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Perfect Reconstruction FIR Filter Banks: Some
Properties and Factorizations

MARTIN VETTERLI, MEMBER, 1EEE, AND DIDIER LE GALL, MEMBER, IEEE

Abstract—Perfect reconstruction FIR filter banks are analyzed both
in z-transform and time domains, showing the alternatives between de-
signs in the two domains. Various classes of perfect reconstruction
schemes are indicated, and relations between previously known sys-
tems are given. Windowed modulated filter banks with low computa-
tional complexity and perfect reconstruction are shown. New factori-
zations of polyphase filter matrices, leading in particular to linear phase
filters, are given. The computational complexity and the architecture
of the new structures are indicated.

I. INTRODUCTION

NALYSIS/SYNTHESIS systems like the one de-

picted in Fig. 1 and having the perfect reconstruction
property can be regarded as generalized transforms where
the “‘window’’ through which the input signal is seen is
larger than the block size. Instead of processing sepa-
rately adjacent blocks of the signal, such analysis/synthe-
sis systems process overlapping blocks of the signal, thus
reducing in part the problems inherent to block transform
schemes. Such analysis/synthesis systems are used in sub-
band coding methods [7] for speech and image compres-
sion, but regarded as generalized transforms, their use can
be much broader.

The initial concern in these analysis/synthesis systems
focused on aliasing cancellation since the multirate nature
of such systems can lead to undesired aliased versions of
the input signal in the output. The quadrature mirror filter
solution in the two-channel case [8] solved this aliasing
problem and soon became popular both in speech [7] and
image [43] coding applications. The aliasing cancellation
problem was then solved in the general case of an arbi-
trary number of channels [27], [31], [32], [45]-[47], [34].
The attention shifted to the perfect reconstruction issue.
The initial solution for the two-channel case [29], [30],
[16] was soon followed by solutions for an arbitrary num-
ber of channels [31], [32], [45]-[47], [34] and a time do-
main view of some of these results was given in [20],
[25], [26]. It was then seen that the initial two-channel
solution could be factored nicely into cascade forms [35],
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Fig. 1. Analysis/synthesis system with M channels and subsampling by N.
as well as typical frequency responses of the filters.

[39], a fact that holds more generally for a class of solu-
tions [36], [38]. An excellent overview of the subject ap-
peared in [37].

In parallel to the work on filter banks and associated
perfect reconstruction analysis/synthesis systems, re-
search on extending block transforms so as to include
neighboring information led to the development of so-
called lapped orthogonal transforms (LOT’s) [4], [14]
which use a window restricted to twice the transform size
and guarantee perfect reconstruction.

The result of these various developments has been to
state the perfect reconstruction filter bank problem as an
analysis/synthesis problem of matrices of polynomials (in
the z-transform domain) or of block-Toeplitz matrices (in
the time domain) [20] with particular properties. This for-
mulation establishes a close connection to the classical
N-port synthesis problem in linear circuit theory [1}, and
this relation seems to be quite fruitful. Among the prob-
lems of continuing interest are the design of filter banks
satisfying additional properties (like linear phase) as well
as issues in computational complexity.

The outline of the paper is as follows. The basic equa-
tions for perfect reconstruction analysis/synthesis systems
are given in Section II, pointing to the fundamental role

0096-3518/89/0700-1057$01.00 © 1989 IEEE



1058

played by polyphase filter matrices. Both time domain and
z-transform domain analyses are used, and the relation be-
tween the two is shown as well. The two main represen-
tation forms for polyphase filter matrices, namely, the sum
and the product form, are given in Section III, showing
that the former has an easy time-domain interpretation,
while the latter is better suited for cascade solutions. Sec-
tion IV presents some solutions based on sum forms, in
particular, modulated filter banks that allow windowing
and achieve perfect reconstruction. Section V uses prod-
uct forms to generate perfect reconstruction filter banks
of arbitrary order meeting additional constraints like lin-
ear phase and/or modulation between filters. Of particular
interest is the fact that while there is no linear phase
paraunitary solution in the case N = 2, such solutions
exist for N > 2. Finally, Section VI discusses the com-
putational complexity as well as the possible architectures
for the proposed filter banks.

II. ANALYSIS OF FILTER BANKS AND TRANSFORM
SYSTEMS

When analyzing filter banks or transform systems, one
can use z-transform or time-domain methods. The former
leads to matrices of polynomials (in the FIR case), while
the latter gives rise to block-circulant or block-Toeplitz
matrices. The two approaches are complementary, and
given the problem at hand, one or the other might be bet-
ter suited. We assume, following Fig. 1, that the analysis/
synthesis systems have M channels (the number of chan-
nels is equivalent to the transform size) and that the chan-
nels are subsampled by N (the step size at which the trans-
form window advances over the signal). The case of most
interest appears when critical sampling is used, i.e., the
number of channels is equal to the subsampling factor (M
= N), and therefore the number of samples per unit of
time is conserved in the system.

Since we are concerned mainly with perfect reconstruc-
tion analysis/synthesis systems where both the analysis
and the synthesis filters are FIR with length L, and L,
respectively, we will specifically look at the following
problems.

o Is perfect FIR reconstruction possible?

* [s the complexity of the synthesis equal to the com-
plexity of the analysis?

e Are the synthesis filters identical to the analysis fil-
ters (within possible time reversal)?

This will define classes of solutions as will be shown.

A. z-Transform Analysis
A filter with z-transform H, (z) followed by a subsam-
pling by N is best described by its decomposition into

polyphase components H, (z") 3], [71, [37], [47].
N7

H;(z) =

1
H . Ny ,—k
2 Hi(27)z

o
Hi.k(ZN) = Zo Rikenn "
n=
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where h; , are the elements of the impulse response of the
ith filter. For example, a unit impulse at time —k will
generate an output in the subsampled domain equal to the
kth polyphase component, that is, H; ;(z). We define the
following polyphase component matrix [37], [47] for the
analysis filter bank:

H,(z)
Hy o(2) Hy (z) © Hon-1(2)
_ H, o(2) H, (z) © Hyy-1(2)
Hy_10(z) Hy-11(2) - Hu-n-1(2)

(2a)

and, with an inversion of the order of the polyphase com-
ponents, the polyphase matrix for the synthesis filter bank:

G,(2)

Gon-1(2)
Gin-1(2)

Gon-2(2)
Gin-2(2)

© Goo(2)
© Gol2)

Gy-1n-1(2) Gu-in-2(2) - Gy-1.0(2)
(2b)

It can be verified that a sufficient condition so that the
analysis/synthesis system of Fig. 1 is a perfect recon-
struction system is that [32], [34], [46], [47]

[6,2)] - H,(z) =2 L (3)

Other solutions are obtained by pseudocirculant shift-
ing of the identity matrix [40], and are therefore similar
within a delay to the solution in (3). Note that the delay
given by z ' on the right side of (3) is greater or equal to
zero if all filters involved are causal. From the input to
the output, there is an additional delay of N — 1 samples
due to the multirate nature of the system [47]. The design
problem for perfect reconstruction systems is to find pairs
of analysis and synthesis filter banks so that (3) is satis-
fied. Usually, the analysis bank is chosen first and then
the synthesis bank is found so as to satisfy perfect recon-
struction. Note that invertibility of H,(z) is not sufficient
since such an inverse might lead to unstable filters and
because one might expect the synthesis filters to be FIR
as well (assuming, as we do, that the analysis filters are
FIR). Three classes of perfect FIR reconstruction systems
can be defined.

