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Efficient Triangular Surface Approximations using
Wavelets and Quadtree Data Structures

Markus H. Gross,Associate Member, IEEE, Oliver G. Staadt, and Roger Gatti

Abstract—We present a new method for adaptive surface meshing and tri-
angulation which controls the local level-of-detail of the surface approxi-
mation by local spectral estimates. These estimates are determined by a
wavelet representation of the surface data. The basic idea is to decompose
the initial data set by means of an orthogonal or semi-orthogonal tensor
product wavelet transform (WT) and to analyze the resulting coefficients.
In surface regions, where the partial energy of the resulting coefficients
is low, the polygonal approximation of the surface can be performed with
larger triangles without loosing too much fine grain details. However, since
the localization of the WT is bound by the Heisenberg principle the meshing
method has to be controlled by the detail signals rather than directly by the
coefficients. The dyadic scaling of the WT stimulated us to build an hierar-
chical meshing algorithm which transforms the initially regular data grid
into a quadtree representation by rejection of unimportant mesh vertices.
The optimum triangulation of the resulting quadtree cells is carried out by
selection from a look-up table. The tree grows recursively as controlled by
detail signals which are computed from a modified inverse WT.
In order to control the local level-of-detail, we introduce a new class of
wavelet space filters acting as “magnifying glasses” on the data.
We show that our algorithm performs a low algorithmic complexity, so that
surface meshing can be achieved at interactive rates, such as required by
flight simulators. However, other applications are possible as well, such as
mesh reduction in complex data, FEM or radiosity meshing.
The method is applied on different types of data comprising both digital ter-
rain models and laser range scans. In addition, quantitative investigations
on error analysis are carried out.
Index Terms—Surface Meshing, Triangle Approximations, Level-of-Detail,
Quadtrees, Wavelet Transforms, Wavelet Space Filtering, Biorthogonal
Wavelets, Mean-Square Error, Digital Terrain Modeling

I. I NTRODUCTION

P
OLYGONAL surface approximations are an essential pre-
processing step in scientific visualization [1], since most

modern graphics hardware supports the display of shaded and
textured triangles. Nevertheless, in order to treat complex data
sets efficiently, methods have to be found to reduce the number
of triangles representing the data. This problem is not only strik-
ing in the field of digital terrain modeling and flight simulation,
but also in many other applications, such as finite element, ra-
diosity [2] or parametric surface meshing [3]. Hence, adaptive
triangle reduction techniques were established in the past. Most
of them try to find mathematical criteria for the importance of a
particular mesh vertex, remove it if applicable and perform a lo-
cal retriangulation of the mesh. [4] for instance analyzes single
vertices in the mesh and defines a planarity criterion to decide on
the removal of the vertex. In order to avoid cracks in the surface,
a local Delaunay triangulation has to be performed. Quadtree-
based methods [5] were proposed mostly for radiosity meshing,
where the mesh is controlled by the illumination gradient. Other
implementations are used for representing rectangular B-spline
patches [3].
A lot of work has also been done for the topologically more chal-
lenging case of 3D isosurfaces. Based on analysis of topolog-
ical problems [6], [7] arising with the marching cubes method,
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different approaches have been published computing adaptive
triangulations or reductions of an existing isosurface mesh.
Specifically, [8] used octrees to efficiently manage the surface
polygons. As a result, the octree is usually built from the vol-
ume data set.
Although most of the existing methods work well within the
above limitations and can be found in a broad range of appli-
cations, the basic issues arising from these approaches are as
follows:
1. The criteria employed to thin the triangle mesh are usually
based on simple local geometric surface features, such as pla-
narity or Gaussian curvature. It is difficult to quantify global
error bounds of the overall approximation.
2. The reduction of the triangle mesh is computationally ex-
pensive and once local retriangulations are performed, extensive
work on data structures and list management is required.
3. There is no elegant way to focus the level-of-detail locally
onto interesting data features — a property of increasing impor-
tance in complex data sets.
On the other hand, the wavelet transform, as presented in [9],
[10] or [11] has been discovered for computer graphics: [12],
[13] and [14] proposed volume rendering techniques, whereas
[15] published a volume morphing method. Even approximate
solutions of the radiosity equation can be achieved using WTs
[16], as well as visualization of multidimensional features, such
as in [17]. Others [18], [19] constructed multiresolution curves
or surfaces.
All of these approaches employ the WT to expand the data and
to control the parameters of the approximation within the math-
ematical bounds of theL2-energy norm.
The goal of the following paper is to point out an alternative ap-
proach to the adaptive triangulation problem: the usage of the
wavelet transform as an overall mathematical framework which
controls the data approximation. In some sense, the WT pro-
vides a local spectral estimate of the data and describes local
variations which can be harvested to govern the courseness of a
surface mesh.
As opposed to existing methods [19], [20] our approach ex-
tends prior work significantly, since it performs on any type of
wavelet, not only in the trivial case of linear splines. Therefore,
our criteria for vertex removal are elaborated much differently
and employ a modified inverse WT, which carries out the detail
signals of each channel. Furthermore, the introduction of a new
type of wavelet space filtering enables us to harvest one of the
most striking properties of the WT: the localization. This filter
helps to define local regions of interest.
Since our method targets at real-time applications, such as flight
simulation or virtual reality, we combine the wavelet domain
representation with quadtree based meshing. In contrast to ex-
isting look-up tables we propose an elaborated algorithm, which
provides consistent triangulations, even in the case of level-two
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transitions of adjacent nodes. In particular, it is shown, that the
resulting mesh is much more flexible, whereas the look-up table
has to be enlarged only moderately.
Some basic ideas of our method have been summarized in [21].
In the current paper, we have extended our investigations in
terms of various important aspects. Specifically, we emphasize
interpolation and boundary problems arising with the usage of
the WT. Furthermore, our algorithm is elaborated, where all re-
quired look-up tables are given and explained. We thoroughly
investigate the algorithmic complexity of the different process-
ing steps, an aspect of fundamental importance in computer sci-
ence. Finally, the performance of our triangulation method is
analyzed on several data sets, ranging from digital terrain mod-
els to laser range scans.
In particular, the triangulation step is embedded in a modified
inverse wavelet transform. A quadtree representation grows it-
eratively as the data is transformed back into the spatial domain.
Due to some symmetries within the quadtree cells, the local tri-
angulations can be computed from our look-up table. Thus, we
avoid complex list management and perform the triangulation at
nearly interactive rates.
The concept of our method is illustrated in Fig. 1. The initially
regular surface data grid has to be transformed into a quadtree
structure and each quadtree cell has to be triangulated using a
look-up table. In order to decide, whether a particular mesh
vertex can be removed, we first apply a WT onto the data and
then iteratively reconstruct the detail signals. The amplitude of
the detail signal is taken as a measure for the local frequency
characteristics and decides on the removal of points. The dyadic
scale of the standard WT allows to reconstruct the detail signals
from the different frequency channels separately. After the first
step each second data vertex of the grid is analyzed. Then, as
the iteration proceeds the next detail signal is reconstructed and
each fourth vertex is analyzed and so forth. This scheme en-
forces a loop consisting of a modified inverse WT to recover a
particular detail signal and an analysis step to label unimportant
coefficients. Applying wavelet space filtering allows an elegant
control of the local level-of-detail of the triangulation and acts
as a local “magnifier”. Furthermore, particular emphasis has to
be given to the boundary problems.
Although the scope of our paper is to present a method for 2D
surface meshing, it can also be extended to 3D to handle isosur-
faces or volumes with tetrahedralizations [22]. Moreover, some
of the different ideas encompassed by this method, such as the
detail signal criterion and the wavelet space filters can also be
used to govern existing meshing methods.
The organization of the paper is as follows: For reasons of
readability, we describe the mathematical framework of the 2D
wavelet transform for surface approximation and particular em-
phasis is given to the required extensions, such as modifications
of the QM-Filter pyramids to figure out the inverse WT or finite
intervals. Furthermore, mathematical formulations of filters in
wavelet space are explained and their importance for level-of-
detail control is stressed. The next section sheds light on the
quadtree-based mesh representation we propose and shows how
to derive local optimal cell triangulations from a look-up table.
The algorithmic complexity of the method as well as an error
analysis is elaborated in section IV. Finally, some examples from
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Fig. 1. Illustration of the basic concepts of the method: estimation of the sur-
face parameters useing the local detail signal of the WT, point removal and
quadtree based meshing of the remaining suface points.

