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On Particle Path Generation
Based on Quadrilinear Interpolation
and Bernstein-Bézier Polynomials

Bernd Hamann, Member, IEEE, Donghua Wu, and Robert J. Moorhead 1

Absiroct—Particle path compatation In unsteady 3D vector
felds given In discrete, stroclured form (le, a8 0 hexphedral

curvilinear grid) requires ihe local approximaiion of the vecior
field wnd the path, Quadrilinear interpolation and Bernstebn-
Bizler palynomials are used for the lecal vector feld and path
approximation. The nexi poini in o sequence of points on a par-
ficle poih ix computed wsing this locsl spproximation, Bern-

stein-Bézier polymomials are primarcily wsed In geometric model-
ing, and their properties ailow direct computation of points on a

particle path,

Index Termy—Approximation, Bernsieln-Béwder polynomial,
parthcle path, eurvillnear grid, path line, scentific visnalization,
structured grid, trajeclory, vecior feld.

L INTRODUCTION

T HIS paper is concerned with the computation of a point
sequence approximating a particle path in an unsteady
3D vector field. It 15 assumed that & 3D structured grid, com-
posed of hexahedral elemenis, is given, The coordinates of
the grid vertices are allowed (o change over time, while the
topology—the connectivity among grid vertices—must remain
unchanged. Given an imitial 3D position Xa the described
nlgorithm gencrates o point sequence X, Xa, Xi, ... on the
resulting partacle puth based on gquadnlinear interpolotion
gnd m local particle path approximate in Bernstein-Bézier
representaiion. The time step used 10 penerale a next point 15
chosen adaptively using n one-step method for differential
Equations.

The mnin repsons for the proposed method are its elegance,
its numerical stability due o the useé of Bernstein-Bézier poly-
nomials with their “nice™ numerical and arithmetical proper-
ties, and the fact that the proposed method uses a direct, ex-
plicit approach for approximating particle paths—instead of
using & Runge-Kutta method. The proposed method uses
adaptive time steps for peneérating points on & particle path,
just like a Runge-Kuttn method, Therefore, the resulting parti-
cle path approximations using either approach are very much
much the same. The proposed method is merely an alternative
1o miore standard methods.
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There must be a one-to-one map from esch 4D physical,
curvilinear grid cell to a 4D computational, rectilinear cell (=
unit cube). Once the initial point X; has been transformed
from physical to computational space, all compuiations mre
performed in compuiational space. A point X in a cell in
compulationnl space is identified with a local parameter fu-
ple (& n. G 1), where £, 0, £, and 1 are the relative offsets
from the lower lefl corner of the cell. The relation between
physical space, computational space, and local parameter
space is \1ustrated for the 2D case in Fig. 1.
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The local parameters of a point with respect to a cell in
computational space are used to perform quadrilinear er-
polation over the cell and locally approximate the vector
field. Initially, vector values are provided at the grid vertices
in physical space, These valuer are iransformed (o compata-
tional space by using local estimates of the Jacobian relating
the two spaces,

Most current vector field visualization techniques require
a robust, numerically stable, snd adaptive method for ap-
proximating parficle paths, The method proposed in this pa-
per should be viewed as an aliernative (o existing methods
that sanisfy exactly these requirements. Recent progress in
vector field visualization can be found in [5], [B]. [9]. (104,
[10], [12]. [13]. [19]). In particular, particle tracing algo-
rithms are described in [2], [7]. [14], [16]. [20]. A general
overview of currenl sclentific visualization technigues s
provided in [4]. The technique presented here utilizes stan-
dard technigues of geometric modeling that are discussed in
[3]. [6]. In particular, certain arithmetical operations for
curves in Bernstein-Bézier representation are needed which
pre coversd in [15]. The most common 20- and 30-grid
peneration methods are described in detail in [17], and an
overview of the state-of-the-urt in grid gensration is provided
in [18].

In summary, the approach used to generate a particle path
requires these modules:

1} Generating a uniform, rectilinear grid in 412 computa-
tional space and associated vectors at each computational
erid point {i, j, &, §) from a curvilinear grid in 4D physical
space.