1) Perfect FIR Recorstruction: The necessary and suf-
ficient condition for FIR perfect reconstruction is that the
determinant of H,(z) be a monomial [46]. An equivalent
statement is that the Smith form of H,(z) [12] is a diag-
onal matrix of increasing delays. Then G,(z) can be ob-
tained from the cofactor matrix of H,(z) and will yield
perfect reconstruction.
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2) Perfect FIR Reconstruction with Equal Length Anal-
ysis and Synthesis Filters: A sufficient condition for this
class will be given in the next section.

3) Perfect FIR Reconstruction with Ildentical Analysis
and Synthesis Filters: Note that the identity is within time
reversal. A necessary and sufficient condition for this class
is that H,(z) satisfies

44T
[H,(z™)] - H,(z) = L (4)
Obviously, in this case, G,(z) can be chosen as
G,(z) =z - Hy(z7") (5)

where m is chosen so that G,(z) leads to causal synthesis
filters, and therefore (3) is satisfied with /| = m. Con-
versely, if G, (z) satisfies (5), i.e., perfect reconstruction

0 0 A, A A,
T, = cee e 00 Ay A

is achieved with identical analysis and synthesis filter,
then H, (z) satisfies (4). A matrix H,(z) that satisfies (4)
is called a paraunitary or lossless (if it is stable) matrix
[33], [34], [37], [41]. In the case of critical sampling (M
= N), H,(z) is square and the product in (4) is commu-
tative.

T, = 0 0 By _,
0 0

Obviously, class 1) contains 2) which in turn contains
3). While 3) is most desirable, it is also most constrained.
Actually, we will see that certain design problems do not
have a solution in 3). The other classes have more free-
dom, but also present more problems. In 1), the synthesis
filters can be much longer than the analysis filters, and in
both 1) and 2), the synthesis filters can have a somewhat
exotic frequency response, even if the analysis filters are
a perfectly well-behaved set of bandpass filters.

B. Time-Domain Analysis

The operation of a subsampled analysis filter bank can
be described in the time domain with block-Toeplitz or
block-circulant matrices (depending on how the bounda-
ries are treated, but the operation is best seen as an infinite
block-Toeplitz matrix acting on infinite signals). In the
case of an M-channel filter bank with subsampling by N,
the transformation of the inputs x into the M subsampled
channels y can be described according to the relation

y=T, x (6a)

A,
* 0 0 AO Al
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where the input x is an infinite vector with time indexes
L x(=2),x(-1),
x(0), x(1),x(2), =+, ---],  (6b)

the output y is an infinite vector consisting of M multi-
plexed channels decimated by N

x=[, -

y = [ T [YO(_N)JH(—N)s »}’M—l(_N)],
[YO(O)J’I(O), »}’M—I(O)],
[)’O(N),)H(N),"'»)’M—I(N)]"']’ (6¢)

and the subscript a in T, stands for analysis. The blocks
in the matrix T, are of size M by N, and the structure of
the matrix T, is of the form

Ag_, 0 0

A, O 0 (6d)

A, Ax-1 O 0
where each A; is of size M by N.

The reconstruction in the synthesis bank can be de-
scribed by an inverse transformation

x=T y. (7a)
Again, the matrix T, has a block structure
B Bl 0 o0
Bl B o o (7b)
B

- BT Bl o 0

where B; is of size M by N and the subscript s stands for
synthesis.

We assume now that T, in (6) is a banded block-cir-
culant matrix (circular extensions at boundaries) in order
to avoid difficulties arising with infinite matrices. The
weakest perfect reconstruction system occurs when the
matrix T, has full rank. The inverse matrix, in general, is
not banded and this corresponds to perfect reconstruction
with IIR filters (which might lead to stability problems).
When the left inverse of T, is also banded (the inverse is
block-circulant [9]), we have perfect reconstruction with
FIR filters. In the context of time-domain analysis, we
find again three classes of perfect reconstruction systems
with FIR filters. Class 1) corresponds to the case where
the left inverse of T, is banded and K" is arbitrary and can
be much larger than K. Equal length analysis and synthe-
sis filters (K = K') corresponds to class 2). Finally, if

« 1s orthonormal (unitary), then

T, T,=1 (8)
and B; = Ag_ | _,, i.e., the synthesis filters are equivalent
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TABLE 1
PROPERTIES OF PERFECT RECONSTRUCTION SYSTEMS IN z-TRANSFORM AND
TIME DOMAINS

Characteristic

z-domain time domain
a) aliasing cancellation DetH,(z) # 0 Inverse of T, exists
b) exact FIR reconstruction DetH,(z) = delay Inverse of T, is banded

c) lapped transform [H,(2)]~! has same degree as H,(z)] Inverse of T, is banded and of same width

d) unitary solution Hy(z1)]T - Hp(z) = I [To)T - Ta=1
e) lapped ortho. transform

(linear phase and filters of length L = 2IV) same as above, plus add. constr. same as above, plus add. constr.

to the analysis filters, within time reversal. Thus, we have
a class 3) solution.

C. Relationship Between z-Transform and Time-Domain
Analysis

In order to see the exact relationship between the time-
domain and the z-transform analysis, it is convenient to
express H,(z) and G, (z) as polynomials with matrix coef-
ficients (rather than matrices with polynomial coeffi-
cients). We will call this the ‘‘sum form’’ of the poly-
phase filter matrices.

K~1
_ —i
H,(z) = X H, "z (92)
K'—1 Fig. 2. Classes of perfect reconstruction filter banks. (a) Aliasing cancel-
G (Z) = Z G - Z_i- (9b) lation. (b) Perfect FIR reconstruction. (c) Lapped transforms (L, = L,).
4 i—o ¥ (d) Paraunitary solutions. (e) Lapped orthogonal transforms.

