matricial translation. 

Using (A5), the Gohberg formula may be extended to 
complex AR model, yielding 

(A7) 
1 

B-1 = - (AI * A $  - A ,  A ? ) .  
lJ2 

The rest of the algorithm is identical to the real case. 

APPENDIX B 
This Appendix deals with the convergence of gradient 

methods for maximization of the log-likelihood func- 
tional. This functional (1 3) depends upon eigenvalues of 

R,,., but it is not concave with respect to AR parameters 
(see Fig. 1). However, its gradient vector is null if and 
only if noise is perfectly estimated, as will be shown now. 
A direct analysis based on the analysis of eigenvalues 
seems very difficult or, at best, very cumbersome. There- 
fore, a direct approach is preferred. 

Consider the log-likelihood functional (3): 

L ( q ,  A )  = -log det (RA.q) - tr * a] ,  ( B l )  

RA.q being the exact covariance matrix corresponding to 
q sources and an AR noise defined by A' = ( a l ,  , 
a,). 

Consider the simplest case ( q  = 0);  then 

aL 
R A , ~  = B and - aaj = tr [ ( B  - Z?) . Ai]  (B2) 

(using the well-known theorem of linear algebra [6]; for 
a set of differentiable matrices A ( a ) ,  ( a / & )  log det A ( a )  
= tr ( ~ - ' ( a )  ( a / a a ) A ) ) .  

Now 

tr [ ( B  - a)  Ai] = tr [ B ( k '  - B P I )  R Ai] 

= tr [ ( I f - '  - B P I )  R A j B ]  

(B3 1 
[ A j  being defined by (25)]. 

lowing equality: 
Thus, nullity of the gradient vector will induce the fol- 

itself equivalent to 

BI 
= tr ( ~ d  - B-' . R )  = o 

tr [ ( f i - l  - B- l )  . RB-I . 

(B4) 

[B-I = CaiAj  from (25)]. 
Therefore, necessarily, at a point of nullity of gradient, 

the initial problem (max likelihood) amounts to the fol- 
lowing problem: 

max log det ( B - ' )  i tr (B- '  - R )  = n,. 

Now, the inequality of arithmetic-geometric means [ 141 
proves that all the eigenvalues of B-' R are identical at 
a point solution of P,. Using Property 1,  the nullity of 
gradient vector is equivalent to B = R .  Obviously, this 
conclusion is valid only in the case of a perfect adequacy 
of noise modeling. 

Consider now the general case ( q  sources); then by use 
of classical results of linear algebra (B3), one obtains 

P2 under the constraint (B5) 
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Now proven 1191: 

with 
Furthermore, 

It can be deduced from (B 12) that the functional is con- 

Examine now the convergence of the gradient method. 
cave in the vicinity of the exact parameter values. 

By use of (B9), the following inequality is obtained: 

= tr - ( ~ - l  . B . A; . B .  R - I  . 8) 

(138) 

so that, finally, 11 W q ,  A )  - VL(q9 A ’ )  1 1  a 
8% 
- L ( q ,  A )  = tr [ B  . R-I . ( R  - I?) . R-I . B . A,].  I C * - R A , , q I I F  I C’IIA - A’II. (B13) 

( ~ 9 )  (C’:  positive constant, and V denoting the gradient vec- 
tor.) 

of the functional - L (  q ,  A )  [denoted L‘ ( A ) ] ;  then 
(This formula is, in fact, valid for any source number.) Consider now the equivalent problem of minimization 

Therefore, nullity of the gradient vector implies 
P a C a; * - L ( q ,  A )  

i = ~  dui 

= tr [ ( I d  - R * R - ’ )  . B . R-I]  = 0. (B10) 

[Note the difference between (B4) and (BlO).] 
Equation (B10) can also be written as 

I’ a 
aai C a; . - L ( q ,  A )  

= t r [ T *  R - I  . ( R  - R )  . R-‘ . T ]  = o ( ~ 1 1 )  

(with B = T - T * ) .  
Now it is always possible to choose starting values of 

AR parameters and step sizes in order to assume the pos- 
itivity of the matrix ( R  - R ) ,  which amounts [by the def- 
inition of likelihood functional (13)] to positivity of the 
matrix ( B o  - B ) ( R  = S + Bo) .  

Consequently, nullity of the gradient vector implies [by 
(Bl l ) ]  equality of exact and estimated parameters of the 
noise. Stress that this conclusion is valid only in the case 
of perfect adequacy of noise mod5ling and without con- 
sideration of estimation errors of R. 

This reasoning can be extended, by induction, to any 
source number, leading to the same result (i.e.,  A,,,, = 
A O ) .  It may also be extended to the MA model. 

Furthermore, H denoting the Hessian matrix of the like- 
lihood functional, the following result can be easily 

L ‘ ( A )  - L ’ ( A ’ )  

( V L ‘ ( A  + T ( A  - A ’ ) ) ,  A - A ’ )  * d~ 
= s: 
= ( V L ’ ( A ) ,  A - A ‘ )  

+ i,: ( V L ’ ( A  + T ( A  - A ’ ) )  

- V L ’ ( A ) ,  A - A ‘ )  * d~ 

I ( V L ’ ( A ) ,  A - A ’ )  

- 1’ IIVL‘(A + T ( A  - A ’ ) )  
0 

- V L ’ ( A ) / I  * IIA - A‘II d~ (B14) 

by the use of the Cauchy-Schwarz inequality [6] ( (  V L ’ ,  
A )  denoting the scalar product C a; * ( d / a a , ) L ’ ) .  

Therefore, using (B10) and (B1 l ) ,  the following in- 
equality is obtained: 

L ’ ( A )  - L ’ ( A ’ )  

2 ( V L ’ ( A ) ,  A - A ‘ )  - C’IIA - A’II’. (B15) 

Consider now the (classical) gradient algorithm (19): 

AA + I  = A,  - PLVL’ (4) .  
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Then [by use of (B12)l criteria for detection of number of signals,” IEEE Trtrns. Aunr . \ f . .  
Spwc’/ i ,  Signal Procv.s.sirig, vol. ASSP-35. pp. 129-133, Feb. 1987. 

I 181 H. Akaike. “A new look at the statistical model identification.’’ IEEE 
Truns. Aufornuf. Coritr.. vol. AC-19. pp. 716-723. Dec. 1974. 

1191 J .  P. Le Cadre, “Contributions B I‘utilisation de mithodes param2t- 
riques en traiteiiient d’antenne.“ thkse de Doctorat es Sciences. Unic . 
Grenoble. INPG, Oct. 1987. 

1201 K. S. Arun and S. Y. Kung. “Generalized principal components ~ i i a l -  
ysis and its applications in approximate stochastic realirations.“ i i i  

Modeling und Appplicurion of’ Stochusfic,  Procc,.\.s. U .  B. Desai. Ed. 
Boston: Kluwer Academic, 1986. pp. 75-105. 

1211 J. P. Le Cadre and P. Ravazzola. ”Utilisation de modilisation d‘etat 

L ’ ( A , )  - L‘(AL + I )  

( 1 - c . . 1 1  v ~ t ( A , )  11’. (B16) 

Consequently, the sequence { L ’ ( A L )  } decreases (as k 
increases) if the step size p is sufiiciently small ( i .e. ,  in- 
ferior to C ’ - I  ). Now, by Property 1, this sequence is su- 
perior to zero; hence, it converges. 
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