2) Transforming an initial point X, from 4D physical space
to 4D computational space and computing local parame-
ter tuple (£, 1, £ 1) with respect to the grid cell in com-
putational space containing the initial point.

1) Approximating the unsteady wvector field in computa-
tional space using quadrilincar interpolation for each grid
cell

4) Approximating the particle path in o local parameter
space by a Bézier curve considering position, velocity,
pnd scceleration al the previous point on the particle
path,

5} Computing the next point on the particle path by consid-
ering the local vector field and particle path approxi-
mates il the previous point.

&) Transforming the next point on the particle path from lo-
cal parameter space to physical space,

7) Estimating the local error im physical space and-
depending on some maximal error tolerance—repeating
the steps 5) and 6) using a smaller time step.

These steps are described in detail in the following sections,
I, TRANSFORMATIONS RELATING PHYSICAL

AND LOCAL PARAMETER SPACE

The computation of particle paths is extremely simplified
when dealing with uniform computational space instead of

curvilinear physical spoce. One needs (o transform points
and vectors from computational space to physical space and
vice versa. Points on a particle path are computed in compu-
tational space and transformed 1o physical space. A point in
a unit grid cell in computational space has local parnmeter
values with respect 10 this cell and a quodrilinear interpolant.
These parameter values are denoted by §, 1, £, and T (“local
parameter space’].

First, all vectors given at grid points in physical space are
rransformed to computational space using local estimates of
the Jacobian

"xl: Xy T Xy

-r_ 1': .||'|'| .'F.; J"'|:
Iy Iy I I

L|‘I= by B I
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(2.1
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relating physical and computational space. o
Cenral differences are used o obtain an estimote J of the

(transpose of the) Jacobian at each grid point X5, This esti-

mate is given by

T et

Lol gt = -1kt o = Bt it

T = l (iL2)
2

= fijaa=

Each vector Vi, = (Uas Vi Wi (physical space) i
mapped to the vector

= a1
Yogmr = (B s Vi Wi ei) = I""1..n.t.l 4
{computatsonal space).

REMARK 2.1. It should be noted that this central difference
scheme is only one of many ways 10 compule the lerms in
the Jacobian. If possible, the method wsed should be consis-
tent with that used in the flow solver algorithm so that the
velocities are correcily recovered. It is even better 1o Save
the contravariant velocitics directly from the flow solver in
order to not have to transform the velocity fiehd. Another
approach, which is more consistent with the quadrilinear
interpolation function wsed here, is to use the partial deriva-
tives of (2.3) (see below) to obtain analytical expressions
for the terma in the Jacobian, A good scheme for the ap-
proximation of velocities is ahsolutely essentinl since the
accelerations are dervesd from them,

Mext, the mnitial point Xy = (% ¥. 2. fo) in physical space
must be transformed to local parameter space. The grid point
closest to X, must be identifred. The gnd cells are stored in
an octree, which speeds up the seurch process. The leal node
of this octree thal corresponds to the region contmining Xy 1%
identified, and only the cells associmted with this node jre
considered for the identification of the grid point closest to
X All cells sharing this closest grid point as a commdn
vertex (neighboring cells) are candidates that can contain the
initial point. An iterative procedure is used to find out which

e = X k- i, j.ral
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of the neighboring cells contains the point. This procedure
assumes that each cell can be expressed by a one-to-one
guadrilinear map from (local) purameter space to physical
space, Thus, a point X in a cell in 4D physical space is given
by the map

X(En.6.1)=(x(5.n.c. 1) (& 1.6.7), 2(E.0.5. 1),
HEm.g.1)

| ]
EZEZKW&:E:E‘:H] i,
1=l j=

D=l fsh
§.n.c 1. €[0,1],

where X is a vertex of the 4D grid cell contoining X, and
H';I (x) iz the Bernstein-Bézier polynomial (1 = 0™ ' If a
grid cell contains the initinl point X a (local) parameter
wple (& m £ 0. & 0, & re [0, 1], can be computed. Oth-
erwise, one of the (local) porameters will not be in the inter-
val [0, 1]

Assuming that the point X, lies within a particular cell, the
associsled local “parameter cube” for this cell is evalunted nt

xy =(+. 4.4, 4) vielding the point Yy The difference vector
Dy = X, = ¥ 15 computed and transformed into (local) parame-
ter space yielding the vector dy -D,],.-F'". where J is {the

5

o
[ =afe=a
Bk

Fig. 2. Teansforming fraim physical space 1o (local) parameter space and vies
VETER

transpose of) & local approximate of the Tacobion ot x, ob-
wmined by performing quadrilinear interpolation of the esn-
mates of the Jacobians at the prid vertices, A new parameter
value X; = X + dy is computed, and the corresponding point in
physical space is determined.