The values of the matrices H,; and G,; follow from (2)

by inspection. Because of the time reversal inherent to the ~ useful tool to relate the polyphase matrix representation

convolution, it is easy to verify that to the time-domain properties.
Ay =Hy T (10a) As a simple example, take the case of the block trans-
= Pk form of size N by N that advances by N samples at a time
where J is the antidiagonal matrix of size N by N; note over the signal. The matrix T, in (6) is therefore block
that this matrix J is essential and accounts for the differ- diagonal with block A, of size N by N. Assume that Ay is
ence between convolution (with time reversal) in (2) and a unitary transform; then perfect reconstruction is

matrix multiplication in (6). Similarly, because of the time  achieved with Ay = B, and we have T;' = T In terms
reversal of the polyphase components of G,(z) in (2b), it  of z-transform analysis, we can write [from (10)]
turns out that
H,(z) =Ay - J 1la
B.=G, I (10b) p(2) = 4o (1a)
Gp(Z)=B()'J=A0'J. (llb)

In summary, this section was used to set up the analysis
framework for perfect reconstruction filter banks, and this ~ Therefore, replacing (11) in (3), we get
both in z-transform and time-domain. Equation (10) es- J-AT-A,-J=1 (12)
tablishes the relation between the time-domain block-cir- 0 0
culant matrix of (6) and the polyphase matrix of (1). In  since J %, = I and perfect reconstruction is verified. Note
Table I, the properties of exact reconstruction analysis/  that this simple example shows also that block transform
synthesis systems are summarized both in the z-transform  methods are a particular case of analysis/synthesis sys-
and time domain, and Fig. 2 shows the relation between tems with filter length, number of channels, and subsam-

the various classes. pling factors all equal to N (see Fig. 3). In this block
transform case, the sum form is a matrix polynomial of

HI. Sum Forms aAND Probuct Forms degree zero.
The sum form of (9) is an expression of the polyphase A more general property based on sum forms is intro-

matrix H,(z) that closely matches the time-domain rep- duced by forcing the various matrices A; or their associ-
resentation of the filter bank. It will prove a particularly  ated H,, to satisfy mutual orthogonality properties. Equal
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Fig. 3. Size-N block transform interpretation as a filter bank with N filters
of length N subsampled by N.
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length analysis and synthesis filters (K = K') can be
achieved by the following sufficient condition [48].
Condition CI1: Orthogonality of overlapping blocks,

that is,

K-1

_ZOA,-TMA,-:o, k=1,---,K—-1 (13)
is sufficient for perfect FIR reconstruction with equal
length filters given that there are N linearly independent
analysis filters. This condition was called ‘‘orthogonality
of the tails of the transform’’ in the case where the filters
were restricted to L = 2N [4], [14].

Proof: The product TT - T, is block diagonal be-
cause of (13) and the diagonal element is a matrix of size
N by N equal to

k-1
T, = ‘ZO Al - A, (14)
Since there are N independent filters, T, has rank N and
can thus be inverted. Note also that T, is symmetric and
positive definite. Then, the synthesis matrix T is of the
form

0o T;' 0

.= -+ -0 170
-0 T;' 0
- T] (15a)
which can be expanded as
0 T7'- A
T,={- - 0 T - AL,
0

and we verify that we have a class 2) solution and K =
K’ Q.E.D.

Note that the condition of orthogonality of the tails is
not necessary since one can have different filters at the
analysis and at the synthesis. This can lead to other so-
lutions of interest as will be shown in Section V.
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When the N by N matrix T, equals identity, we have
the property

T -1, =1 (16)

and the synthesis filters are equivalent to the analysis fil-
ters. This means that the filters of the bank are mutually
orthogonal and of unity norm. In the critically sampled
case M = N, T, is square and therefore a unitary matrix.
Now, using the sum form, we can draw some parallels
between the time domain and the z domain. First, what is
the meaning of condition C1 (orthogonality of the tails)
in the z-transform domain? Let us consider the product

[H,(:)] - H,(z)

K-1 JHK—1

= 2, J HT - H., .
j=—K+1z i=j—ZK+l pi Tpti=))
K—-1

= 2 Hy - H, =T, (17)

This is because of (13), the orthogonality of the tails.
Note that T, = J - T, - J following (14) and (10a). There-
fore, choosing G,(z) as

G() =K H,(Y - [T (18)

will yield perfect reconstruction and defines thus a class
2) solution in the z-transform domain.

Note that the k-indexed sequence J + LX) AT (A, - T
is the (matrix) autocorrelation sequence [42] of the se-
quence H,(k), i.e., DS H;(Hk)Hp,-, leading to the
interpretation that the orthogonality of the tail amounts to
a (matrix) autocorrelation with only the central term dif-
ferent from zero.

Assume now that T, = T, = I, then (17) means that
H,(z) satisfies (4). From (16) and (17), we have the
equivalence

T7-T,=1Ie [H(z")] - H,(z) =L (19)

Thus, paraunitariness of H,(z) is equivalent to T, having
orthonormal columns. We can also observe [42] that when
T, has rank N, then it is symmetric and positive definite
and thus can be factorized into T, = C” - C. Normali-
zation of the system by C will then yield a paraunitary
system.

The concept of orthogonal overlaps derived from the
sum forms has been shown to be useful in order to derive

T;' - Ad 0
T;' - A} 0
T;' -4 o0

(15b)
T;' - Ak-)

solutions that satisfy certain length constraints on the syn-
thesis filters. It also leads to the proof of the equivalence
between unitary time-domain matrices and paraunitary
z-domain matrices.

The time domain or sum form expression for exact re-
construction with synthesis filters of the same length gives
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a good intuition of the phenomena involved, but when the
degree of the sum form (9a) becomes large, the problem
becomes intractable for large K [(13) is nonlinear] and
another approach will be necessary. For this reason, we
will introduce product forms. We shall call the product
form of the polyphase filter matrix the expansion [36]
K-1

H,(z) = Hyo - ,IJI D;(z) Hy (20)
where the matrices H),; have full rank and the matrices
D, (z) are diagonal matrices of delays. The synthesis
polyphase filter matrix can be expanded as

K~1

Gp(z) = GpO : '1:[1 D,' (Z) Gpi' (21)
Unlike the sum forms, the product forms do not always
exist since (20)-(21) imply reconstruction by filters of the
same length. On the other hand, if H,(z) is paraunitary,
the product form always exists [1], and conversely, if all
the H,; are unitary matrices (rotations), then H,,(z) is par-
aunitary. Product forms allow for a cascade generation of
filter banks satisfying a given property, for example, par-
aunitariness [36], [39], but also symmetries in the filter
bank as will be shown in Section V. Nonparaunitary prod-
uct forms have also been used in [50] to generate inter-
esting design examples of perfect reconstruction filter
banks.

IV. Sum ForRM SOLUTIONS IN THE RESTRICTED
LenGgtH CaseE L, = 2N

When the analysis filters are restricted to L, = 2N (that
is, the analysis window is twice the block size), the filter
design problem is simplified and the results are still useful
in applications like image processing where short filters
are often used. Furthermore, this case is simple enough
and should therefore illustrate some of the results from
the previous section. Only the critically sampled case (M
= N) will be considered, and same length analysis and
synthesis filters are desired (L, = L, = 2N ).

