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Efficient Triangular Surface Approximations using
Wavelets and Quadtree Data Structures

Markus H. GrossAssociate Member, IEEBliver G. Staadt, and Roger Gatti

Abstract—We present a new method for adaptive surface meshing and tri- different approaches have been published computing adaptive
angulation which controls the local level-of-detail of the surface approxi- triangulations or reductions of an existing isosurface mesh.

mation by local spectral estimates. These estimates are determined by a - -
wavelet representation of the surface data. The basic idea is to decomposespeCIflca”y' [8] used octrees to efﬂmently manage the surface

the initial data set by means of an orthogonal or semi-orthogonal tensor polygons. As a result, the octree is usually built from the vol-
product wavelet transform (WT) and to analyze the resulting coefficients. yme data set.

In surface regions, where the partial energy of the resulting coefficients Although most of the existing methods work well within the
is low, the polygonal approximation of the surface can be performed with

larger triangles without loosing too much fine grain details. However, since above limitations and can be found in a broad range of appli-
the localization of the WT is bound by the Heisenberg principle the meshing cations, the basic issues arising from these approaches are as
method has to be controlled by the detail signals rather than directly by the {g||ows:

coefficients. The dyadic scaling of the WT stimulated us to build an hierar- L . .

chical meshing algorithm which transforms the initially regular data grid 1. The C”te_”a employed to th'r_] the triangle mesh are usually
into a quadtree representation by rejection of unimportant mesh vertices. based on simple local geometric surface features, such as pla-
The optimum triangulation of the resulting quadtree cells is carried out by narity or Gaussian curvature. It is difficult to quantify global
selection from a look-up table. The tree grows recursively as controlled by error bounds of the overall approximation

detail signals which are computed from a modified inverse WT. . . . .
In order to control the local level-of-detail, we introduce a new class of 2. The reduction of the triangle mesh is computationally ex-

wavelet space filters acting as “magnifying glasses” on the data. pensive and once local retriangulations are performed, extensive
We show that our algorithm performs a low algorithmic complexity, sothat  \work on data structures and list management is required.

surface meshing can be achieved at interactive rates, such as required by . .

flight simulators. However, other applications are possible as well, such as 3. There IS r]O elegant way to focus the Ieve!'Of'det"_“" Igcally
mesh reduction in complex data, FEM or radiosity meshing. onto interesting data features — a property of increasing impor-
The method is applied on different types of data comprising both digital ter-  tance in complex data sets.

rain models and laser range scans. In addition, quantitative investigations On the other hand, the wavelet transform, as presented in [9],

on error analysis are carried out. has b di df hics:
Index Terms-Surface Meshing, Triangle Approximations, Level-of-Detail, [1O] or [11] as been discovered for computer graphics: [12]’

Quadtrees, Wavelet Transforms, Wavelet Space Filtering, Biorthogonal [13] and [14] proposed volume rendering techniques, whereas

Wavelets, Mean-Square Error, Digital Terrain Modeling [15] published a volume morphing method. Even approximate
solutions of the radiosity equation can be achieved using WTs
|. INTRODUCTION [16], as well as visualization of multidimensional features, such

OLYGONAL surface approximations are an essential pr%—f SITJI’[]‘:;?C]G SOthers [18], [19] constructed multiresolution curves

processing step in scientific visualization [1], since moiﬂl fthese a
; . pproaches employ the WT to expand the data and
modern graphics hardware supports the display of shaded Q%ntrol the parameters of the approximation within the math-

an
textured triangles. Nevertheless, in order to treat complex da?r% . 5

- ’ atical bounds of thé=-energy norm.
sets efficiently, methods have to be found to reduce the num%r ! u 9y

of triangles representing the data. This problem is not only stri i Oeaggigofggeagoggx 29,: r?;]pgeljl;it;)np;rlggzur;ﬂhﬂtﬁr;sggif 5] e
ing in the field of digital terrain modeling and flight simulation '

but also in manv other anplications. such as finite element \r/quelet transform as an overall mathematical framework which
o y ' app ‘T » @ntrols the data approximation. In some sense, the WT pro-
diosity [2] or parametric surface meshing [3]. Hence, adaptive

. . . : : vides a local spectral estimate of the data and describes local
triangle reduction techniques were established in the past. M Aliations which can be harvested to govern the courseness of a
of them try to find mathematical criteria for the importance of Surface mesh
particu!ar mesh vertex, remove it if app'licable and performglg\—s opposed t.o existing methods [19], [20] our approach ex-
cal r_etrlangulatlon of the me_sh. [4] for m_stan(_:e a_malyzes S.m%ends prior work significantly, since it performs on any type of
vertices in the mesh and defines a planarity criterion to dec'dev?/:gvelet, not only in the trivial case of linear splines. Therefore,

the removal of the vertex. In order to avoid cracks in the surfacOeUr criteria for vertex removal are elaborated much differently

a local Delaunay triangulation has to be performed. Quadtr%e

S -and employ a modified inverse WT, which carries out the detail
based methods [5] were proposed mostly for radiosity meshin : :
s(i?gnals of each channel. Furthermore, the introduction of a new

where the mesh is controlled by the illumination gradient. Oth? e of wavelet space filtering enables us to harvest one of the

Implementations are used for representing rectangular B'Sp“rﬁ%st striking properties of the WT: the localization. This filter

E\alltih?s [3]|'(h lsob q for the topoloaicall h helps to define local regions of interest.
otorworkhas also been done forthe topologically more Chag;, . o, method targets at real-time applications, such as flight
lenging case of 3D isosurfaces. Based on analysis of topolg
<]

ical problems [61. 171 arisina with the marching cubes metho Hhulation or virtual reality, we combine the wavelet domain
icalp [6], [7] arising wi Ing cu presentation with quadtree based meshing. In contrast to ex-

The authors are with the Computer Science Department, Swiss Federal |H§t§!”9 IOOk'uP t.ables We prOpo_Se an E|ab9rated algorlthm, which
tute of Technology (ETH), Ziirich, Switzerland. E-mail: grossm@inf.ethz.ch. provides consistent triangulations, even in the case of level-two
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transitions of adjacent nodes. In particular, it is shown, that the ‘ initial mesh ‘
resulting mesh is much more flexible, whereas the look-up table

has to be enlarged only moderately.