This procedure (Newton-Raphson method) is repeated until
the Buclidean distance between the points X, and ¥, is suffi-
ciently small and the (local) parameter wple associated with of
Y lies in the unit cube. The procedure is also stopped when a
parameter iuple has “moved” ouzide the unit cube (see [ 13]).
Special care must be taken at the boundaries of the grid.

Obviously, the map from local parameter space to physical
space must be one-to-one for this procedure to work (no de-
generate cells allowed), Fig. 2 illustrides this procedure for the
2D case.

M. LOCAL APPROXIMATION OF THE
LUNSTEADY VECTOR FIELD

From here on, all computations can be performed in uni-
form computational space. The unsteady vector field is ap-
prosimated in (local) 400 parameler space u.r.ing quadrilinear
interpolution for each cell. The varisbles £, n, &, amd ©denote
the |ocal parameters of a point in a cell in computational spece.
Assuming that both spafial dimensions and time dimension are
spaced uniformly, the vector field v = {w, v, w) 15 approxi-
munted by

viEn{. 1)=& 0. rh WE 0, ¢ 1. wE n.c. 1))

IR e L |
=¥ ¥V Yo B GBI (1), (3.0)

Jilf) Jasil] i i) [}
& mc r.e[01].

where ¥, is the vector at a vertex of & 4D gnid cell in -:umpl.f-
tational space. Fig. 3 shows trilinear interpolation for the 3D
steady case,

Higher-order approximates of the vector field could be used
as well, e.g., iensor product cubic interpolation (see [3] and [6]
for higher-order schemes). Unfortunately, this increases the
number of coefficients of the approximate drostically.

IV. LOCAL APPROXIMATION OF THE PARTICLE PATH

In order to reduce the particle path generation problem 1o
o trivariate approximation preblem, hnear interpolstionis
performed in the time dimension first. For each point x; =
(&, M & ) in computational space, lincar interpolation is
performed in the time dimension for 7= 1 vielding a particu-
far “time slice,” a 3D cube and vector values at its eight ver-
tices. The vectors ai the verices of a 4D cube are lincarly
interpolated yielding the vectors at the vertices of the 30
cube for T= 1.

The particle path in physical space will be approximated by o
point sequence Ko, Xy, Xy, .. . This 15 done by firs! computing o
punt sequence Xg, Xy X, .. in compadationnl space and then
mapping each poimt X (0 physical space. In the following, all
computations ane performed in compuiationn] space using local
parameters &, 1, and £ Denoting the last point computed by X,
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Fig. 3. Trilinear inerpalation of 30 steady vector field in compuintionel
SpaCE.

its position and the velocity amd scceleration al this point ane
used 0 compute g local quadratic particle path approsimiste.
Only the first three (1.e., spatial) coordinates are considered
for the local path approximate. Since the velocity vyt xpis
obtained by quadrilinear interpolation (313, the acceleration
o at X b5 independent of the time dimension of the 4D cell,
Thus, the acceleration at x; = (& iy, &) for =115 given by

= alg 0.61)

A
"y I;I' ‘I':IEI .'I. I’;I rﬂﬂ'l-ﬂ!-i]-ﬁ!‘

by My (4.1}
=¥ X X (vias=¥ia0) BUE) Blny) Bl(s; )

r=ll  f=ib E=f)

Gp- M5y €00, 1],
where ¥, i, J, k 1€ |0, 1], are the vectors at the vertices of
the 413 cell containing x;.
For reasons that will become obvious in Section V. the

quadratic curve defined by x,, v,, and m, is represented o5 2
Biézier curve, ie.,