A. Analysis of the Case L, = 2N

From (6) and (7), we see that T, - T, = I can be met
by satisfying

Bl - A, +BT-A =1 (22a)

Bl - A, =B] -A;=0. (22b)

Orthogonality of the overlapping blocks of the analysis
filters, that is, Al - A, = 0, is sufficient to satisfy (22b)
since one can choose B; = A; - [AJA, + AlTA,]’T and
achieve perfect reconstruction. Now, if the normalization
equation is also satisfied, that is,

then obviously, B; has to be chosen equal to A; and we
have a paraunitary solution. In that case, the matrix prod-
uct in (4) is commutative (recall that the system is criti-
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cally sampled, implying that H,(z) is of size N by N ):
_ T _ T
[H,(z"] - H(z) = Hy(2) - [H,(z7")] =1 (24)

From (24), it follows that the following two relations
hold simultaneously. First, we have that

Al - A+ AT A =1 (25a)
Al - A4, =0 (25b)
and then also
Ay - AT+ A - AT = (26a)
A - AL =0. (26b)

Note that (25) and (26) are absolutely equivalent, but
that (25a) and (26b) are not equivalent to (25b) and (26a).
The orthogonality condition in (25b) means that the N col-
umns of A, are each orthogonal to the N columns of A,,
while (26b) means the same for the rows of A, and A,.
The normalization in (26a) means that the N filters form
a size N orthonormal basis set.

B. Lapped Orthogonal Transforms (LOT)

Lapped orthogonal transforms have been introduced by
Cassereau [4] and further investigated by Malvar [14].
They are essentially obtained by condition (26) and the
additional constraints that the number of channels is even
and that the filters have linear phase (N /2 symmetric and
N /2 antisymmetric filters). In that sense, LOT’s are a
subclass of paraunitary solutions (linear phase and length
constraint). Note that condition C1 together with T, = I
is the extension of the LOT concept to arbitrary filter
lengths.

The orthogonality constraint means that Ay and A, span
orthogonal subspaces of the size N vector space. Casser-
eau has shown [4] that, when the linear phase constraint
is added, then A, and A, span each a subspace of size
N/2. Based on these considerations, design techniques
have been developed [4], [14]. However, the techniques
do not generalize well for lengths greater than 2N (for
example, some dependencies which are linear for L, =
2N become nonlinear for longer filters). From a compu-
tational point of view, Malvar has shown {14] that the
LOT can be based on a fast transform (a DCT typically),
thus making the LOT computationally very efficient (two
fast transforms and N /2 rotations as a typical case).

It is interesting to note that two techniques that have
been developed independently, namely, perfect recon-
struction FIR filter banks and lapped orthogonal trans-
forms, lead to the same solution characterized by paraun-
itary (in z-transform domain) or unitary (in time-domain)
matrices.

C. Modulated Filter Banks with Perfect Reconstruction
Pseudo-QMF filters have been proposed as an exten-
sion to N channels of the classical two-band QMF filters
1221, 1281, [24], [5], [6], [15]. Pseudo-QMF analysis/
synthesis systems achieve, in general, only the cancella-
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tion of the main aliasing term. However, when the filter
length is restricted to L, = 2N, they can achieve perfect
reconstruction under certain conditions. The main advan-
tages of pseudo-QMF filters are their low computational
complexity as well as the fact that the window function
can be tuned to satisfy additional design constraints while
maintaining the exact reconstruction property.

Assume that N is even and that critical subsampling is
used. Then the ith analysis and synthesis filters are ob-
tained by modulating a real prototype filter evenly over
the frequency spectrum. While the modulating frequen-
cies are easily obtained from the fact that the whole spec-
trum has to be covered with real filters, the selection of a
phase term for the analysis and the synthesis is more del-
icate. A family of pseudo-QMF filter banks that achieves
main aliasing cancellation has been designed in [15] and
is of the form

() =y () - cos (D)

(-5 )

for the analysis filters (4, (n) is the impulse response of
the prototype filter). In the general case, the main aliasing
term is cancelled for the value of the phase:

(27)

T T
=Tkl
Lon )

0 (28)

and it can be shown that this property also holds for any
“‘nonsingular’’ value of the prototype filter. The synthesis
filters have the same modulation, but with a negative
phase term equal to —7 /4 — kw /2.

In the case L, = 2N and assuming that £, (n) =
1/vN,n=0,--+,2N — 1, it can be verified that (21)
and (25) hold, leading to a paraunitary solution [class 3)].
The matrices A, and A, of the unwindowed filter bank (4,

= ]/\/K/, n=20,---,2N — 1) satisfy the relation
Al A =0 (29a)
AT - Ay + AT A =1 (29b)
Al Ay =1-(I+1J) (29¢)

Al A =1-(I-1). (29d)
While the two first relations are common to any L, = 2N
class 3) solution, relations (29¢) and (29d) are particular
to the modulated filter bank. The property that a filter bank
derived by a modulation of a window function can lead to
exact reconstruction in the case L, = 2N had also been
recognized by Princen et al. [25], [26] in a slightly dif-
ferent context.

The fact that a window (prototype filter) can be applied
to the pseudo-QMF filter bank while preserving alias can-
cellation leads us to investigate for the case L, = 2N what
condition the window h,, (n) must satisfy for exact re-
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construction and paraunitariness to be preserved. Assume
that a symmetric window function or prototype filter is
used. The new matrices Aj and A{ are given by

Ay =AW (30a)
Al=A W (30b)
where W is a diagonal windowing matrix given by
h,.(0) 0
W= 0 h, (1) '0 (31)
.0
0 h,(N-1)

and W = J - W - J has the diagonal element of W in
reverse order. We can readily verify that the condition
AT - A} = 0 is verified since

A Al =W-Al-A - J-W-J=0 (32)
follows from (29a). If we compute the product AT - A
+ A{T - A} and take into account (29¢) and (29d), we find
that

A AL+ AT A = LW+ W)L (33)
The matrix W? + W'? is a diagonal matrix with the ith
diagonal element of the form

R(i) + k(N =1 =1i). (34)
This allows us to state the following result.

Result: The windowed modulated filter bank allows
exact reconstruction in the case L, = 2N if and only if the
matrix W2 + W is nonsingular; furthermore, if the win-
dow meets the condition

R, () +h(N=1=i)=2 (35)
then the solution is paraunitary. This result was also found
by Princen er al. [25], [26] for another modulated filter
bank, hinting that the solution above would work as well.

Some discussion of the windowed pseudo-QMF scheme
seems appropriate; first, we note that windowing will
never destroy the orthogonality of overlapping blocks (the
columns of Ay and A, are simply weighted by the window
function, thus conserving their mutual orthogonality).
Note that this result holds true for filters of arbitrary
length. Therefore, exact reconstruction with filters of the
same length is conserved over windowing. The degree of
freedom introduced by the window allows one to trade off
frequency-domain and time-domain properties of the filter
bank, thus optimizing the design for a given application.