a digital terrain model of the Swiss Alps and from various laser
range scans illustrate the superiority of the proposed method.

II. SURFACE APPROXIMATION USINGWAVELETS

A. The 2D Wavelet Transform

The 2D version of the Wavelet Transform (WT) expands any fi-
nite energy funtionf(x; y) 2 L2(R2 ) using a set of similar basis
functions a;b(x; y). Its generic continuous form description is
provided as the following inner product:

WTf; (ax; ay; bx; by) = hf;  a;bi =
1Z

�1

1Z
�1

 a;b(x; y)f
�(x; y) dxdy (1)

with ax; ay; bx; by 2 R.
The basis functions are derived from each other by scaling and
shifting one prototype function (x; y) controlled by the param-
etersax; ayandbx; by respectively [9].

 a;b =
1p
jaxayj

 

�
x� bx

ax
;
y � by

ay

�
(2)

h l;  ki = �(l � k); � : Kronecker-delta-function
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Most discrete formulations of the 2D-WT comprise a tensor
product extension along with a dyadic scaling of the bases with
ax = ay = 2 and a unit shiftbx = by = 1, by which the
respective bases are derived:

'2mpq(x; y) := 2�m'
�
2�mx� p

�
'
�
2�my � q

�
 2;1mpq(x; y) := 2�m 

�
2�mx� p

�
'
�
2�my � q

�
 2;2mpq(x; y) := 2�m'

�
2�mx� p

�
 
�
2�my � q

�
 2;3mpq(x; y) := 2�m 

�
2�mx� p

�
 
�
2�my � q

�
(3)

m : 1; : : : ;M iteration step.' stands for the so-called scaling
function. The upper index 2 denotes the dimension of the bases.
Consequently, any finite energy functionf(x; y) 2 L2(R2 ) can
be approximated by the bases elucidated above.

f(x; y) =
X
p

X
q

�
cMpq'

2
Mpq

+

MX
m=1

�
cm;1pq  2;1mpq + cm;2pq  2;2mpq + cm;3pq  2;3mpq

��
(4)

cmpq denotes the coordinate off in functional space with respect
to the wavelet mpq , i. e.

cmpq = hf;  mpqi (5)

Note, that the previous equation provides a multiresolution hier-
archy enabling the control of the bounds of any approximation.
For convenience, we will denote the coefficients simply with�ci.

B. Biorthogonal Wavelets

The final design of the wavelet bases is usually figured out
by further constraining the function’s shape and mathematical
properties. In most computer graphics applications [23] and
[24] we require strict local support along with an appropriately
smooth shape, symmetry and fast decay in frequency domain.
Unfortunately, these competing properties cannot be satisfied
with orthonormal wavelets. Chui [11] and Unser [25], however,
independently developed a class of B-spline wavelets which
meet the upper requirements. The bases are not orthogonal to
each other, but it is possible to set up a so-called dual frame to
perfectly reconstruct the signal from the transform.
Specifically, besides of scaling function' and wavelet the
entire transform is defined by a dual scaling function~' and a
dual wavelet~ .
The biorthogonal B-spline scaling functions of orderj can be
defined as a recurrence relation and are assumed to be the cardi-
nal B-spline bases:

'j(x) := ('j�1 � '1) (x) =

1Z
0

'j�1(x� t) dt; j � 2: (6)

That is, the bases are derived from each other by self-
convolution of an initial basis of order 1 where:

'1(x) :=

�
1 : 0 � x � 1
0 : else

(7)

Note, that the support of a B-spline basis is always bound by
[0; j]. Furthermore, the scaling functions are symmetric with
respect to the center of support.
Fig. 2 illustrates a set of different B-spline scaling functions of
ordersj = 1; 2; 3; 4.

a) b)

c) d)

Fig. 2. Cardinal B-Spline scaling functions of increasing order:
a) order 1. b) order 2. c) order 3. d) order 4.