]
eit)= 3 b, & (1), Te[0,T],

inld
where T is the time step used w0 compate the next point X,
and B}(1) = -j;lg[%]tr- £~ t'. The Bézier control points are

i4.2)

defined by the conditions ©f0) =x;,¢(0)=v,, and (0} =a,.
They are given by

h|:|'==|"
T (4.3)
b, =x, "'E""r-
and
by =%, +1¥ "'%'i-

where a Bézier control point is given by by = (e5. [ 3) (see [3]),
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Fig. 4. Local spprosimation of pamicle pad using gaadrmtic Béser curve

The time step T s chosen adaptively depending on the degree of

curvaiure of the particle path (see Section VI Fg. 4 illustrates the

guidratic Béper curve approximating the particle path of x;,.

REMARK 4.1. Bernstein-Bézier polynomials are used for the
representation of the local particle path approximae doe 1o
the existence of explicit formulas for prodocts and integrals
for these polyneminls. This fact allows a more elegant com-
putation for the pest particle position (Section V). The
method presented here is an alternative fo the conventional
Runge-Kutta methods using monomial basis functions, The
method discussed here and standard Runge-Kuila methods
allow the use of adaptive siep sizes, This, one can penerate
equally good approximabions of particle paths.

V. COMPUTATION OF THE NEXT PARTICLE POSITION

In peneral, the next position Xy, in computitionsl space 18
given by
4

Xy =X+ I v{e(T))dT,
[
where T =0 is associsted with the previous point x; (local time
parameter), In coordinate form, this expression is equivalent o
the three equations

(Erars Mpare §rn) = (€1 M 1)

+[ill|[tﬁ]}rﬁ, j"'[':ﬁ:] d%, jl“'[tiﬂjl ﬂ'f}cj 2)

]

(5.1

Therefore, the discussion is reduced 1o the computation of
£,y in the following parngraphs.
Using trilinear interpodation of the vectors
Viur = (i Vig Wiad b J ke |0, 1,

known at the vertices of the current cell, and inserting the local
quadratic path approximate e ) given in {4.2) into {3.2) yields
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Three integral types of products of Bernstein-Bérier poly-
nomials appear in (5.3). These integral types are given by

r r k| 3
I.J,H;?]d'? -]' Ea,ﬂﬁ?]]d‘r‘-lE a,, (54)
L] i =8 !r\-P

E tl.-l'ftﬂ] Y, 8,817 |47

[ 1] 5 Tl

r F
[ &y = |
L

-i § En;.ﬂrrﬁ @ [ar O
¥ , &)
“SHLEy
and
iﬁr!mm?ﬁ:
HE u,m,}][mﬂ’ ‘ﬂ][}: r‘ﬁﬂ] (5.6)

G

‘J EEE By e Bl ) [T
T {I+,r+.i:]
215 33wt SO

[r*r_h-i:.'

L= Jmii il

These imteprnl expréssions can be verified by using the
equation
]

j Bde= 2%, selabl (57)

for Bermnstein-Bézier polynomials defined over the general
interval [a, b] (see [3]) and

m

(7))

[ib.ﬂ.*'mLﬁl:E,-B;‘mJ EE b B.T "{x)(5.8)
=1 ={l { |+_g

il =i

(see [15]).

The point Xy, 18 then transformed into physical space, and a
one-step method 15 used to decide whether the time siep T
should be changed adaptively {see Section VI}. Since the com-
putational space is uniformly spaced, the cell containing the
point X i3 immediately known from the point’s coordinstes.

REMARK 5.1, Formulas (5.4), (5.5), and {5.6) are not veri-
fied here since this is done in [15], a echmical report. This
report lists and verifies varions properties of sums, products,
and quotients of Bernstein-Bézier polynomials.

V1. CHOOSING THE TIME STEP T

The next point Xy, (in physical space) might locally deviate
from the particle path more than some maximal tolerance. The
local deviation is measured in the following way: First, the
poing 1“. is computed using X; a5 previows point and 172 as
time step. Second, the point Km is computed using X,,, as
previous point and T/2 as time step. 1f the Euclidean distance o
between Xy, and X 5 is oo large, i.e, larger than a specified
maximal error olerance, one replaces Thy 772 and compuies a
new X;,;. This process is iterated until the Euclidean distance
d between the point pait Xy, and X,,; is smaller than the
specified maximal tolerance. Fig. 5 illustrates the ope-step
method for ardinary differential equations (see [1]).