It is the particular form of the products AT - A, (29¢)
and (29d) that provides the ‘‘window independence.’’ For
the sake of illustration, we indicate an example on how
to generate matrices A, that will satisfy (29¢). Assume an
orthogonal basis of size N given by the vectors
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Vo Vi + -+ Vy_y; then choose
Ao =[Vo Vi -+ V- V- =0 Vi Vol
(36a)
Al:[VN/Z V[N/2)+] VN—l —VN—I .
=Vivyer —Vapal (36b)

Then (29¢) and (29d) are automatically satisfied. The
pseudo-QMF filter bank is a particular case of (36). Un-
fortunately, such a technique to design the L, = 2N filter
bank excludes linear phase solutions. The condition on
the window given by (35) is quite important; if it does not
hold, the synthesis filter bank will be given by

B =4 (W +w?) ", (37)

The inverse which has to be applied at the synthesis might
deemphasize any benefits introduced by the window. This
concludes the discussion of perfect reconstruction modu-
lated filter banks. The main purpose of this section was
to demonstrate their existence, which was doubted pre-
viously because filter banks based on complex modulation
(DFT) do not allow perfect FIR reconstruction [46], [34].
Also, the effect of windowing was investigated and a sim-
ple condition was shown to preserve the paraunitary prop-
erty.

V. SoLuTtioNs BASED ON ProbpucT ForMS

In this section, we will consider solutions to the perfect
reconstruction filter bank problem that will be written in
product form [see (20)] and that will meet certain addi-
tional constraints. More specifically, matrices of poly-
phase components will be derived that lead to analysis and
synthesis filters having linear phase and/or modulation re-
lations among themselves. The technique that will be used
forms cascades of elementary matrices so that the result-
ing polyphase matrix satisfies the desired properties. Note
that the elementary matrices are chosen independently of
one another. This cascade generation is only one of many
possible approaches (it can actually be overconstrained in
some cases), but it is interesting both for synthesis and
implementation purposes. Note that the two-channel lin-
ear phase case that will be shown below was also inde-
pendently derived by Nguyen and Vaidyanathan [21].

A. The Two-Channel Case, N = 2
Let us first recall the paraunitary solution proposed by

Vaidyanathan [36], [37], [39]. In that case, the polyphase
matrix H,(z) of the analysis filters can be written as

I o) *' /10 1 o
H”(Z)=<—a 1>'k1—11 <0 z") <—a 1)'
(38)

This leads to nonlinear phase filters of length L = 2K
which are like the ones proposed (in noncascaded form)
in [29], [30], [16]. The impulse responses of the two fil-
ters are related in such a way [A,(n) = (—1)" - ho(L —
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n — 1)] that linear phase solutions are excluded (except
in the trivial case of length 2 filters). Note that (38) is a
denormalized version since the ‘‘rotation’’ matrices do not
have unit length vectors. This can be taken care of at the
reconstruction, with the polyphase matrix of the synthesis
filters chosen as [36]

1 1 « K- /2700
— Y1
1+Cl0 — 0Oy 1 k=1 0 1
< I oy 1
—o 1 1+ o

Note that a normalized version would use a factor
1/V1 + o both in (38) and (39) (leading to elementary
matrices which are rotations). The product [Gp(z)]r :
H,(z) [see (3)} is equal to

(6,(2)] - Hy(z) =27 *" " - 1 (40)

and perfect reconstruction is achieved with a delay of L
— 1 samples. A nice property of this solution is that it is
complete [39], that is, all paraunitary solutions can be
generated with this structure (a fact related to the facto-
rization of paraunitary matrices [1]).

A linear phase solution is obtained if the two filters
Hy(z) and H,(z) obtained from the polyphase filter ma-
trix H,(z)

<mu»_<muﬁ)ma85.<l>(“)
H(z) H,(z%) Hy(2%) 2!
are symmetric and antisymmetric, respectively. Assume

that the two filters are of the same length, in which case
the length has to be even [46]. Then, H,,(z) has to satisfy

GF(Z) =

(39)

the following *‘linear phase’’ test:
s e (O ) s me e
A z : = Z
0 -1 ! 10 g
velop a cascade form to obtain linear phase filters of any
even length and which guarantee perfect reconstruction:
2) then H,(z) given by
, 1 0 1
Hp(z) = H,,(Z) : )
0 z a
The proof is straightforward by replacing (43) into (42)
and verifying that it holds indeed. Note that for L = 2,
z ' and H,(z) = 1 — z7! (or scaled versions thereof),
linear phase perfect reconstruction filters is by writing
H,(z) as [49]

where £ is the highest degree in H,(z). We will now de-
1) assume H,(z) satisfies (42)
)
1
satisfies (42) as well.
the two only possible filters are given by Hy(z) = 1 +
and therefore, a possible way to obtain length L = 2K
11\ ' /1o 1 o
H,(z) = < - 10 N ) (44)
1 -1 k=1 \0 z o 1
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and G,(z) as

1 /1 1\ K1 /7t o 1 —o
G”(Z)=2'<1 ~1) =0 1) \—a 1

1

. (45)
Therefore, the product (3) is satisfied and equal to (40).

Note that while this is not a paraunitary solution (and con-

dition C1 is not verified in general), the synthesis filters

are simply related to the analysis filters by a modulation

with ( —1)":

Gy(z) = H(—2)

The first few filters obtained from (44) are given in Ta-
ble II. Note that length 2K filters are defined by K — 1
free parameters.

Note that if one wants odd length filters (one of length
2N + 1 and the other of length 2N — 1), a zero can be
exchanged between Hy(z) and H, ( —z) since this will not
alter the perfect reconstruction property. The resulting fil-
ters are now both symmetric and of (different) odd lengths.
This technique has been used in [13] to derive good and
efficient filters for subband coding of images. This method
is only a particular case of a more general structure for
odd length symmetric filters which is described in Appen-
dix A. It is shown there that two symmetric and linear
phase filters of length 2K + 1 and 2K + 3 can be gener-
ated with 2K free parameters (that is, about twice as many
as in the even length case). However, experience with
such designs shows that the additional freedom cannot be
really used [21], [42].

Having derived possible generic structures for linear
phase filters, one may want to know their generality. Be-
cause H,(z) is not paraunitary, there is no factorization
theorem that can be used (at least directly). Appendix B
shows that the factorization given in (44) for even length
filters is complete for lengths smaller than 8. For longer
filters, there exist perfect reconstruction filter banks that
cannot be written in the factorized form (44) (see Appen-
dix B). These ‘‘singular’’ cases seem isolated and can be
approximated. They seem, however, of little practical im-
portance.

Finally, in the two-channel case, note that while pre-
vious techniques existed to find linear phase perfect re-
construction filters (like the complementary filter method
or the factorization method [47]), the above form struc-
turally guarantees perfect reconstruction (similarly to the
paraunitary case [39]). Note also that the factors «; can
be chosen so as to minimize the resulting hardware com-
plexity of an implementation. This was used in [13] to

Gi(z) = —Ho(—z). (46)

2z 1

TABLE I1
LINEAR PHASE PERFECT RECONSTRUCTION FILTERS OBTAINED FROM THE
CASCADE FORM (44). THE SCALING FACTOR IS THE TERM THAT HAS TO BE
DIVIDED OUT BETWEEN ANALYSIS AND SYNTHESIS. THE SYNTHESIS FILTERS
ARE GIVENBY Gy(z) = H (—z) AND G (2) = —Hy(—2)

L Scaling Analysis & synthesis Filters
factor
2 2 Ho(z)=1+27}
Hi(z)=1-z"!
i
4 201-a12) Ho(z)=1+0z ' +az 24273 I
Hiyz)=1+oz ' -az2-z73
6 | 2(1-0:d)(1-022) Ho(z) =1+ oz + (o + oy 0)272 + (o + o)z 2 + oz + 270
Hi@)=1+0pz7 + (~on + aqoa)z 2 + (o — o)z > = opz 4 - 275

generate very simple filters for high-speed image process-
ing.