Some basic ideas of our method have been summarized in [21]. @

In the current paper, we have extended our investigations in

terms of various important aspects. Specifically, we emphasize  option ‘ wavelet transform ‘

interpolation and boundary problems arising with the usage of-. - -~~~ "~ --

the WT. Furthermore, our algorithm is elaborated, where all r Wavelet space E> @
. . . ; filter

quired look-up tables are given and explained. We thoroughly .~

,

investigate the algorithmic complexity of the different process- @

ing steps, an aspect of fundamental importance in computer sci-

ence. Finally, the performance of our triangulation method is ‘ thresholding ‘

analyzed on several data sets, ranging from digital terrain mod-

els to laser range scans.

In particular, the triangulation step is embedded in a modified \ @

inverse wavelet transform. A quadtree representation grows it- ah

eratively as the data is transformed back into the spatial domain. ' 4 ‘ modified inverse WT ‘

Due to some symmetries within the quadtree cells, the local tri- co

angulations can be computed from our look-up table. Thus, J\‘?Qpn?ver | @ °
avoid complex list management and perform the triangulation at | 9 } =
nearly interactive rates. < ‘ quadtree refinement ‘ $$ g
The concept of our method is illustrated in Fig. 1. The initially ‘ <
regular surface data grid has to be transformed into a quadtree @ <
structure and each quadtree cell has to be triangulated using a 2
look-up table. In order to decide, whether a particular mesh ; s
vertex can be removed, we first apply a WT onto the data and ‘ meshing ‘ s g
then iteratively reconstruct the detail signals. The amplitude of =

the deta|l'5|.gnal IS take.n as a measure for the .Iocal frequer,gg;é{ 1. lllustration of the basic concepts of the method: estimation of the sur-
characteristics and decides on the removal of points. The dyadiGace parameters useing the local detail signal of the WT, point removal and

scale of the standard WT allows to reconstruct the detail signalsquadtree based meshing of the remaining suface points.
from the different frequency channels separately. After the first

step each second data vertex of the grid is analyzed. Then, aqs ital terrai del of the Swiss Al dqf . |
the iteration proceeds the next detail signal is reconstructed shygital terrain modet ot the SWISS Alps and from various laser
nge scans illustrate the superiority of the proposed method.

each fourth vertex is analyzed and so forth. This scheme &
forces a loop consisting of a modified inverse WT to recover a
particular detail signal and an analysis step to label unimportant

coefficients. Applying wavelet space filtering allows an elegafit The 2D Wavelet Transform

control of the local level-of-detail of the triangulation and actghe 2D version of the Wavelet Transform (WT) expands any fi-
as a local “magnifier”. Furthermore, particular emphasis hasgie energy funtiorf (z, ) € L*(R?) using a set of similar basis
be given to the boundary problems. functionsy, ;s (z, y). Its generic continuous form description is

Although the scope of our paper is to present a method for 2povided as the following inner product:
surface meshing, it can also be extended to 3D to handle isosur-

faces or volumes with tetrahedralizations [22]. Moreover, some

Il. SURFACE APPROXIMATION USINGWAVELETS

of the different ideas encompassed by this method, such as the WT; (@, ay,ba,by) = (f, Yap) =

detail signal criterion and the wavelet space filters can also be )

used to govern existing meshing methods. / / o (2,9) f* (2, y) dady )
The organization of the paper is as follows: For reasons of ’

—00 —00

readability, we describe the mathematical framework of the 2D
wavelet transform for surface approximation and particular efgith q,, ay,ba,by € R

phasis is given to the required extensions, such as modificatiqfg basis functions are derived from each other by scaling and
of the QM-Fllter pyramids to figure out the inverse WT or flnlt%h|ft|ng one prototype functiom(x, y) controlled by the param-
intervals. Furthermore, mathematical formulations of filters igersq,,, ayand,., b, respectively [9].

wavelet space are explained and their importance for level-of-

detail control is stressed. The next section sheds light on the 1 z—by y—10y
guadtree-based mesh representation we propose and shows how Yap = \/mw ( ar | ay >

to derive local optimal cell triangulations from a look-up table.

The algorithmic complexity of the method as well as an error

analysis is elaborated in section IV. Finally, some examples from  (¢yy,¢y) = 6(1 — k), § : Kronecker-delta-function

(2)
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Most discrete formulations of the 2D-WT comprise a tensor

product extension along with a dyadic scaling of the bases with o1 (z) = { 1 : 0<z<1 )
a;, = ay = 2 and a unit shifth, = b, = 1, by which the 0 : else
respective bases are derived: Note, that the support of a B-spline basis is always bound by
[0,7]. Furthermore, the scaling functions are symmetric with
2  olm —m —m respect to the center of support.
Pmpa (T,y) =270 2"z —p)e 27"y ) Fig. 2 illustrates a set of different B-spline scaling functions of
mpg(@,9) =279 (27 —p) @ (27My — q) ordersj = 1,2,3,4.
2,2  o— - -
mpq(way) =2 m(p (2 mw_p)'(/}(Q my—Q) a) b)
g (2,y) =27 (27" —p)p 27"y —q) (3
m : 1,..., M iteration step.p stands for the so-called scaling

o

function. The upper index 2 denotes the dimension of the base
Consequently, any finite energy functigtr, y) € L*(R?) can
be approximated by the bases elucidated above.

c) d)

flz,y) = ZZ (C%Q‘J%\/lm
P 4q

M
m,1,2,1 m,2,,2,2 m,3,,2,3
+ Z (Cpq mpg T Cpg” Vmpg T Cpq mpq) ) (4)

m=1 Fig. 2. Cardinal B-Spline scaling functions of increasing order:

. ) . . der 1. b) order 2. c) order 3. d) order 4.
cp, denotes the coordinate gfin functional space with respect a) order 1. b) order 2. ¢) order 3. d) order

i
to the wavelety, i. e. The construction of a wavelet, which spans the orthogonal com-

m plement spac¥,,, between two approximation spaces of scaling
Cpg = (£, mpq) () functionsV,,, andV,,,_; of different resolution is pointed out in

Note, that the previous equation provides a multiresolution hidPl- 1t starts from the relations of the biorthogonal setting in
archy enabling the control of the bounds of any approximatiofither spatial or frequency domain and provides piecewise poly-

For convenience, we will denote the coefficients simply wijth nomial functions of minimal support. The details of this con-
struction scheme won'’t be stressed here.