The construction of a wavelet, which spans the orthogonal com-
plement spaceUm between two approximation spaces of scaling
functionsVm andVm�1 of different resolution is pointed out in
[9]. It starts from the relations of the biorthogonal setting in
either spatial or frequency domain and provides piecewise poly-
nomial functions of minimal support. The details of this con-
struction scheme won’t be stressed here.
The symmetry of the resulting cardinal B-spline wavelet is re-
stricted to an even order. Fig. 3 shows the functional course of
B-spline wavelets of increasing order. The first order type is
orthogonal and known as the Haar wavelet.

a) b)

c) d)

Fig. 3. Cardinal B-spline wavelets of increasing order:
a) order 1. b) order 2. c) order 3. d) order 4.

The implementation of biorthogonal wavelet transforms em-
ploys the well known QM-Filter pyramids [25], as depicted in
Fig. 4.
The dualism of the frames, however, forces us to apply different
filter sequences for the decomposition (H(!) andG(!)) and
for the reconstruction (~H(!) and ~G(!)). The approximation
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Fig. 4. Filter banks for separable 2D-biorthogonal wavelet transforms:
a) Decomposition. b) Reconstruction

A2
m+1f and detailsD2;1

m+1f ,D2;2
m+1f andD2;3

m+1f , generated by
the decomposition path of the filter bank from the higher resolu-
tion approximationA2

mf . The reconstruction bank works vice
versa. Fast implementations of the WT can be found in [26] and
are modified appropriately.

C. How to Recover Detail Signals

One problem arising with the fast QMF implementations of the
wavelet transform is, that we need access to the difference sig-
nal in each iteration stepm of the reconstruction. This is neces-
sary because the detail signal at a particular mesh vertex finally
decides whether or not it can be removed. For this purpose,
the reconstruction pyramid has to be modified, as indicated in
Fig. 5. The procedure recovers the full size detail signals�mf

represented by all wavelets atm = 1; : : : ;M and by the scal-
ing functionsfM . This can be accomplished by reversing the
trace of each detail signal from the original down the decom-
position pyramid. In other words, any detail signal�mf at
iteration depthm can be obtained from the respective wavelet
coefficients by subsequent filtering and upsampling. The final
output results from superimposing all detail signals:

f(x; y) =

MX
m=1

�mf(x; y) + fM (x; y): (8)

The required extensions of the QM-filterbank are straightfor-
ward.

D1
1 f

D1
2 f

A1
M f f (x, y)

� 2

D1
mf

G
~
(�)

G
~
(�)

H
~
(�)

H
~
(�)

�1 f

�2 f

�m f

�

�

�

� 2 � 2

G
~
(�) H

~
(�)� 2 � 2 � 2

H
~
(�)H

~
(�)� 2 � 2 � 2H

~
(�) fM

Fig. 5. Modified 1D-version of a QM-filterbank to recover the detail signals.

Note, that this procedure requires additional computation, but
although the wavelet coefficients are arranged on a dyadic grid,

the Heisenberg principle prevents using them as a direct crite-
rion for vertex removal. We will address this problem again in
section III.

D. Interpolation problems with cardinal B-spline wavelets

A problem arising with cardinal B-spline wavelets is the one
of interpolating basis functions. For convenience, let’s con-
sider again the one-dimensional case of approximating a func-
tion f(x). If we assume the initial set of samplesf (xp) = c0p =
fp; p : 0; : : : ; N � 1. To represent the wavelet coefficients at
iterationm = 0, the respective approximation obtained by the
corresponding scaling functions'0p 2 V0 yields:

f0(x) =

N�1X
p=0

c0p'
0
p(x) (9)

where'0p denote cardinal B-splines of any order. It is clear [25],
that this expansion does not reproduce the initial set of coeffi-
cientsc0p = fp at positionsxp, i. e.

f0 (xp) 6= fp (10)

In order to accomplish interpolation, we have to find a new set
of initial coefficientsĉ0p , which hold the interpolation equation
below:

f (xp) = fp =

N�1X
p=0

ĉ0p'
0
p (xp) 8p 2 [0; : : : ; N � 1] (11)

A further assumption of regular samples and a unit shift of the
bases with

'0p (xp) = '0 (x� xp) (12)

leads to the following linear system:

f = � � ĉ (13)

where

f =

0
BBBBBBB@

f (x0)
...
...
...

f (xN�1)

1
CCCCCCCA

� =

0
BBBBBB@

'(0) '(�1) '(�2) � � �
'(1) '(0) '(�1) � � �

... � � � � � � � � �

... � � � � � � � � �
'(N � 1) '(N � 2) � � � � � �

1
CCCCCCA

ĉ =

0
BBBBBB@

ĉ00
ĉ01
...
...

ĉ0N�1

1
CCCCCCA
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The unknown coefficient vector̂c is carried out, for instance, by
matrix inversion of� which solves the linear systems of equa-
tions.
Note, that the upper linear operator corresponds to a discrete
convolution off with �. In other words, interpolation can be
achieved by inverse low pass B-spline filtering.