B. Linear Phase Solutions, N > 2

Similar to (42), a polyphase matrix that leads to linear
phase filters has to satisfy (we assume N even, and that
the first N/2 filters are symmetric while the last N /2 are
antisymmetric)

1 0 i, »
0 _1> |- H (7)) - T = H(z) (47)

where I is the identity matrix of size N/2 and J is the
antidiagonal matrix of size N. In order to generate poly-
phase matrices that satisfy (47), we write a new polyphase
matrix H,(z) as

Hi(z) = Hy(z) - D(z) - R (48)

where H),(z) satisfies (47), D(z) is a diagonal matrix of
delays, and R is a unitary matrix. In that case, the follow-
ing two conditions are necessary and sufficient for H,(z)
to satisfy (47) as well:

- J- DY - J = D(2)
J-R-J=R

(49)
(50)

where [ in (49) is the highest degree of z~' present in
D(z). A matrix R that satisfies (50) is called persymme-
tric [2].

As a starting matrix in (48), one can take any unitary
transform that has N /2 symmetric and N /2 antisymme-
tric vectors such as, for example, the Walsh-Hadamard
(N = 2™) or the discrete cosine transform. There is ob-
viously a large set of possible diagonal matrices of delays
that satisfy (49). For example, in the case N = 4, we list
the four possible matrices D(z):

1 z7!

(51)

Z 1
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Note that these matrices are paraunitary, like all diagonal
matrices of delays. Also, antidiagonal matrices with the
same elements as in (51) would satisfy (49) as well, but
lead basically to the same solution within a permutation.

The condition (50) on the matrix R is even more re-
laxed. For example, all symmetric Toeplitz matrices sat-
isfy (50). A closer look shows that matrices satisfying (50)

R < NOI nl{ >
J lJ J OJ

where M, and M, are size N/2 by N /2 matrices, and J
is the antidiagonal matrix of size N /2. One can verify that
(50) is satisfied since

J 0 Jlul.’ JIMOJ J 0 J1M|J JJMOJ

where we used the fact that J> = I If R is required to be
unitary, that is (assuming real coeflicients),

RT-R=R-R"=1 (54)

then it can be verified that the matrices M, and M, have
to satisfy

(52)

My - MY+ M, -M =1 (55a)

M -J -M+My-J M =0 (55b)

which corresponds to R - R" = I. Since the product (54)
is commutative, R” - R = I leads to another, but equiv-
alent, set of conditions. Note that (55a) is the usual ortho-
normality of the first N /2 rows of R, while (55b) captures
the inherent ‘‘symmetry’” of R that is required in order to
meet (50). A simple example, for N = 4, would be [17]

cos (o;) —sin{e;) O 0
R - sin (o) cos (a;) O 0

0 0 cos () sin (o)

0 0 —sin (o) cos (o)
cos () O —sin (o) O
0 cos (@) O sin (o)
sin (a,) 0 cos (a;) O
0 —sin (o) 0 cos ()

(56)

which satisfies (50) or (55) as can be checked (we used
the fact that the product of two persymmetric matrices is
persymmetric).

Instead of a postmultiplication in (48), one may want a
premultiplication. It turns out that no delay matrix D(z)
(except trivial ones) will satisfy (47), but that any matrix
R which is block diagonal with blocks of size N/2 by
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Fig. 4. Generation of a new polyphase matrix H,,(2) from pre- and post-
multiplication of an initial solution H,(z). If H,(z) is paraunitary and
corresponds to linear phase filters, so will H,,(z).

®

N /2 will. Therefore, any solution H,(z) can be modified
by a premultiplication with such a block-diagonal matrix.
This is similar to techniques used in ‘‘lapped orthogonal
transforms’” (LOT) [14] where the filters are, however,
restricted to L = 2N.

Fig. 4 shows an example for N = 4. Starting with a
polyphase matrix H,(z) that satisfies (47) and is paraun-
itary, one obtains a new polyphase matrix H,(z) which
satisfies (47) as well and is also paraunitary. This is
achieved by a premultiplication with a unitary block-di-
agonal matrix R” and postmultiplication by a delay matrix
from (51) as well as by a rotation matrix R’ as in (56).

Therefore, for N > 2, we showed that paraunitary so-
lutions that lead to linear phase filters exist, and this for
arbitrary length filters. The question of completeness of
the structures needs, however, more investigation.

C. Filters Satisfying Frequency Symmetry Constraints

Assume that in the filter bank, filters with index / and
N—i(i=0--+N/2 — 1)are related by a modulation
with (—1)", that is, in the z-transform domain

Hy_i-\(z) = H(-z) i=0---N/2-1(57)

For N = 2, this is the classical QMF case. For N > 2,
this case has also been considered in [38] and we derive
a cascade structure for it. The condition in (57) forces
symmetries in the polyphase matrix H,(z) since even
numbered polyphase components of H; (z) and Hy_; _(2)
are equal, while odd numbered ones have opposite sign.
Define a matrix T of size N by N as

1 0 0 -+ == 0 0 1
1 0 0 -+ -=- 0 0 -1
rT=|0o 1 0 -+ -0 1 0
0 0 1 -10 0

(58)
Now, because of the symmetry in (57), we can verify that
[ HP(Z)],_/ =2H,;(z), i+ jeven

=0, i+ jodd (59)
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where i and j are the row and column indexes with the
numbering starting from 0. As in previous sections, we
would like to be able to generate polyphase matrices sat-
isfying (59). More precisely, assume we have a matrix
H,(z) that satisfies (59), and that we obtain a matrix
H,(z) by pre- or postmultiplying H,(z) with a delay or
“‘rotation’’ matrix; then how should we choose these so
that H;,(z) satisfies (59) as well? Note that the delay and
‘‘rotation’” matrix should be independent of H,(z). Let
us consider the following four cases.

1) Premultiplication by a Delay Matrix D (z): Itis easy
to verify that D(z) (which is diagonal by assumption) has
to meet :

[D(Z)]u‘ = [D(Z)]N‘i—l,N—i—l' (60)

2) Premultiplication by a Rotation Matrix R: We call
this a ‘‘rotation’’ matrix because it will be, in general,
chosen as a unitary matrix (but not necessarily). Then the
rows of R have to be related by

(61)

so that Hy(z) meets (50). Note that (61) means that R is
persymmetric.

3) Postmultiplication by a Delay Matrix D(z): No
condition is necessary since as long as D(z) is diagonal,
H,(z) will meet (59).