B. Biorthogonal Wavelets The symmetry of the resulting cardinal B-spline wavelet is re-

t{icted to an even order. Fig. 3 shows the functional course of

' . . ' S
The final design of the wavelet bases is usually figured ogt_ . . : .
by further constraining the function’s shape and mathematic::%fplme wavelets of increasing order. The first order type is

. ; o orthogonal and known as the Haar wavelet.
properties. In most computer graphics applications [23] and
[24] we require strict local support along with an appropriately — b)
smooth shape, symmetry and fast decay in frequency domain. | 1
Unfortunately, these competing properties cannot be satisfied |
with orthonormal wavelets. Chui [11] and Unser [25], however,
independently developed a class of B-spline wavelets which| "
meet the upper requirements. The bases are not orthogonal to -
each other, but it is possible to set up a so-called dual frame to
perfectly reconstruct the signal from the transform. K ’

Specifically, besides of scaling functignand wavelet) the ' YT

entire transform is defined by a dual scaling functipand a — I'. |' | r—
dual wavelet). i LW

The biorthogonal B-spline scaling functions of orgecan be & |

defined as a recurrence relation and are assumed to be the cardi-

nal B-spline bases: Fig. 3. Cardinal B-spline wavelets of increasing order:
a) order 1. b) order 2. c) order 3. d) order 4.

d)

The implementation of biorthogonal wavelet transforms em-
¢j_1(z —t)dt, j >2. (6) ploys the well known QM-Filter pyramids [25], as depicted in

Fig. 4.

The dualism of the frames, however, forces us to apply different
That is, the bases are derived from each other by sdifter sequences for the decompositiati ((v) and G(w)) and
convolution of an initial basis of order 1 where: for the reconstructionH (w) and G(w)). The approximation

pj(T) == (pj-1*p1) (z) =

o _
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decomposition ‘ reconstruction

the Heisenberg principle prevents using them as a direct crite-
rion for vertex removal. We will address this problem again in
section IlI.

D. Interpolation problems with cardinal B-spline wavelets

A problem arising with cardinal B-spline wavelets is the one

comns o \ of interpolating basis functions. For convenience, let's con-
12: downsampling 12: upsampling sider again the one-dimensional case of approximating a func-

tion f(x). If we assume the initial set of samplgéz, ) = ¢ =

fps p: 0,...,N — 1. To represent the wavelet coefficients at

Fig. 4. Filter banks for separable 2D-biorthogonal wavelet transforms: iterationm = 0, the respective approximation obtained by the

a) Decomposition. b) Reconstruction corresponding scaling functiogs,, € V; yields:

a) b)

N—-1
A2 | fanddetailD2 | f, D22, f andD2?’ , f, generated by @) =3 b )
the decomposition path of the filter bank from the higher resolu- =0
: o : )
SZ?SZpE;Z?I{:qatllgrﬁ”ﬁ{éﬂgg:(;ffhoens&? Egznbza;g:jr:’(\;oi:]kfz\é'f:wdherewg denote cardinal B-splines of any order. It is clear [25],

. P . Hht this expansion does not reproduce the initial set of coeffi-
are modified appropriately. cientsc — f, at positionsz,, i. €

p Ji.e.

C. How to Recover Detail Signals ) 4 f (10)
L . X . p p
One problem arising with the fast QMF implementations of the e to accomplish interpolation, we have to find a new set

wavelet transform is, that we need access to the difference ygi,a coefficients) , which hold the interpolation equation
nal in each iteration step of the reconstruction. This is neces oW

sary because the detail signal at a particular mesh vertex finally

decides whether or not it can be removed. For this purpose, Nt

the reconstruction pyramid has to be modified, as indicated in R

Fig. 5. The procedt?rye recovers the full size detail sigalsf fl@p)=fp=3 &ep(ap) VP ED,... ,N=1] (1)
represented by all waveletsat = 1,..., M and by the scal- p=0

ing functionsf,;. This can be accomplished by reversing th& further assumption of regular samples and a unit shift of the
trace of each detail signal from the original down the decorhases with

position pyramid. In other words, any detail signs},f at

iteration depthm can be obtained from the respective wavelet o (zp) = ©° (z — xp) (12)
coefficients by subsequent filtering and upsampling. The finahds to the following linear system:

output results from superimposing all detail signals:

y f=&-¢ (13)
Fey) =3 Anfla,y) + fulz,y). (8) Where
m=1
The required extensions of the QM-filterbank are straightfor- f (o)
ward. :
f =
® ;
bif At f(anoa)
| | W ©(0) e(=1)  ¢(=2)
: : : e(1) (0)  »(=1)
okt 2G| -T2-f | DAt - @ - |
| | 0

I o [T R T > SR %) AT “

Fig. 5. Modified 1D-version of a QM-filterbank to recover the detail signals.

Note, that this procedure requires additional computation, but :
although the wavelet coefficients are arranged on a dyadic grid, &y
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The unknown coefficient vectaris carried out, for instance, by
matrix inversion of® which solves the linear systems of equa- . |0, &l <
tions. = {

Note, that the upper linear operator corresponds to a discrete . ] o )
convolution off with ®. In other words, interpolation can pelncreasingr will result in increasing the error bounds of the

16
Ci, |c_2|2 >T ( )

achieved by inverse low pass B-spline filtering. approximation and decreasimgwill also decrease the approx-
imation error. A canonic quantification of the error is given by
E. Boundary Conditions the ratio of the remaining enerdy, and Exot.