E. Boundary Conditions

The wavelet transform and it’s fast implementation as a QM-
filter bank preassumes a periodic repetition of the samples in the
spirit of a torus topology. Consequently, the whole framework
is vulnerable to boundary problems on finite intervals. There
are several sources in literature (as [27] or [28], which attack
this problem and it turns out, that it is possible to construct
wavelets on finite intervals. However, this requires to relax the
self-similarity of the basis and ends up in different wavelets and
scaling functions at the boundaries. In the special case of B-
spline wavelets, the construction starts with a set of endpoint-
interpolating B-spline bases. The mathematical details should
not be explained here in detail, but although the respective pro-
jection operators become more complicated, the transform can
still be figured out in linear time. Some recipes are given in [12]
and [19].
Fig. 19 illustrates the influence of endpoint-interpolating mul-
tiresolution B-spline scaling functions as they decompose the
control vertices of a B-spline curve. In this example, the scaling
functions approximate the curve in different levels of detail.

F. Significance of Wavelet Coefficients

In the upper example, we eroded some curve details by decom-
position and rejection of detail coefficients. Consequently, if
any data set is transformed into wavelet space, it is necessary
to find appropriate criteria to control the accuracy of the surface
approximation provided by the wavelet bases. Furthermore, a
norm has to be found as a framework for the definition of error
bounds. This can be accomplished using the signal energyEtot
which is defined by theL2-norm:

Etot = kfk2 =

1Z
�1

1Z
�1

jf(x; y)j2 dxdy (14)

That is, in the discrete case of anN � N data set with values
(x1; : : : ; xN2) the squared sum of the data values represents the
signal energy. Due to the Parseval theorem, it equals the squared
sum of the wavelet coefficients�ci.

Etot =
N2X
i=1

jxij
2
=

N2X
i=1

j�cij
2 (15)

This relationship, however, is only valid for orthonormal func-
tion systems. In the case of biorthogonal wavelets, inner prod-
ucts do not vanish and modify eq. (15). Nevertheless, the upper
relations prove that any squared wavelet coefficient is a measure
for the fraction of energy provided by its basis functions. It is
clear that we can now formulate a simple criterion for the signif-
icance of particular wavelet coefficients introducing a threshold
� . Hence, we filter the coefficients according to:

~ci :=

�
0; j�cij

2
< �

�ci; j�cij
2 � �

(16)

Increasing� will result in increasing the error bounds of the
approximation and decreasing� will also decrease the approx-
imation error. A canonic quantification of the error is given by
the ratio of the remaining energyEr andEtot.
Those coefficients corresponding to the scaling functions should
be kept anyway, since they carry the DC part of the data.
The influence of global thresholding on a 2D laser range data
set of a human face (Sylvia) is illustrated in Fig. 20. We em-
ployed Haar wavelets to enhance the effect. As the number of
coefficients is dropped, the details of the approximation get lost.

G. Local Level-of-detail Filtering in Wavelet Space

The introduction of an energy threshold provides a tool for glob-
ally influencing the approximation of the wavelets. However,
one of the major strengths of the WT has not been harvested so
far: the localization properties. The local support of the basis
functions allows us to localize them both in spatial and in fre-
quency domain and rejecting a particular basis will only affect
its area of support. This important property enables an elegant
control of the local level-of-detail of the approximation. For this
purpose, the coefficients have to be weighted according to the
definition of the ROI which corresponds to a filter operation in
wavelet space. It can be defined in analogy with the well known
filters in spatial or frequency domain. Since the filter affects the
local frequency characteristics of the signal, we propose to call
it wavelet space filter.
Let g(x; y) be a Gaussian weighting function, centered at
(x0; y0), scaled by(�x; �y) and rotated by� which quantifies
the level-of-detail around some location in space(x0; y0) and
whose elliptical shape is depicted in Fig. 6a.

x

y

�x
2

�y

2
�

x0

y0

spatial domaina)

m=1

m=2

m=3

wavelet space

local coordinate system of the
frequency channels

ym

xm

b)

Fig. 6. Filtering in wavelet-space:
a) Rotated, translated and scaled 2D-Gaussian weighting function in spatial
domain. b) Transform of the filter into wavelet space results in multiple
Gaussians located in each channel.

In order to compute its transformation into wavelet space, we
have to note that any point(x0; y0) in spatial domain can only
be located within the Heisenberg bound in wavelet domain. Fur-
thermore, the spatial localization decreases with increasing iter-
ation depthm.
With the dyadic scale of our 2D-WT, however, the Gaussian
splits into all frequency channels and their centers are carried
out in wavelet space according to:
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xm0 :=
x0

2m
; ym0 :=

y0

2m
(17)

and the rotation angle� is invariant to the transform.
The set of Gaussian weighting functionsfgm (xm; ym)g in
wavelet space can be elegantly described by using homogeneous
coordinates:

gm (xm; ym) = e�(R
m

�pm)T (Rm�pm)+1 (18)

The matrixRm stands for the affine transform of the Gaussian:

Rm =

0
B@

cos�
�m
x

sin�
�m
x

�x0 cos �+y0 sin�
�x

� sin�
�m
y

cos�
�m
y

x0 sin��y0 cos�
�y

0 0 1

1
CA (19)

andpm = (xm;ym;1)
T denotes a position in homogeneous

coordinates.
To summarize this section: the control of the local level-of-
detail of the wavelet approximation can be accomplished by us-
ing one single Gaussian weighting function which surrounds the
region of interest in the initial data set. This Gaussian can be
interpreted as a filter which is transformed into multiple Gaus-
sians, one in each frequency channel in wavelet space. Premulti-
plying the coefficients with these Gaussian maps forces any sub-
sequent thresholding to pass only coefficients located within the
selected ROI. All others will be removed and hence the recon-
structed signal will be most accurate within the ROI along with
a Gaussian smoothing of the boundaries. Fig. 21 stresses the
effect of level-of-detail filtering. Sylvia’s model is decomposed
with Haar wavelets and filtered with Gaussians of different lo-
cations and parameters. The model is perfectly reconstructed
within the focus of the Gaussian, whereas only the scaling func-
tions represent the data outside. In the boundary region, less
and less high frequency information is provided and the data
becomes more and more “boxlike”. Obviously, the proposed
wavelet space filter acts as amagnifying glassonto the data.
We recommend applying the Gaussian filter and the thresholds
only to the wavelets and keeping all coefficients of the scaling
function, because they carry the DC fraction of the signal.