4) Postmultiplication by a Rotation Matrix R: In that
case, it is necessary and sufficient that

le = O,

and H, (z) will meet (59) as well.

Note that 1)-4) give conditions so that (59) is met re-
cursively, and this is independently of the previous terms
in the cascade.

An example of recursive generation for the case N = 4
is given in Fig. 5. Premultiplication of the initial solution
H,(z) is done by a matrix satisfying (60) and a rotation
matrix that is persymmetric. Postmultiplication is by an
arbitrary delay matrix and a rotation matrix satisfying
(62). The new polyphase matrix H,(z) then satisfies (59)
by construction.

Now, if the matrices D(z) and R meet additional con-
straints, like the ones required for linear phase or paraun-
itariness, then the resulting polyphase matrix will yield
linear phase filters or be paraunitary [on top of leading to
the frequency symmetry given by (57)]. As a simple ex-
ample, look at the following postmultiplication matrix:

rowy_;_, = row; * J

i+ jodd (62)

cos () O —sin () O

R, = 0 cos(a) O sin (o)
sin («) 0 cos () O
0 —sin («) 0 cos (a)

(63)

This matrix satisfies (50) (linear phase constraint), (54)
(it is a unitary matrix), and (62) (frequency symmetry).
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|
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| Rotation by Y.

Fig. 5. Generation of a new polyphase matrix H; (z) from pre- and post-
multiplication of an initial solution H,(z). It H,(z) satisfies (59a) and
is paraunitary, so will H,(z) by construction.

When used together with delay matrices as in (51) as well
as a starting matrix that satisfies (59) (like the Walsh-
Hadamard or the discrete cosine transform matrix of size
4 by 4), this rotation matrix will lead to a perfect recon-
struction, linear phase filter bank with frequency sym-
metry (N = 4, arbitrary filter length, and identical anal-
ysis and synthesis filters). Of course, (63) is very
constrained, and does not lead to very interesting filters.
The point was to show that solutions to such heavily con-
strained filter banks exist and can be constructed as cas-
cades of simple elementary blocks.

VI. CompUTATIONAL COMPLEXITY
Because of their special structure, the filter banks intro-
duced in this paper have, in general, low computational
complexity.

A. Two-Channel Case

Let us first review the paraunitary case [see (38)] where
the computational blocks are 2 by 2 rotation matrices [39].
Since a rotation matrix can always be written as [23], [2]
[with a = cos («) and b = sin («)]

-G

a 1 1
a+b 10 1 (64)
b—a 1 0

it takes three multiplications per rotation. A bank with
two filters of length L = 2K has K such blocks and two
input values produce two new output values (one in each
channel); thus, the computational complexity of a paraun-
itary two-channel filter bank is (3K /2) multiplications per
input sample. This was already noted in [11] without using
factorization. Now, if one uses denormalized blocks (for
example, dividing (64) by a), then each block takes only
two multiplications, and one multiplication is required at
the end in each channel in order to renormalize the output.
The computational complexity per input sample is there-
fore equal to (K + 1). This result was first noted in [10].

Let us consider the linear phase case next [see (44)].
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Each computational block can be written as
1l +a

1 <1 a>
1 —a*\a 1

=<1 1)_ 2Vl - &

1 -1

1 1
< >, Ia‘<1.
1 -1

The factor 1 /+/1 — a* was used to ‘‘normalize’’ the ma-
trix (in a loose sense since the matrix is not orthogonal).
If |a|] > 1, then one can use 1/va> — 1 and
—1/~a® — 1 as a “‘normalization’’ factor at the analysis
and synthesis, respectively.

Since a block written as (65) requires two multipli-
cations, and there are K — 1 blocks, the multiplicative
complexity of a length L = 2K filter bank is (K — 1)
multiplications per input sample. Now, if (65) is ‘‘denor-
malized,”’ that is,

2l -0
(11 _:) a# {1, -1}

(66)

then each block requires only one multiplication plus one
at the end to renormalize the result in each channel, that
is, a total of (K + 1)/2 multiplications per input sample.
Note that this is half as much as in the paraunitary case.
The number of additions in (66) can actually be reduced
by 1 [10]. A hardware structure implementing a linear
phase perfect reconstruction filter bank is shown in Fig.
6. Note that the odd length linear phase filters of Appen-
dix A use K multiplications per input sample, and this for
length 2K + 1 and 2K + 3 filters. This increased com-
putational load over the even length case is to be expected
because of the increased number of free parameters.
Finally, and for completeness, we review the *‘classi-
cal”” QMF case. In that case, H,(z) = Hy(—z), and
Hy(z) is a linear phase (symmetric) filter. It can be veri-
fied that the corresponding polyphase matrix can be writ-

ten as
~ 1 1\ K1 (1 + Oth_l)
Hp(z) - <1 _1> kI}l < (Olk + Z_])>.
(67)

Note that perfect reconstruction can only be approximated
since the determinant of H,(z) is not a delay (nor a min-
imum phase filter). Now (67) takes two multiplications

(65)
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Fig. 6. (a) Linear phase, perfect reconstruction two-channel analysis filter
bank. (b) Equivalent synthesis filter bank. (c) One-multiplier elementary
block implementation.

TABLE 111
NUMBER OF MULTIPLICATIONS FOR TWO-CHANNEL FILTER BANKS ( FOR
EacH NEw INPUT AND FILTERS OF LENGTH L = 2K)

Type of Normalized | Denormalized
Filter bank block block
min/max phase 3K2 K+1
(paraunitary)
Linear Phase K-1 (K+1)2
Classical QMF K

per block, that is, assuming a normalization at the output
of each channel, a complexity of K multiplications per
input sample. This result is well known [47], even with-
out going through a factorization such as (67), but the
form of the diagonal matrix in (67) is such that no ‘‘de-
normalization’” will reduce the complexity further as it
did in the other cases. Table III summarizes the various
computational complexities in the two-channel case.

B. Case N > 2

Among the sum form solutions derived in Section IV,
the pseudo-QMF filter bank with filters of length L = 2N
[see (27)] is certainly the most efficient in terms of com-
putational complexity. Modulated filter banks have been
studied extensively [3], [18] and shown to be equivalent
to short filters followed by a fast transform. The com-
plexity of pseudo-QMEF filter banks in particular has been
studied, for example, in [24]. The short filters correspond
to the polyphase filters (of order N) of the window func-
tion [see (27)], and therefore take on the order of two
multiplications per input sample (length-2N window ap-
plied for each set of N new input samples). The fast trans-
form is a type of discrete cosine transform which takes on
the order of N log (N ) operations [19], [24], [44], and
this for each set of N new input samples. Therefore, the
computational complexity for the total pseudo-QMF filter
bank is very close to that required by a block transform
approach.
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In the product form case (see Section V), the restricted
structure of the matrices R can be used to reduce the com-
putational complexity, similarly to what was done in the
case N = 2. For example, the highly constrained case
given in (63) can be implemented, in a denormalized ver-
sion, with only two multiplications.