- . . hose coefficients corresponding to the scaling functions should
The wavelet transform and it's fast implementation as a QM- :
) o - < 'pe kept anyway, since they carry the DC part of the data.
filter bank preassumes a periodic repetition of the samples in ee fluence of alobal thresholding on a 2D laser ranae data
spirit of a torus topology. Consequently, the whole framewor 9 g g

is vulnerable to boundary problems on finite intervals. Thel: ot céf daHr;l;T\?vr;\f/Z(I:eets(?gI;ﬁr)l;icllclau;:(reaé?‘fié? ';'g tﬁg.n\évnibinrq;)f
are several sources in literature (as [27] or [28], which atta y '

this problem and it turns out, that it is possible to construEPfo'C'entS 's dropped, the details of the approximation getlost.

wavelets on finite intervals. However, this requires to relax tfbe
self-similarity of the basis and ends up in different wavelets and
scaling functions at the boundaries. In the special case of Bae introduction of an energy threshold provides a tool for glob-
spline wavelets, the construction starts with a set of endpoiatly influencing the approximation of the wavelets. However,
interpolating B-spline bases. The mathematical details shogide of the major strengths of the WT has not been harvested so
not be explained here in detail, but although the respective pfar: the localization propertiesThe local support of the basis
jection operators become more complicated, the transform danctions allows us to localize them both in spatial and in fre-
still be figured out in linear time. Some recipes are given in [12uency domain and rejecting a particular basis will only affect
and [19]. its area of support. This important property enables an elegant
Fig. 19 illustrates the influence of endpoint-interpolating mugontrol of the local level-of-detail of the approximation. For this
tiresolution B-spline scaling functions as they decompose therpose, the coefficients have to be weighted according to the
control vertices of a B-spline curve. In this example, the scaliigfinition of the ROI which corresponds to a filter operation in
functions approximate the curve in different levels of detail. wavelet space. It can be defined in analogy with the well known
filters in spatial or frequency domain. Since the filter affects the
F. Significance of Wavelet Coefficients local frequency characteristics of the signal, we propose to call

In the upper example, we eroded some curve details by decdw\-’a\/e'et space filter i o _
position and rejection of detail coefficients. Consequently, j€t 9(%:y) be a Gaussian weighting function, centered at
any data set is transformed into wavelet space, it is necessdiy ¥0): scaled by(o., 0,) and rotated by which quantifies

to find appropriate criteria to control the accuracy of the surfale level-of-detail around some location in spaeg, yo) and
approximation provided by the wavelet bases. FurthermoreVgose elliptical shape is depicted in Fig. 6a.
norm has to be found as a framework for the definition of error

bounds. This can be accomplished using the signal erféggty spatial domain

which is defined by thé.2-norm: y m=3

o 1% PRSI IRUERT &
) ol & | &7 || =
Yo{----7/--- N - - U

Local Level-of-detail Filtering in Wavelet Space

b) wavelet space

Erot = I|I* = / / flay)Pdedy  (18)

—00 —00 m=1 i
That is, in the discrete case of & x N data set with values : . L;xm L*
(z1,...,zn2) the squared sum of the data values represents the X
signal energy. Due to the Parseval theorem, it equals the squared local coordinate system of the

. frequency channels
sum of the wavelet coefficients.

Fig. 6. Filtering in wavelet-space:
N2 N2 a) Rotated, translated and scaled 2D-Gaussian weighting function in spatial
_ 02 — 2 domain. b) Transform of the filter into wavelet space results in multiple
Etot = Z |w‘| - Z |c’| (15) Gaussians located in each channel.
i=1 i=1

This relationship, however, is only valid for orthonormal funch order to compute its transformation into wavelet space, we
tion systems. In the case of biorthogonal wavelets, inner prdhve to note that any poitito, yo) in spatial domain can only
ucts do not vanish and modify eq. (15). Nevertheless, the upperlocated within the Heisenberg bound in wavelet domain. Fur-
relations prove that any squared wavelet coefficient is a meastinermore, the spatial localization decreases with increasing iter-
for the fraction of energy provided by its basis functions. It igtion depthn.

clear that we can now formulate a simple criterion for the signi¥¥/ith the dyadic scale of our 2D-WT, however, the Gaussian
icance of particular wavelet coefficients introducing a threshodghlits into all frequency channels and their centers are carried
7. Hence, we filter the coefficients according to: out in wavelet space according to:
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m helps us to decide whether or not e&h + 1th mesh ver-

xy = x_:“ Yo = y—; (17) texis necessary for the triangle approximation. First, we visit
2 2 each second vertex and analyze the value of the detail signal of
and the rotation angl® is invariant to the transform. iterationm = 1. If, let's say, the detail signad, f in some

The set of Gaussian weighting functiofg™ (z™,y™)} in  neighborhood of vertex n is sufficiently low, then the vertex is
wavelet space can be elegantly described by using homogenemstsimportant and the approximation can be accomplished by

coordinates: a linear interpolation between vertex— 1 andn + 1. This
I, scheme can now be applied recursively by subsequent computa-
g" (2™ y™) = e”RTPT)T(RTPT)H (18) tion of the detail signals\,,, f, m = 1,..., M and by visiting

Cm ' . all dyadic vertices at positions = 2k + 1. Once the detail
The matrixR™ stands for the affine transform of the Gauss'ans‘ignal is sufficiently small and the adjacent vertices in 1

c0s©®  sin® _ mpcos O4yosin® are already removed, we are allowed to label the current vertex