The initial time step T used for the computation of a nexi
point x5, in computational space is T = 142w}, where || §
indicates the Euclidean norm. 1t could also be defined in terms
of a local curvature measure af x; and the Jacobian, IF the nexi

point Xy, in physical space does not lie in the same cell as X,
it i% ensured that it hies ina cell that shares at least one vertex
with the cell containing X,

Fig_ 5. Oine-wiep method for adapéively choosing time steq.
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Fig 6. Pasticle paths in constasi 30 wector Gedd  Fg 7. Panticle paths in oeady 3D wewor feld ini-
{umiform, reciilinear grid, resclution § x % = § x §;

Fig. B, Famicle paibs in smnesdy 30 vocior field
i E I [mniiForm, medilner grid, reeolutbon 25 = 35 = 2§
form, mectilinear grid, pesolution 10 = 100= 10= | 1 2k
Vi v D=l 1, Thx poee [0 10 2 % x 5 Vix w & 1) = (cos(Hxi), xin(Rpeh, $.25), & ¥,
viz 5 ob=(oi-2, Jlo 0)on premn = t& [0, 1.

Fig. 7. Particle paths in steady 30 vector field—ow around alreraft wing (curvilinear grid, resolutbon 12% = 33 = 33),

Fig. 10, Particle paths in ensisady 30 vocior feld—fAow in Pacfic Ocesn (corvilinear grid, resslution 98% = 657 « 6 5).
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WII. EXAMPLES

The method presented has been tesied for analyically de-
fined vector fields (for test purposes) and for steadyfunsteady
vector fields resulting from simulations of real-world configu-
rations. The following examples are based op grids that do wot
change over time, ie., the comnectivity mmong grd vertices
and the coordinates of grid vertices remain unchanged. In each
figure, coordinale axes are placed closest to the verex with
indbex triple [0, 0, 0]. Several particle paths are shown in each
vector field. The initial positions sre marked by “bulles.”

In Figs. &, 7, and B, the vector fields are defined analytically
over the unit cube. Fig, 9 shows particle paths in the steady
flow fiekd around an mircraft wing. The wang 15 highlighied,
For this particular example, the resulting particle paths have
been “verified” by comparing them with the ones resalting
from a standord fourth-order Runge-Kutta method, using the
game initial positions, adaptive time steps, and an extremely
small error tolerance. Fig, 10 shows particle paths in a portion
of an unsteady flow field The shuded surface represents the
bathymetry in the ocean.

ReEmank 7.1, In addition, a fourth-order Runge-Kutia algo-
rithm has besn applied (o the examples shown in Figs. 6, 7,
&, 9, and 10 using the sume initial positions and the same
maximal error wlerance. The resulting particle paths consist
of nearly the same number of points. A general siafement
regarding the closeness of the particle paths generted by
the new method and the ones generated by the fourth-order
Runge-Kuttn method cannot be made; the complesity of the
flow field ond the chosen maximal emror tolerance hove
major effect. Since the proposed method wses both an adap-
tive step size and o maximal error folerance, an arhitrary ac-
curncy of the particle path approximation can be achieved

REMARE 7.2, The curreni implementation of the proposed
methed is slightly slower than most Runge-Kutta implemsen-
tationz applied o the examples shown in Figs. 6, 7, 8, 9, and
10, 1t is reasonable o pssume that ope can improve the effi-
chency of the current implementation of the proposed methaod
by a factor of two 1o three by refining the spatial data struc-
tures and the search algorithns for the 30040 grids,

VI CONCLUSIONS

The particle path generation technigue presented can be
generalized to higher-order local approximations of both the
vector field and the particle path. [t is planned to extend the
approach by using local cubic approximates of the vector field
and considering a higher-order local path approximate. The
use of Bemnstein-Bézier polynomials for the local path ap-
proximation yields expressions that can be integrated exactly
and easily,

The technigue con be used o creaie siream lines, streak
lines, wnd time lines (see [13]) for unsteady veclor fields de-
fined on curvilinear, structured grids,
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