In conclusion to this section, it was shown that the com-
plexity of the proposed filter banks is in general quite low,
and this is because the constraints on the building blocks
can be advantageously used in order to reduce the number
of arithmetic operations.

VII. CONCLUSION

A unified view of some results on perfect reconstruction
filter banks has been presented, showing connections and
possible cross fertilizations between various approaches.
In particular, time-domain and z-transform domain ap-
proaches have been given and their respective merits were
discussed.

Time-domain approaches lead naturally to sum forms
of polyphase filter matrices. In that case, a class of win-
dowed filter banks was given, together with a particular
solution which is a modulated pseudo-QMF filter bank
(similar to the solution given in [25] and [26]). This
pseudo-QMEF filter bank, while restricted in length (L =
2N), achieves both perfect reconstruction and very low
computational complexity.

z-transform domain approaches lead to product forms
for the polyphase filter matrices. In that case, cascaded,
paraunitary structures were given that lead to linear phase
or pairwise modulated filter banks. Note that such solu-
tions do not exist for the case N = 2, but become possible
for N > 2. In the important practical case of N = 2, two
structures leading to even or odd length perfect recon-
struction linear phase filter banks were proposed.

The computational complexity and structure of the pro-
posed filter banks were shown to be attractive. For ex-
ample, the linear phase perfect reconstruction filter bank
for N = 2 (even length filters) uses only half as many
multiplications as other perfect reconstruction schemes
(like the paraunitary filter bank).

As future work, the issue of completeness has to be
studied in detail, and the actual design of useful filters has
to be undertaken. The generalization of these ideas to the
multidimensional case also seems quite promising.

APPENDIX A
Opp LENGTH LINEAR PHASE FILTERS FOR N = 2

First, note that there are no odd length filters of the
same length that will achieve perfect reconstruction [46].
The simplest pair of odd length, linear phase filters is ob-
tained with symmetric filters of length 3 and 5, respec-
tively (the case of length 1 and 3 filters is of no interest).
The polyphase filter matrix H,(z) is then given by

1+ 7! a
H,(2) = <1 + b7+ 27 (1 + z"))l (AD)
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The perfect reconstruction constraint requires that
Det[H,(2)] = 27!, which leads to @ = c as well as to a
# 0and b # 2. Thus, with

Hy(z) =1 +az ' + 772 (A2)
(A3)

where a and b are different from 0 and 2, respectively,
one has a perfect reconstruction system with a scaling by
a(b — 2) and a delay of three samples.

More generally, a polyphase matrix H,(z) correspond-
ing to length 2K + 1 and 2K + 3 symmetric filters and
satisfying perfect FIR reconstruction can be written as

~(a(2) b(2)
H”(Z)’<c<z) d(z>>

H(z)=1+a"+bz?+az’+2*

(Ada)

Det[H,(z)] = 27 (Adb)
degree [a(z)] = degree [d(2)] = K (Adc)
degree [b(z)] = K — 1 (A4d)
degree [c(z)] = K + 1 (Ade)

and the polynomials a(z), b(z), c(z), and d(z) are all
“‘symmetric.”’ A degree-K polynomial p(z) is called
“symmetric’’ if 7 ¥p(z7') = p(z). Note that the product
of two symmetric polynomials is symmetric as well as the
sum of two symmetric polynomials when they are of the
same degree [46].

Now, assume that H,(z) and H,(z) satisfy (A4) with
characteristic K and K', respectively. Then, it can be ver-
ified (using the above properties of symmetric polyno-
mials) that

Hj(z) = H,(z) - Hy(2)

will satisfy (A4) as well and leads to linear phase filters
of length 2(K + K') + 1 and 2(K + K') + 3, respec-
tively. Therefore, from the elementary filters in (A2) and
(A3), one can write

K 1+z! ay
H,(z) = I:I -1 -2 -1/’
k=1 \l + bz” + 2 a(l +z7)
(A6)

which leads to length 2K + 1 and 2K + 3 linear phase
filters. Note that the number of parameters is of the same
order as the length of the filters (2K ), that is, twice as
many as in the even length case.

By factoring an elementary block as

1+ 1 10
: (A7)
l+bz7 " +272 1+ 27" 0 a

it is seen that the computational complexity is two mul-
tiplications per block. Given that there are K blocks and
that they are computed at half the input sampling rate, we
find a total of K multiplications per input, and this for two
channels and filters of length 2K + 1 and 2K + 3.

(AS)

ak¢0,bk¢2
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APPENDIX B
GENERALITY OF THE CASCADE STRUCTURE FOR LINEAR
PHASE EVEN LENGTH FILTERS AND N = 2

It is shown that the cascade structure in (44) is only
general for filters of length <8. For lengths greater or
equal to 8, ‘‘singular cases’’ can be shown which cannot
be factored as in (44). In the following, the filters are
assumed to be symmetric and antisymmetric with coeffi-
cients a; and b;, respectively. We assume aq; = b, = 1
without loss of generality (scaling only).

L = 4: H,(z) is of the form

H,,(z) _ 1 + alz_l a + 7~ (A8)
1 =biz7" b — 77!
The determinant equals
Det[H,(z)] = (b) — a)) + 2(aib, — 1)z
+(by —a))z? (A9)

from which it follows that a, = b, is the general solution.
This is the same as the one generated by (44) (see Table
ID).

L = 6: H,(z) is of the form

a, + azZ~1 + 772
b, — byz7! = 772
(A10)

, the following

1+ az "+ az”!

HP(Z) = - b Z—2
1

1 + bzzil

So that the determinant is equal to cz >

three equations have to be met:

a, = b, (Alla)
ay(ay, — 1) = by(ay + 1) (Al1b)
ab, —ab, + 1 # 0. (Allc)
From Table II, we note that for L = 6,
a=b = (A12a)
ay = oy (o + 1) (A12b)
by = ay(ay — 1). (A12¢c)

Obviously, (Alla) and (Al2a) are equivalent. Further-
more, (Al1b) means that

_ (‘11“1)
b= )

which is equivalent to (A12b)-(A12¢) with o, = a,. Fi-
nally, (Allc) becomes, using (A12),

aifed = 1) = a3 + 1 =(1=af) (1 - )

(A13)

(A14)

that is, equivalent to the scale factor of Table II which has
to be different from 0 (or oy, oy # 1, —1).

L = 8: Take, for example, the following two linear
phase perfect reconstruction filters:

Hy(z) =1+ 27"+ 2772 + 373 + 374

+270 + 770+ 7 (Al5a)

H(z)=1+z"+4z2+573 -5

— 4777 -7 - (A15b)

This is a linear phase perfect reconstruction filter set.
However, if one uses (44) in order to synthesize length-8
filters, one notes that a, = b, = «;. But here, this would
mean that a; = 1, which leads to a singular block. There-
fore, filters like the one in (A15) can only be approxi-
mated with the cascade structure in (44). Note that the
approximation is numerically ill conditioned (in the ex-
ample above, the block to be approximated is singular).
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