R™ — —CsrimnG cgsm(a 2o sin @—Ugjo cos © (19) as well. . ) o
oy oy oy As a consequence, our procedure results in recursively building
0 0 1 a quadtree representation of the initial mesh by removing dyadic

dom — (xm vm 1) g ition in h vertices. Fig. 7 again illustrates the thinning method which fi-
an Ié. = (x™,y™,1)" denotes a position in homogeneous .y figures out the symbolic quadtree representation of the
coordinates. mesh vertices depicted as an example in Fig. 8. The nodes of

To summarize this section: the control of the local level-ofyq o aqtree contain either pointers to some child-nodes, or in
detail of the wavelet approximation can be accomplished by YSise of leaves, point to the entries of a vertex list.

ing one single Gaussian weighting function which surrounds the

region of interest in the initial data set. This Gaussian can be regylar mesh quadtree at m=1 quadtree at m=2
interpreted as a filter which is transformed into multiple Gaug R +e 1
sians, one in each frequency channel in wavelet space. Premy {
plying the coefficients with these Gaussian maps forces any sy .
sequent thresholding to pass only coefficients located within tf f
selected ROI. All others will be removed and hence the recop-, . \ ]
structed signal will be most accurate within the ROI along with » «
a Gaussian smoothing of the boundaries. Fig. 21 stresses the N

effect of level-of-detail filtering. Sylvia’'s model is decomposed w w

with Haar wavelets and filtered with Gaussians of different lo- single-step inverse WT

cgtiqns and parameters. Th.e model is perfectly reco_nstruc@dvertices to be analyzed at m=1

Wlthln the focus of the Gaussm_m, whereas only the scallrjg fun@— vertices to be analyzed at m=2

tions reprgsent the data c_)utS|de. _ In Fhe bogndary region, Iﬁsvertices to be analyzed at m=3

and less high frequency information is provided and the data

becomes more and more “boxlike”. Obviously, the proposé@. 7. Recursive growth of a quadtree from the regular mesh by analysing the
wavelet space filter acts asragnifying glasento the data. detail signals of the WT at each dyadic vertex.

We recommend applying the Gaussian filter and the thresholds

only to the wavelets and keeping all coefficients of the scaling

function, because they carry the DC fraction of the signal. 1 2 3 4
al| @2
I1l. QUADTREE MESHING 5 6 17b
. . . a3| a4
A. Point Removal in Regular Triangle Meshes 8 9 o 1 root
So far, we elaborated some mathematical criteria for approxi- c d
mating a surface data set, sampled on a regular grid, using a
multiresolution hierarchy. In order to build an adaptive surface 12 13 14

triangulation, however, it is necessary to remove unimportant
mesh vertices and to find a triangulation of the remaining ones.
The basic criterion, by which a mesh vertex is labeled as unim-
portant is given by the mathematical framework of the wavelet
transform. In contrast to existing methods [18] which base on
linear spline wavelets, we aim at generalizing to any type of
wavelet. Therefore, our criteria require much more elaboration.
Keeping in mind that any triangulation of the surface provides a
planar approximation, we only have to bound the error betwe‘ 1 ‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9 ‘ 10 ‘ 11‘ 12‘ 13 ‘ 14 ‘
the original surface functiofi(z, y) and the bilinear interpolant
provided by a triangle. Supposing furthermore that the initial
data is expanded by wavelet bases, the detail signal in iteratidip. 8. Symbolic representation of the mesh using a quadtree data structure.

vertex list
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Note again here that the growth of our quadtree is entirely camt regions, we have to check only left, upper or both adjacent
trolled by a single energy threshotcembedded in the function vertices.

space of the wavelets. The final maximum depth of the tree de- cell boundary

pends on the upper decomposition bourdf the WT. 3) b) array

At a first glance, it seems to be natural to take a particular Pu F ”””” we | W
wavelet coefficient to decide whether or not a vertex can be —————+— | 1 o
removed. This works out in the trivial case of simple linear B e } e  re !
splines. Extending the methods to arbitrary types of wavelets, - B b o
however, requires to elaborate the criteria significantly. This is - .
ultimately founded in Heisenberg’s uncertainty principle, deter- Tﬁ IT LC W
mining the lower bound of the spatial frequency localization. If,

let's say a wavelet has a particular spatial support, the the inner | distance |

prOdUCt with the data exaCtly represents it's contribution in théi[g. 10. a) Criteria to remove vertices on the edges of adjacent cells of the same
region. In the general case, however, it is not possible to recover resolution. b) Resulting partitioning of the initial array.

the contribution of the wavelet at a specific vertex position in

that region from the coefficients. Moreover, this would preas-

sume a wavelet, whose spatial localization drops to zero, sihLook-up Tables for Local Triangulations

as with Delta-distributions. Obviousely, we have to find mor@nce the tree is built from the above procedure, the quadtree
appropriate criteria than wavelet coefficients. cells have to be triangulated. A generic problem arising from
Therefore, to finally decide on whether a mesh vertex can Rfashing hierarchies of rectangular surface patches is the occur-
removed or not, we propose the following criteria which alsgince of cracks [2]. A crack occurs if we do not take care of
helps to preserve the topology of the tree. Only in cases, whgtgacency of quadtree cells of different depth and, hence, dif-
all criteria areTRUE can the vertex be removed: _ ferent resolution. The surface may break up, holes may appear
1. Wavelet-criterion a vertex at iteratiom: can be removed, if anq any consistency required for normal interpolation gets lost.

the sum of the squares of its difference signal and those witlify 11 shows a crack and also shows how to modify the trian-
a 4-neighborhood at resolution is less than an upper bourad gulation to avoid it.