III. QUADTREE MESHING

A. Point Removal in Regular Triangle Meshes

So far, we elaborated some mathematical criteria for approxi-
mating a surface data set, sampled on a regular grid, using a
multiresolution hierarchy. In order to build an adaptive surface
triangulation, however, it is necessary to remove unimportant
mesh vertices and to find a triangulation of the remaining ones.
The basic criterion, by which a mesh vertex is labeled as unim-
portant is given by the mathematical framework of the wavelet
transform. In contrast to existing methods [18] which base on
linear spline wavelets, we aim at generalizing to any type of
wavelet. Therefore, our criteria require much more elaboration.
Keeping in mind that any triangulation of the surface provides a
planar approximation, we only have to bound the error between
the original surface functionf(x; y) and the bilinear interpolant
provided by a triangle. Supposing furthermore that the initial
data is expanded by wavelet bases, the detail signal in iteration

m helps us to decide whether or not each2m + 1th mesh ver-
tex is necessary for the triangle approximation. First, we visit
each second vertex and analyze the value of the detail signal of
iterationm = 1. If, let’s say, the detail signal�1f in some
neighborhood of vertex n is sufficiently low, then the vertex is
not important and the approximation can be accomplished by
a linear interpolation between vertexn � 1 andn + 1. This
scheme can now be applied recursively by subsequent computa-
tion of the detail signals�mf; m = 1; : : : ;M and by visiting
all dyadic vertices at positionsn = 2mk + 1. Once the detail
signal is sufficiently small and the adjacent vertices in stepm�1
are already removed, we are allowed to label the current vertex
as well.
As a consequence, our procedure results in recursively building
a quadtree representation of the initial mesh by removing dyadic
vertices. Fig. 7 again illustrates the thinning method which fi-
nally figures out the symbolic quadtree representation of the
mesh vertices depicted as an example in Fig. 8. The nodes of
the quadtree contain either pointers to some child-nodes, or in
case of leaves, point to the entries of a vertex list.

quadtree at m=1regular mesh quadtree at m=2

vertices to be analyzed at m=2
vertices to be analyzed at m=1

vertices to be analyzed at m=3

single–step inverse WT

Fig. 7. Recursive growth of a quadtree from the regular mesh by analysing the
detail signals of the WT at each dyadic vertex.

a1 a2

a3 a4
b

dc

1 2 3 4

5 6 7

8
9 10 11

12 13 14

a b c d

a1 a3 a4

root

vertex list

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a2

m=1

m=2

Fig. 8. Symbolic representation of the mesh using a quadtree data structure.
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Note again here that the growth of our quadtree is entirely con-
trolled by a single energy threshold� embedded in the function
space of the wavelets. The final maximum depth of the tree de-
pends on the upper decomposition boundM of the WT.
At a first glance, it seems to be natural to take a particular
wavelet coefficient to decide whether or not a vertex can be
removed. This works out in the trivial case of simple linear
splines. Extending the methods to arbitrary types of wavelets,
however, requires to elaborate the criteria significantly. This is
ultimately founded in Heisenberg’s uncertainty principle, deter-
mining the lower bound of the spatial frequency localization. If,
let’s say a wavelet has a particular spatial support, the the inner
product with the data exactly represents it’s contribution in that
region. In the general case, however, it is not possible to recover
the contribution of the wavelet at a specific vertex position in
that region from the coefficients. Moreover, this would preas-
sume a wavelet, whose spatial localization drops to zero, such
as with Delta-distributions. Obviousely, we have to find more
appropriate criteria than wavelet coefficients.
Therefore, to finally decide on whether a mesh vertex can be
removed or not, we propose the following criteria which also
helps to preserve the topology of the tree. Only in cases, where
all criteria areTRUE, can the vertex be removed:
1. Wavelet-criterion: a vertex at iterationm can be removed, if
the sum of the squares of its difference signal and those within
a 4-neighborhood at resolutionm is less than an upper bound�
(Fig. 9a). Upon removal, we preassume our difference signals
to be set to zero, but numerical reasons require to set� to a small
positive number.
2. Resolution-criterion: a vertex at iterationm can be removed,
if the four surrounding vertices at resolutionm� 1 were previ-
ously removed (Fig. 9b).
3. m to m-2-criterion: a vertex can be removed, if the resulting
cell is not adjacent to any cell with higher resolution thanm�2.
Thus, we restrict the growth to cell transitions fromm tom� 2
which simplifies the triangulation algorithm (Fig. 9c).

A

D

B

P

C

A

D

B

P

C

P

a) wavelet criterion b) resolution criterion c) m to m–2 criterion

�
2
A � �

2
B � �

2
C � �

2
D � �

2
P � �

Fig. 9. Illustration of the different criteria to decide on the vertex removal.

Another aspect of the method is illustrated in Fig. 10a, where
vertexP is analyzed. SupposeP survives all of the above cri-
teria. If we removeP , however and ifPU and PL are already
removed, i. e. if two adjacent cells have the same resolution,
then we must reject the verticesA andB on the cell boundaries,
too. Hence, when traversing the vertex array from upper left to
lower right, one has to keep track of upper and left vertices of
the same iteration stepm as well.
This additional criterion ends up with a partitioning of the initial
array into different regions (see Fig. 10b). Within these differ-

ent regions, we have to check only left, upper or both adjacent
vertices.