(Fig. 9a). Upon removal, we preassume our difference signals

to be set to zero, but numerical reasons require toteed small adjacent cells consistent triangulation
positive number. (m) (m-1) (m) (m-1)
2. Resolution-criteriona vertex at iteratiom: can be removed,
if the four surrounding vertices at resolutien— 1 were previ-
ously removed (Fig. 9b). C
3. m to m-2-criterion a vertex can be removed, if the resulting
cell is not adjacent to any cell with higher resolution thar- 2.
Thus, we restrict the growth to cell transitions fremto m — 2  Fig. 11. The occurrence of cracks at the boundaries of adjacent quadtree cells
which simplifies the triangulation algorithm (Fig. 9c). of different resolution.

crack
|

PAPNPNPY The scheme we introduce here for fast and consistent cell trian-

; 1 & gulation is based on the following observation: consider Fig. 12,

_ e e # # where two adjacent cells are depicted along with topological ar-
016 | lec o # o # rangements that may occur for transitions from resolutioto

] u # # m — 1 andm — 2. There are only 5 cases at the respective

Py Df TC # } cell boundary. Let’s presume that we restrict the growth of the

b 000 guadtree so that only transitions uprto— 2 are possibleréso-
lution criterion). Consequently, the set of possible arrangements
of vertices at the four cell boundaries can now be derived from

A Aot dprdp=e Fig. 12. Moreover, some look-up tables may be built containing

Fig. 9. lllustration of the different criteria to decide on the vertex removal. the triangulations as explained below.
For cell transitions fromn to m — 1 a look-up table with 16

Another aspect of the method is illustrated in Fig. 10a, wheeatries is built as presented in Fig. 13. The central idea of the
vertex P is analyzed. Suppose survives all of the above cri- algorithm is to first solve the triangulation within each cellfor
teria. If we removeP, however and ifPy and P;, are already tom — 1. This is accomplished by analyzing the mesh vertices
removed, i. e. if two adjacent cells have the same resoluti@iong each cell edge.
then we must reject the verticgsand B on the cell boundaries, The fast computation of the look up table entry can be accom-
too. Hence, when traversing the vertex array from upper left pdished by a binary outcode, generated from bitwise addition of
lower right, one has to keep track of upper and left vertices thfe flags of the respective edge vertices, as indicated in Fig. 13.
the same iteration step as well. Once the corresponding look-up table entry is identified, we
This additional criterion ends up with a partitioning of the initiathen consider mesh vertices which account forithe 2 tran-
array into different regions (see Fig. 10b). Within these diffesitions. This may cause some triangles to be split up into two

a) wavelet criterion b) resolution criterion c) mto m-2 criterion
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| 1 3 & 8 10 ° 33
| 2 4 5 7 12 . * ® 34
3974,
m m m m-1 m m-2 © 14 18 y ﬁ/ %/
15 17
m-2 m-1 *°
I 21 22 2] 4 44 48
45
19 20 25 | 26 47
23 24
m m-1 m m-2
48\ 49
Fig. 12. Topology of mesh nodes of adjacent cells for different resolutions il 2 %0
m — 1 andm — 2. * x o
50\ 5 52
81\80| 82| 8
0=0000 1=0001 2=0010 3=0011 4=0100 5 58
- e — B 57 50\ 6
87 90\ 89 92/ 9:
|/ S| 88
5=0101 6=0110 7=0111 8=1000 9=1001 64 4
63 %5,
94
¥ 93 95
10=1010 11=1011 12=1100 13=1101 14=1110
96
68/ 67] % 73/ 72|
o vertex o removed vertex
15=1111
75| 77
Fig. 13. Look-up table representing the optimal triangulation of all possib! 7 © 7

cases fromm to m — 1 and corresponding outcode. . . . . .
Fig. 15. Look-up table with all 96 possible triangles which are necessary for

transitions fromm tom — 2.

pieces, as shown in Fig. 14. Consequently, the algorithm first

computes the case fon to m — 1 and then it decides on the; gach cell is addressed by its upper left corner vertex.
corresponding subcase, by simply analyzing the flags of all in-root cell

termediate vertices responsible for transitions fretom —2. x =¥ = 0;

Although we get 625 possible cases, the total number of tridrgve';se quadiree(x.y,i);

gles required does not exceed 96. They are stored in a lookpkfedure traverse_quadtree(x,y,i)

table depicted in Fig. 15. {

/I compute center vertex of son cells
mh = 2i-1;
xmh = x+mh;

ymh = y+mh;
C> S E— C> it (i>0) and flag(xmh,ymh)

{
i = i1
case 14 — Mo m—2 /lanalyze the son ceI_Is
traverse_quadtree(x,y,i);
Fig. 14. Cell triangulation for cases from to m — 2 as derived from a look-up traverse_quadtree(xmh,y,i);
table entry ofm tom — 1. traverse_quadtree(x,ymh.,i);

traverse_quadtree(xmh,ymh;i);
. } else
All subcases are hardcoded and contain references to these 100k~ triangulate(x,y,i);

up table entries. Note, that although there are 625 cases only bne

computation of the outcode and at most 8 additional tests are

necessary to compute the triangulation. It is clear that we end IV. ERRORS ANDCOMPLEXITY
up with a very efficient algorithm by doing the meshing withous. Error Analysis of Planar Approximations
any geometric computation but by just checking vertices anE)c%.| _ . . .
the cell edges. e important aspect, when dealing with surface approxima-

A corresponding pseudocode for the recursive quadtree travef@eﬂs IS to ql_Jan_tlfy _the_ error of the method. _In our approach,
and meshing is given with: error quantification is figured out by the following mean-square

/I The initial array has a size of (N+1)(N+1). measure. L.ef(:n,y) b? the original surface ang(z,y) be an
/I Let N be a power of 2, N = 2l. approximation. We define the mean-square efxéyas:
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O (N?) computations. Although we have to modify the initial
/ / |f(z,y) — g(z,y)|* dedy  (20) QMF-pyramid to compute the detail signal, the complexity still
remainsO (N?). The final expression for the complexity CWT
of a D-dimensional WT, however, depends both on the support
Note, that the error is normalized to the projected surface areaf the wavelet and on the iteration depith
AzAy. In the discrete case, whei€ samplesf; (z;,y;) of
the surface are provided at locatiops, y;), i = 1,..., K the

AQ

1
AzAy
Az Ay

M
mean-square error is approximated by the following relation: wT D 1
CMT~DNPS 3 apmn
1 K m=1
N = A (1) (21) 2PDNPS b
Kiil <72D_1 —O(N ) (23)
whereA (z;,y:) = f (i, y:) — g (i, yi)- This is another important reason for the usage of strict compact

Finally, in our triangle meshes the error integral of eq. (20) &upport wavelets such as the biorthogonal ones we recommend
evaluated using Monte Carlo methods. For this purpose, were.

compute a set ofC randomized locations within each of oursimilar investigations can be carried out for the complexity of
triangles and calculate the surface valyéz;, y;) by bilinear puilding up the quadtree: If, in the worst case, the traversal is
interpolation. The respective reference value for the surfaggne up to the maximum depth of the WA, we have to per-

fi (zi,y;) is obtained by bilinear interpolation of the four meskorm at worst 4 energy tests for the wavelet criterion, 4 resolu-
vertices in the initial data grid as depicted in Fig. 16. The cofjon tests and 16 tests for the to m — 2 criterion. Due to the
stant number of samples taken from each triangle forces ¥ygadic structure of the vertices to be analyzed, we end up with
overall number of samples for the evaluation to be distributed

according to the single triangle surface areas. Due to the adap-

M
tive triangulation, we end up with more samples in surface re- A _ 2T—2m
. . . - c = 24 E 2
gions of high curvature and accomplish a reasonable distribu- =
tion. Thus, the local mean square errors of each triangle have N
to be weighted with their corresponding surface até& pro- = 24 <8 - 4—M>

jected into 2D. The final expression of the overall mean square
error of the surface yields = 0 (N?) (24)

to test the importance of vertices, which is still linear with re-
spect to the overall number of mesh vertidés = 227,

K
> <% > (f @iys) — g (zi,9:)° AQTD> The traversal of the array is carried out by the recursive proce-
A=l ) =t (22) dure of depthM given in the pseudocode. In the worst case
Az Ay of none of the vertices to be labeled as being unimportant, it's
complexity is quantified by
P2 initial mesh
M-1
- CB — SI—M Z qm
m=0
° o | © oI+M _ 9I-M
= f
Qs|” @] 2| © 2I 2
o | o3| .| o P = 0(2)=0(N) (25)
Q 0, It has to be noted, however, that the worst case analysis provides
O . only a theoretical upper bound. In “real life”, vertices labeled
° triangular . . .

5 surface patch @S unimportant reduce the computational costs dramatically. A
single vertex removal in recursion depthcuts a whole subtree
and saves

Po o : samples
M Lk
Fig. 16. Computation of the mean square error using a Monte Carlo method. B = Z gk—m _ | (26)
k=m 3
B. Some remarks on Algorithmic Complexity tests.
One of the very advantages of our method is the low algorithmic V. APPLICATIONS

complexity for both computation of the respective transforms
and for the quadtree meshing. Whereas 2D-FFT based trefils
forms usually require (N?log,(IN')) computations, the 2D- For the following investigation, a digital terrain model of the
WT benefits from dyadic scaling and sparsity and requires or8yviss Alps, Matterhorn/Zermatt DHM 1:25000 was selected.

Mesh Reduction and Error Analysis
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The initial resolution of the mesh &56 x 256. The altitudes sponding Gouraud-shaded models are also presented in Fig. 22.
range from 1855.1 m (La Monta) to 4431.9 m (Matterhorn). Wa addition, depth cueing is used to enhance the presentation.
used cubic B-spline wavelets to decompose the data and the cor-

responding dual frames to approximate the reconstructions. EheLevel-of-Detail Control

iteration depth wad/ = 4, andK’ = 3 samples were taken alypg effect of wavelet space filtering using the Gaussian is illus-
each triangle to compute the mean square error. Fig. 17 '”Lfr%ited in the images of Fig. 23 for the same data set. Changing

trates, how the ratio of triangle reduction behaves as a functigy, harameters of the Gaussian ellipse allows us to concentrate
of the threshold-. Furthermore, the ratio of remaining wavelep, the triangulation of local regions of interest. Hence, for real
coefficients is recorded which can be interpreted as some kifife animations, such as flight simulation, our method enables

of coding gain. Finally, the root of the mean-square error is plQfg 1o move the Gaussian for each frame according to the pilots
ted as well in meters. Note, that due to the logarithmic scale g4 of vision or line of sight and to adapt the approximation to
the threshold, the functional behavior of both percentage of GRgse parameters. Finally, Fig. 23d presents the Gouraud-shaded

efficients and triangles is approximately linear. The relation j8,a5e. Obviously, the Gaussian enables the user to interact with
further stressed in Fig. 18, where the number of triangles and thg, .4 “magnifying glass”

mean square error are recorded as a function of the percentage

of coefficients employed for the approximation. C. Laser Range Data
[m] | | | The following results were obtained on laser range data sets.
1[?/3 I ! 1 Fig. 24a and b show a locally enhanced mesh and it's shaded
+ Number of triangles [%)] counterpart of a laser range scan of the city of Hannover, Ger-
g0+ ® Number of coefficients [%] many
E Mean— ' . -
+\ = Mean-square error [m] /' Another test of our method was carried out in Fig. 25,
60 * // which presents both globally and locally thresholded images of
+. . / Sylvia’s face.
40 + /./‘ For the upper investigations, we took an orthogonal projection.
+, - In the general case of cylindrical scans, however, we recommend
5 \ . .// to interpret the angular coordinate immediately in the spirit of a
0 < o 4 cylindrical projection [17].
- e R Again, the local spectral estimation properties force the algo-
0 —a— b oo -- - a . . . .
= ‘ = ¢ rithm to reduce the mesh either in low frequency regions or
0.01 0.10 1.00 10.00 100.00  1000.00[t]

where the user has directed the Gaussian filter.