P

B

APL

PU  UL  UC  UR

 LL  LC  LR

 CC LC RC

distance

cell boundary
a) b) array

Fig. 10. a) Criteria to remove vertices on the edges of adjacent cells of the same
resolution. b) Resulting partitioning of the initial array.

B. Look-up Tables for Local Triangulations

Once the tree is built from the above procedure, the quadtree
cells have to be triangulated. A generic problem arising from
meshing hierarchies of rectangular surface patches is the occur-
rence of cracks [2]. A crack occurs if we do not take care of
adjacency of quadtree cells of different depth and, hence, dif-
ferent resolution. The surface may break up, holes may appear
and any consistency required for normal interpolation gets lost.
Fig. 11 shows a crack and also shows how to modify the trian-
gulation to avoid it.

crack

adjacent cells

(m) (m – 1)

consistent triangulation

(m) (m – 1)

Fig. 11. The occurrence of cracks at the boundaries of adjacent quadtree cells
of different resolution.

The scheme we introduce here for fast and consistent cell trian-
gulation is based on the following observation: consider Fig. 12,
where two adjacent cells are depicted along with topological ar-
rangements that may occur for transitions from resolutionm to
m � 1 andm � 2. There are only 5 cases at the respective
cell boundary. Let’s presume that we restrict the growth of the
quadtree so that only transitions up tom� 2 are possible (reso-
lution criterion). Consequently, the set of possible arrangements
of vertices at the four cell boundaries can now be derived from
Fig. 12. Moreover, some look-up tables may be built containing
the triangulations as explained below.
For cell transitions fromm to m � 1 a look-up table with 16
entries is built as presented in Fig. 13. The central idea of the
algorithm is to first solve the triangulation within each cell form

tom � 1. This is accomplished by analyzing the mesh vertices
along each cell edge.
The fast computation of the look up table entry can be accom-
plished by a binary outcode, generated from bitwise addition of
the flags of the respective edge vertices, as indicated in Fig. 13.
Once the corresponding look-up table entry is identified, we
then consider mesh vertices which account for them � 2 tran-
sitions. This may cause some triangles to be split up into two
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m m m m – 1 m m – 2

m

m – 2

m – 1

m – 1

m – 2m

Fig. 12. Topology of mesh nodes of adjacent cells for different resolutionsm,
m� 1 andm� 2.

0=0000 1=0001 2=0010 3=0011 4=0100

5=0101 6=0110 7=0111 8=1000 9=1001

10=1010 11=1011 12=1100 13=1101 14=1110

15=1111

vertex removed vertex

Fig. 13. Look-up table representing the optimal triangulation of all possible
cases fromm tom� 1 and corresponding outcode.

pieces, as shown in Fig. 14. Consequently, the algorithm first
computes the case form to m � 1 and then it decides on the
corresponding subcase, by simply analyzing the flags of all in-
termediate vertices responsible for transitions fromm tom� 2.
Although we get 625 possible cases, the total number of trian-
gles required does not exceed 96. They are stored in a look-up
table depicted in Fig. 15.

case 14 m to m – 1 m to m – 2

Fig. 14. Cell triangulation for cases fromm tom�2 as derived from a look-up
table entry ofm tom� 1.

All subcases are hardcoded and contain references to these look-
up table entries. Note, that although there are 625 cases only one
computation of the outcode and at most 8 additional tests are
necessary to compute the triangulation. It is clear that we end
up with a very efficient algorithm by doing the meshing without
any geometric computation but by just checking vertices along
the cell edges.
A corresponding pseudocode for the recursive quadtree traversal
and meshing is given with:
// The initial array has a size of (N+1)(N+1).
// Let N be a power of 2, N = 2I.

1

2

3

4 5

6

7

8 9
10

11
12

13
14

15
16

17

18

19 20

21 22

23 24

25 26

27

28

29 30

31 32

33

34

35

36
37 38 39

40

41

42 43 44

45
46

47

48 49

50 51 52

53

57

58

59 60

61 62
63

64

65

66

6768 69

70

71 7273

74

75
76

77

78 79

8081 82

83

8485

86

87

88

8990 9192

93

94

95

96

54 55

56

Fig. 15. Look-up table with all 96 possible triangles which are necessary for
transitions fromm tom� 2.

// Each cell is addressed by its upper left corner vertex.
// root cell
x = y = 0;
i = I;
traverse_quadtree(x,y,i);
procedure traverse_quadtree(x,y,i)
{

// compute center vertex of son cells
mh = 2i-1;
xmh = x+mh;
ymh = y+mh;
if (i>0) and flag(xmh,ymh)
{

i = i-1;
//analyze the son cells
traverse_quadtree(x,y,i);
traverse_quadtree(xmh,y,i);
traverse_quadtree(x,ymh,i);
traverse_quadtree(xmh,ymh,i);

} else
triangulate(x,y,i);

}

IV. ERRORS ANDCOMPLEXITY

A. Error Analysis of Planar Approximations

One important aspect, when dealing with surface approxima-
tions is to quantify the error of the method. In our approach,
error quantification is figured out by the following mean-square
measure. Letf(x; y) be the original surface andg(x; y) be an
approximation. We define the mean-square error��2, as:
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��2 =
1

�x�y

Z
�x

Z
�y

jf(x; y)� g(x; y)j
2
dxdy (20)

Note, that the error is normalized to the projected surface area
�x�y. In the discrete case, whereK samplesfi (xi; yi) of
the surface are provided at locations(xi; yi) ; i = 1; : : : ;K the
mean-square error is approximated by the following relation:

��2 �
1

K

KX
i=1

�(xi; yi)
2 (21)

where�(xi; yi) = f (xi; yi)� g (xi; yi).
Finally, in our triangle meshes the error integral of eq. (20) is
evaluated using Monte Carlo methods. For this purpose, we
compute a set ofK randomized locations within each of our
triangles and calculate the surface valuegi (xi; yi) by bilinear
interpolation. The respective reference value for the surface
fi (xi; yi) is obtained by bilinear interpolation of the four mesh
vertices in the initial data grid as depicted in Fig. 16. The con-
stant number of samples taken from each triangle forces the
overall number of samples for the evaluation to be distributed
according to the single triangle surface areas. Due to the adap-
tive triangulation, we end up with more samples in surface re-
gions of high curvature and accomplish a reasonable distribu-
tion. Thus, the local mean square errors of each triangle have
to be weighted with their corresponding surface areaA2D

T pro-
jected into 2D. The final expression of the overall mean square
error of the surface yields

�� =

vuuut
P

all tri

�
1
K

KP
i=1

(f (xi; yi)� g (xi; yi))
2
A2D
T

�

�x�y
(22)

P0

P1

P2

Q0 Q1

Q2Q3

S

initial mesh

triangular
surface patch

: samples

Fig. 16. Computation of the mean square error using a Monte Carlo method.

B. Some remarks on Algorithmic Complexity

One of the very advantages of our method is the low algorithmic
complexity for both computation of the respective transforms
and for the quadtree meshing. Whereas 2D-FFT based trans-
forms usually requireO

�
N2 log2(N)

�
computations, the 2D-

WT benefits from dyadic scaling and sparsity and requires only

O
�
N2
�

computations. Although we have to modify the initial
QMF-pyramid to compute the detail signal, the complexity still
remainsO

�
N2
�
. The final expression for the complexity CWT

of aD-dimensional WT, however, depends both on the support
S of the wavelet and on the iteration depthM :

CWT � DND S

MX
m=1

1

2D(m�1)

<
2DDND S

2D � 1
= O

�
ND
�

(23)

This is another important reason for the usage of strict compact
support wavelets such as the biorthogonal ones we recommend
here.
Similar investigations can be carried out for the complexity of
building up the quadtree: If, in the worst case, the traversal is
done up to the maximum depth of the WT,M , we have to per-
form at worst 4 energy tests for the wavelet criterion, 4 resolu-
tion tests and 16 tests for them to m � 2 criterion. Due to the
dyadic structure of the vertices to be analyzed, we end up with

CA = 24

MX
m=1

22I�2m

= 22I
�
8�

8

4M

�

= O
�
N2
�

(24)

to test the importance of vertices, which is still linear with re-
spect to the overall number of mesh verticesN2 = 22I .
The traversal of the array is carried out by the recursive proce-
dure of depthM given in the pseudocode. In the worst case
of none of the vertices to be labeled as being unimportant, it’s
complexity is quantified by

CB = SI�M
M�1X
m=0

4m

=
2I+M � 2I�M

3

= O
�
22I
�
= O

�
N2
�

(25)

It has to be noted, however, that the worst case analysis provides
only a theoretical upper bound. In “real life”, vertices labeled
as unimportant reduce the computational costs dramatically. A
single vertex removal in recursion depthm cuts a whole subtree
and saves

B =

MX
k=m

4k�m =
4M�k+1 � 4

3
(26)

tests.

V. A PPLICATIONS

A. Mesh Reduction and Error Analysis

For the following investigation, a digital terrain model of the
Swiss Alps, Matterhorn/Zermatt DHM 1:25000 was selected.
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The initial resolution of the mesh is256 � 256. The altitudes
range from 1855.1 m (La Monta) to 4431.9 m (Matterhorn). We
used cubic B-spline wavelets to decompose the data and the cor-
responding dual frames to approximate the reconstructions. The
iteration depth wasM = 4, andK = 3 samples were taken at
each triangle to compute the mean square error. Fig. 17 illus-
trates, how the ratio of triangle reduction behaves as a function
of the threshold� . Furthermore, the ratio of remaining wavelet
coefficients is recorded which can be interpreted as some kind
of coding gain. Finally, the root of the mean-square error is plot-
ted as well in meters. Note, that due to the logarithmic scale of
the threshold, the functional behavior of both percentage of co-
efficients and triangles is approximately linear. The relation is
further stressed in Fig. 18, where the number of triangles and the
mean square error are recorded as a function of the percentage
of coefficients employed for the approximation.

0

20

40

60

80

100

0.01 0.10 1.00 10.00 100.00 1000.00

� Number of coefficients [%]
+ Number of triangles [%]

� Mean–square error [m]

[�]

[%]

[m]

Fig. 17. Number of triangles, wavelet coefficients and mean-square error of
digital terrain model as functions of treshold� .
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� Mean–square error [m]
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Fig. 18. Number of triangles and mean-square error as function of the coeffi-
cients used for the approximation.

Some results of intermediate steps of the triangle reduction are
depicted in Fig. 22. The criteria which we defined to reject
unimportant mesh vertices thin in particular in those regions of
low surface curvature. This is due to the wavelet criterion which
provides an estimate of the local spectral energy of the data in
different frequency channels. Thus, local high frequency varia-
tions in our data force the meshing to be more dense. The corre-

sponding Gouraud-shaded models are also presented in Fig. 22.
In addition, depth cueing is used to enhance the presentation.