Fig. 17. Number of triangles, wavelet coefficients and mean-square error of
digital terrain model as functions of treshatd D. Implementation

Our current implementation of the method is basedAvi$ 5

[m] and was not tuned for real time performance. Nevertheless, we
1‘0)/0 PN achieve meshing rates of less than 1s for a 256x256 data set on
[ 010 IR 1 an SGIl-Indy, 64 MB, R4400, also depending on the degree of
80<t _ mesh reduction. Actually, the major bottleneck is @eometry
) ,'+ Viewer module of AVS rather than any of the described algo-
60 F + Number of triangles [%] | | rithms.
+ ¢ Mean-square error [m] In the previous examples, we compared two polynomial approx-
» ,'*: imations. Therefore, we picked an appropriate tolerance mea-
40 + surer and computed the resulting error. If, instead we base
+ the error analysis on the wavelet approximation, it is straight-
20-% forward to predefine a particular error bound to be kept. This
requires, however, additional computations. After sorting the
0] 9o+ . wavelet coefficients, the detail signals reconstructed from the

0 10 20 30 40 50 60 70 80 90 100[%] recoverdwavelets can be used to compute a mean-square error

and can be summed up to a particular upper bound.
Fig. 18. Number of triangles and mean-square error as function of the coeffi-

cients used for the approximation. V]. CONCLUSIONS
Some results of intermediate steps of the triangle reduction &ve presented a method for fast and efficient surface meshing
depicted in Fig. 22. The criteria which we defined to rejeethich benefits from two basic ideas: First, any control of the
unimportant mesh vertices thin in particular in those regions sfirface mesh is computed by using an initial wavelet decom-
low surface curvature. This is due to the wavelet criterion whigosition of the data samples. The mathematical framework of
provides an estimate of the local spectral energy of the datatle WT allows us to bound the errors of the approximation and
different frequency channels. Thus, local high frequency variefficient criteria on whether or not single mesh vertices can be
tions in our data force the meshing to be more dense. The conemoved are provided by analyzing WT outputs. Furthermore,
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wavelet space filters allow a control of the quality of the sufto] S. Mallat, “A theory for multiresolution signal decomposition: The
face approximation within local regions of interest and act as
local magnifying glassesSecondly, the dyadic structure of the
2D-WT motivated us to build a quadmesh from the initial redll] C. Chui,An Introduction to WaveletsAcademic Press, 1992.

ular grid. Any triangulation of each quadtree cell is obtainggi2] E. J. Stolinitz, T. D. DeRose, and D. H. Salesin, “Wavelets for computer
by using a look-up table and hence no additional computation is
required for the triangulation, as with standard Delaunay-based

methods.

[13]

Due to the low complexity of this algorithm, we can achieve

retriangulations of the surface at nearly interactive rates in tﬁg] S. Muraki

current AVS implementation on SGI workstations. Thus, we

guess that our method is particularly well suited for real-ti

Mes)

applications, as virtual reality or flight and driving simulation.

Especially, when considering low altitude flights the Gaussian
filter could help to control the level-of-detail of the pilot’s field[16] S.J. Gortler, P. Schroder, M. F. Cohen, and P. Hanrahan, “Wavelet radios-
of vision. Moreover, any object instance of a geometric data

base related to the terrain might also be controlled by the wavelet

transform. For this purpose the actual depth of the quadtreé%l M. Gross and R. Koch, “Visualization of multidimensional shape and tex-

the object’s location on the terrain is used to govern the data
base and to select the object instance to be rendered.

Although the method requires an inverse WT with each new t[ig] J. M. LounsberyMultiresolution Analysis for Surfaces of Arbitrary Topo-
angulation, we have proven the algorithmic complexity is still
low. It is clear that we can map the WT onto special purpog®] A. Finkelstein and D. H. Salesin, “Multiresolution curves,” Rtoceed-
hardware, such as signal processors. Currently, the method is ings of SIGGRAPH '94 (Orlando, Florida, July 24-29, 1994) Glass-
implemented in terms of different AVS modules.
Future research has to be conducted towards extensions of the667-0.

method for 3D isosurfaces in volume data using tetrahedralizay m. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuet-
tions of an octree built from the WT. Additional tuning of the
mesh could also be carried out by using the directional selectiv-
ity of the WT.

[21]
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B-spline curve

a)

b)

c)

d)

Fig. 19. Decomposition of a B-spline curve using cubig B-spline scaling functions of different resalityV/ = 0. b) M = 1. ¢c) M = 2. d) M = 3.
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c) d)

Fig. 20. Different levels of approximation of Sylvia’s data set by global thresholding of Haar wavéletpercentage of remaining coefficients (data source
courtesy ZGDV, Darmstadt).
a)T =0,C =100%. b)7 = 1,C = 13.7%. ¢) 7 = 100, C' = 1.7%. d) 7 = 10000, C' = 0.2%.
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a) b) c)

Fig. 21. Example for local level-of-detail filtering in wavelet space: Decomposition of Sylvia’s face with Haar wavelets and filtering with dEferssian
space-frequency filters.
a)o, = 80,0y =80,0 =0.b)o, =50,0, =30,0 =0¢)o, =80,0, =20,0 =7/4
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Fig. 22. Adaptive meshing of the digital terrain model
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c) d)
Fig. 23. Level-of-detail meshing using wavelet space filterifig iemaining coefficientsT": no. of triangles):

a)oy = 20,0y =20,0 =0,C =5.2%, T = 14753. b) o = 30,0y = 10,0 = 0,C = 4.2%, T = 11920. ¢) 0 = 20, 0y = 10, © = 7/4,
C =23%,T =9101. d)o, = 20,0y =20,0 =0,C =5.2%,T = 14753.
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Fig. 24. Locally adaptive mesh of a laser range image of the city of Hann6ver:9.0%, T' = 19.7%:
a) Gouraud shaded image. b) mesh as a wireframe.
(data source: courtesy provided by Dornier GmbH, Germany)
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Fig. 25. Globally and locally reduced meshes of Sylvia's image:

a) original:7 = 0, C = 100%, T' = 95142. b) global thresholdr = 50, C' = 3.1%, T" = 9900 c) local thresholdv, = 20,0, = 25,0 =0,C = 5.9%,
T = 13876.