B. Level-of-Detail Control

The effect of wavelet space filtering using the Gaussian is illus-
trated in the images of Fig. 23 for the same data set. Changing
the parameters of the Gaussian ellipse allows us to concentrate
on the triangulation of local regions of interest. Hence, for real
time animations, such as flight simulation, our method enables
us to move the Gaussian for each frame according to the pilots
field of vision or line of sight and to adapt the approximation to
these parameters. Finally, Fig. 23d presents the Gouraud-shaded
image. Obviously, the Gaussian enables the user to interact with
a local “magnifying glass”

C. Laser Range Data

The following results were obtained on laser range data sets.
Fig. 24a and b show a locally enhanced mesh and it’s shaded
counterpart of a laser range scan of the city of Hannover, Ger-
many.
Another test of our method was carried out in Fig. 25,
which presents both globally and locally thresholded images of
Sylvia’s face.
For the upper investigations, we took an orthogonal projection.
In the general case of cylindrical scans, however, we recommend
to interpret the angular coordinate immediately in the spirit of a
cylindrical projection [17].
Again, the local spectral estimation properties force the algo-
rithm to reduce the mesh either in low frequency regions or
where the user has directed the Gaussian filter.

D. Implementation

Our current implementation of the method is based onAVS 5
and was not tuned for real time performance. Nevertheless, we
achieve meshing rates of less than 1s for a 256x256 data set on
an SGI-Indy, 64 MB, R4400, also depending on the degree of
mesh reduction. Actually, the major bottleneck is theGeometry
Viewer module ofAVS, rather than any of the described algo-
rithms.
In the previous examples, we compared two polynomial approx-
imations. Therefore, we picked an appropriate tolerance mea-
sure� and computed the resulting error. If, instead we base
the error analysis on the wavelet approximation, it is straight-
forward to predefine a particular error bound to be kept. This
requires, however, additional computations. After sorting the
wavelet coefficients, the detail signals reconstructed from the
recoverd wavelets can be used to compute a mean-square error
and can be summed up to a particular upper bound.

VI. CONCLUSIONS

We presented a method for fast and efficient surface meshing
which benefits from two basic ideas: First, any control of the
surface mesh is computed by using an initial wavelet decom-
position of the data samples. The mathematical framework of
the WT allows us to bound the errors of the approximation and
efficient criteria on whether or not single mesh vertices can be
removed are provided by analyzing WT outputs. Furthermore,
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wavelet space filters allow a control of the quality of the sur-
face approximation within local regions of interest and act as
local magnifying glasses. Secondly, the dyadic structure of the
2D-WT motivated us to build a quadmesh from the initial reg-
ular grid. Any triangulation of each quadtree cell is obtained
by using a look-up table and hence no additional computation is
required for the triangulation, as with standard Delaunay-based
methods.
Due to the low complexity of this algorithm, we can achieve
retriangulations of the surface at nearly interactive rates in the
current AVS implementation on SGI workstations. Thus, we
guess that our method is particularly well suited for real-time
applications, as virtual reality or flight and driving simulation.
Especially, when considering low altitude flights the Gaussian
filter could help to control the level-of-detail of the pilot’s field
of vision. Moreover, any object instance of a geometric data
base related to the terrain might also be controlled by the wavelet
transform. For this purpose, the actual depth of the quadtree at
the object’s location on the terrain is used to govern the data
base and to select the object instance to be rendered.
Although the method requires an inverse WT with each new tri-
angulation, we have proven the algorithmic complexity is still
low. It is clear that we can map the WT onto special purpose
hardware, such as signal processors. Currently, the method is
implemented in terms of different AVS modules.
Future research has to be conducted towards extensions of the
method for 3D isosurfaces in volume data using tetrahedraliza-
tions of an octree built from the WT. Additional tuning of the
mesh could also be carried out by using the directional selectiv-
ity of the WT.
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Fig. 19. Decomposition of a B-spline curve using cubig B-spline scaling functions of different resolutionM :a)M = 0. b)M = 1. c)M = 2. d)M = 3.



14 REPRINT:IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 2, JUNE 1996, PP. 130-143

a) b)

c) d)

Fig. 20. Different levels of approximation of Sylvia’s data set by global thresholding of Haar wavelets.C: percentage of remaining coefficients (data source
courtesy ZGDV, Darmstadt).
a)� = 0, C = 100%. b) � = 1,C = 13:7%. c) � = 100, C = 1:7%. d) � = 10000, C = 0:2%.
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a) b) c)

Fig. 21. Example for local level-of-detail filtering in wavelet space: Decomposition of Sylvia’s face with Haar wavelets and filtering with differentGaussian
space-frequency filters.
a)�x = 80, �y = 80, � = 0. b)�x = 50, �y = 30,� = 0 c) �x = 80, �y = 20, � = �=4
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a)

b)

c)

Fig. 22. Adaptive meshing of the digital terrain model: wireframe and Gouraud shaded.� : threshold,C: remaining coefficients,T : no. of triangles,��: mean-
square error (data source: courtesy provided by Bundesamt für Landestopographie, Bern, Switzerland).
a) � = 0, C = 100%, T = 131072, �� = 2:8. b) � = 0:5,C = 18:6%, T = 72386, �� = 3:6. c) � = 15, C = 5:6%, T = 29901, �� = 7:2.
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a) b)

c) d)

Fig. 23. Level-of-detail meshing using wavelet space filtering (C: remaining coefficients,T : no. of triangles):
a) �x = 20, �y = 20, � = 0, C = 5:2%, T = 14753. b) �x = 30, �y = 10, � = 0, C = 4:2%, T = 11920. c) �x = 20, �y = 10, � = �=4,
C = 2:3%, T = 9101. d)�x = 20, �y = 20,� = 0, C = 5:2%, T = 14753.
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a) b)

Fig. 24. Locally adaptive mesh of a laser range image of the city of Hannover:C = 9:0%, T = 19:7%:
a) Gouraud shaded image. b) mesh as a wireframe.
(data source: courtesy provided by Dornier GmbH, Germany)

a) b) c)

Fig. 25. Globally and locally reduced meshes of Sylvia’s image:
a) original:� = 0,C = 100%, T = 95142. b) global threshold:� = 50,C = 3:1%, T = 9900 c) local threshold:�x = 20, �y = 25,� = 0,C = 5:9%,
T = 13876.




